
remote sensing  

Article

Superpixel-Based Regional-Scale Grassland Community
Classification Using Genetic Programming with Sentinel-1 SAR
and Sentinel-2 Multispectral Images

Zhenjiang Wu 1,2, Jiahua Zhang 2,3,* , Fan Deng 1, Sha Zhang 4, Da Zhang 2, Lan Xun 2, Mengfei Ji 1 and Qian Feng 1

����������
�������

Citation: Wu, Z.; Zhang, J.; Deng, F.;

Zhang, S.; Zhang, D.; Xun, L.; Ji, M.;

Feng, Q. Superpixel-Based

Regional-Scale Grassland

Community Classification Using

Genetic Programming with Sentinel-1

SAR and Sentinel-2 Multispectral

Images. Remote Sens. 2021, 13, 4067.

https://doi.org/10.3390/rs13204067

Academic Editors: José Manuel

Fonseca and André Damas Mora

Received: 31 August 2021

Accepted: 4 October 2021

Published: 12 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Geoscience, Yangtze University, Wuhan 430100, China; wzj201971246@yangtzeu.edu.cn (Z.W.);
dengfan@yangtzeu.edu.cn (F.D.); 201971256@yangtzeu.edu.cn (M.J.); 202071360@yangtzeu.edu.cn (Q.F.)

2 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
zhangda@radi.ac.cn (D.Z.); xunlan@radi.ac.cn (L.X.)

3 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4 Research Center for Remote Sensing Information and Digital Earth, College of Computer Science and

Technology, Qingdao University, Qingdao 266071, China; zhangsha@qdu.edu.cn
* Correspondence: zhangjh@radi.ac.cn; Tel.: +86-10-82178122

Abstract: Grasslands are one of the most important terrestrial ecosystems on the planet and have
significant economic and ecological value. Accurate and rapid discrimination of grassland com-
munities is critical to the conservation and utilization of grassland resources. Previous studies that
explored grassland communities were mainly based on field surveys or airborne hyperspectral and
high-resolution imagery. Limited by workload and cost, these methods are typically suitable for
small areas. Spaceborne mid-resolution RS images (e.g., Sentinel, Landsat) have been widely used
for large-scale vegetation observations owing to their large swath width. However, there still keep
challenges in accurately distinguishing between different grassland communities using these images
because of the strong spectral similarity of different communities and the suboptimal performance
of models used for classification. To address this issue, this paper proposed a superpixel-based
grassland community classification method using Genetic Programming (GP)-optimized classifica-
tion model with Sentinel-2 multispectral bands, their derived vegetation indices (VIs) and textural
features, and Sentinel-1 Synthetic Aperture Radar (SAR) bands and the derived textural features. The
proposed method was evaluated in the Siziwang grassland of China. Our results showed that the
addition of VIs and textures, as well as the use of GP-optimized classification models, can significantly
contribute to distinguishing grassland communities, and the proposed approach classified the seven
communities in Siziwang grassland with an overall accuracy of 84.21% and a kappa coefficient of
0.81. We concluded that the classification method proposed in this paper is capable of distinguishing
grassland communities with high accuracy at a regional scale.

Keywords: grassland community classification; Sentinel imagery; superpixel-based; genetic pro-
gramming; regional scale

1. Introduction

As the largest terrestrial ecosystem on earth, grasslands play a crucial role in regulating
climate, conserving water, protecting biodiversity, and promoting livestock development [1,2].
Grassland communities are considered the fundamental unit of grassland ecosystems [3].
Accurate classification of grassland communities is important for humans to understand
and study grassland areas, and provides an important basis for rational use, effective
conservation, and sustainable development [4]. Field surveys are a reliable way to classify
grasslands. Researchers can obtain accurate information on the distribution of different
grasslands through sampling and obtaining field records. However, this method is costly
and time-consuming when applied either repetitively or in large landscapes [5].
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Remote sensing (RS) technology developed through advances in aerospace technology,
provides a method for achieving fast, effective and objective observation of grasslands [6].
Each pixel in the image is classified into different categories based on certain rules through
extraction of the spectral, textural, and spatial features of different categories of grassland
from RS images [7]. Recently, unmanned aerial vehicle (UAV) images were widely used in
grassland community classification due as they are characterized by less restrictive weather
conditions and low cost of operation [8,9]. However, the low altitude of UAVs results in
more time required to photograph large areas of grassland. Therefore, the study area for
grassland community classification studies based on UAV data is typically a few tens to a
few hundred square kilometers [10–12].

Spaceborne mid-resolution RS images (e.g., GaoFen-6, Sentinel-2, Landsat-8) have
larger swath width, thus they are more suitable for large-scale studies [13,14]. However,
studies using these images for classifying grassland at community level are rare [15]. One
reason for this can be attributed to the low spectral resolution of these images, which
causes the spectral differences between different communities to be insignificant and thus
makes it difficult to distinguish them using raw multispectral images alone [7,16]. Recent
studies have attempted vegetation classification using vegetation indices (VIs) reflecting
vegetation growth status [17] and textural features reflecting image homogeneity [18] in
combination with raw multispectral images and have succeeded in improving vegetation
classification [19]. In addition, spaceborne synthetic aperture radar (SAR) data has been
found to discriminate vegetation types well due to its all-weather acquisition capability [20].
Also, several studies have shown that the fused multispectral and SAR imagery has a better
performance than using a single type of data in vegetation mapping [21]. And in these
studies, Sentinel-1 SAR and -2 multispectral data are commonly used. This implies the
potential of Sentinel satellite data, the outcomes of the European Copernicus program, in
grassland community classification [5].

The other reason for the difficulty in distinguishing grassland communities using
spaceborne mid-resolution RS images is that the performance of the classification models
used to classify grassland communities is suboptimal [3]. In previous studies of vegetation
classification, classification models (including classifiers and their hyperparameters) were
usually determined empirically without selecting the optimal ones based on the specific
study [22,23]. Notably, studies suggest that the selection of classification models has a
significant impact on the classification results [24,25]. The advanced Genetic Programming
(GP) algorithm which is a type of Genetic Algorithm (GA) [26], has been recently used in
the field of model optimization [27]. GP automatically searches for optimal solutions to
problems by simulating natural biological evolutionary mechanisms. GP can optimize both
classifiers and hyperparameters [28] as opposed to the common optimization methods
such as grid search, random search, and Bayesian optimization. Moreover, it can generate
more complex models to achieve higher accuracy when faced with complicated prediction
problems [29].

As for the basic unit of classification, superpixels composed of spatially connected
similar pixels can adhere better to the natural image boundaries compared with pixels [30].
Therefore, the superpixel-based classification results can alleviate the salt-and-pepper phe-
nomenon and obtain better classification results compared to pixel-based [31]. Moreover,
the computational burden of superpixel-based classification is small, and the result is
less affected by noise [32], thus the studies of RS vegetation classification are commonly
conducted with superpixels as the basic unit [33].

In this study, we aimed to propose a superpixel-based regional-scale grassland com-
munity classification method using the GP-optimized classification model with Sentinel-2
multispectral bands, their derived VIs and textures, and Sentinel-1 SAR bands and the
derived textures. The method was validated in Siziwang grassland, China. The objectives
of the study were to: (1) verify whether the addition of textures and VIs would improve the
classification accuracy of grassland communities based on spaceborne mid-resolution RS
images; (2) test whether the classification results based on the GP-optimized classification
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model are better than that of common classifiers; (3) map the distribution of Siziwang
grassland communities; (4) evaluate the universality of the proposed method. We expected
that the method proposed in this paper can achieve high accuracy classification of grass-
land communities based on spaceborne mid-resolution RS data at a regional scale with
high universality.

2. Study Area and Data
2.1. Study Area

Siziwang Banner (Figure 1) is part of Ulanqab city in Inner Mongolia, China. It is
located in the central part of Inner Mongolia, at a latitude/longitude of 41.17° to 43.37° N,
110.33° to 113° E, and covers an area of 24 036 km2 [34]. The region is situated at the
northern foot of Daqing Mountain, with an altitude of 1000 m to 2100 m, and the entire
terrain is inclined from southeast to northwest. Siziwang Banner is characterized by a mid-
temperate continental monsoon climatic zone, with an average annual rainfall of 310.2 mm,
and 70% of the yearly precipitation occurs mainly in July, August, and September. The
average annual temperature of the region is 3.8 °C with the lowest temperature recorded in
January (−17.2 °C) and the highest temperature recorded in July (20.7 °C) [35]. Occupying
approximately 80% of the total area of Siziwang, Siziwang grassland is an important part of
the grasslands in northern China and the Eurasian grassland [34]. The main communities
here (Table 1) include Reaumuria soongarica (Pall.) Maxim (hereafter RES) grassland, Stipa
sareptana var. krylovii (Roshev.) P. C. Kuo & Y. H. Sun (hereafter STS) grassland, Artemisia
frigida willd (hereafter ARF) grassland, Stipa tianschanica var. gobica (Roshev.) P. C. Kuo &
Y. H. Sun (hereafter STT) grassland, Stipa caucasica subsp. glareosa (P. A. Smirn.) Tzvelev
(hereafter STC) grassland, Stipa breviflora Griseb (hereafter STB) grassland, and Achnatherum
splendens (Trin.) Nevski (hereafter ACS) grassland [36].

Figure 1. Land cover of Siziwang and samples distribution [37].
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Table 1. Main grassland communities in Siziwang.

Community Constructive Species [36] Coverage (%) [36] Examples

RES Reaumuria soongarica (Pall.) Maxim 8–12

STC Stipa caucasica subsp. glareosa (P. A.
Smirn.) Tzvelev 10–15

STT Stipa tianschanica var. gobica (Roshev.) P. C.
Kuo & Y. H. Sun 10–20

ARF Artemisia frigida willd 20–25

STB Stipa breviflora Griseb 20–40

STS Stipa sareptana var. krylovii (Roshev.) P. C.
Kuo & Y. H. Sun 35–40

ACS Achnatherum splendens (Trin.) Nevski 35–50

2.2. Image Preprocessing

Sentinel-1 and Sentinel-2 are sensors developed by the European Space Agency (ESA)
Copernicus for earth observation. The sensors are commonly used in vegetation studies
owing to the high data quality and availability [4,38]. The Sentinel images used in this study
(Table 2) were retrieved from Sentinels Scientific Data Hub (https://scihub.copernicus.eu/,
accessed on 1 August 2020), resampled to 10 m using bilinear interpolation, geographically
registered, and subset into the study area.

https://scihub.copernicus.eu/
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Table 2. Basic information of the Sentinel data used in this study.

Satellite Acquisition Time Product Type Number of
Images

Cloud
Percentage

Sentinel-1 2 July 2019, 7 July 2019 GRD 4 —
Sentinel-2 3 July 2019 Level-2A 7 Less than 1%

2.2.1. Sentinel-1 Data

Sentinel-1 carries a C-band SAR with a 6-day repeat cycle [39]. Sentinel-1 data used in
this study were Level-1 Ground Range Detected (GRD) images in Interferometric Wide
Swath (IW) mode at VV (vertical transmit and vertical receive) and VH (vertical transmit
and horizontal receive) polarizations with 250 km swath width and 5 m × 20 m spatial
resolution [40]. The preprocessing of Sentinel-1 GRD data included applying orbit file,
border and thermal noise removal, radiometric calibration, speckle filtering, range doppler
terrain correction, and geocoding [41]. Preprocessing was conducted using an open-source
SNAP software (version 8.0.0) (https://step.esa.int/main/toolboxes/snap/, accessed on 7
May 2020) and obtained higher quality GRD data for the subsequent experiments.

2.2.2. Sentinel-2 Data

Sentinel-2 comprises two satellites with a revisit period of 5 d and a swath width of
290 km. Sentinel-2 Multispectral Instrument (MSI) covers 13 spectral bands from visible
to short-wave infrared (SWIR) (Table 3), including 4 bands in the red, green, blue, and
near-infrared (NIR) region with a spatial resolution of up to 10 m, which is currently the
highest multispectral data freely available [42]. Moreover, Sentinel-2 Level-2A data has
been orthographic, atmospheric, geometric corrected [43].

Table 3. Sentinel-2 band information [44].

Sentinel-2 Bands Central
Wavelength (µm)

Spatial
Resolution (m)

Band 1: Coastal aerosol 0.443 60
Band 2: Blue 0.490 10

Band 3: Green 0.560 10
Band 4: Red 0.665 10

Band 5: Vegetation red edge 0.705 20
Band 6: Vegetation red edge 0.740 20
Band 7: Vegetation red edge 0.783 20

Band 8: NIR 0.842 10
Band 8b: Narrow NIR 0.865 20
Band 9: Water vapour 0.945 60
Band 10: SWIR-Cirrius 1.375 60

Band 11: SWIR 1.610 60
Band 12: SWIR 2.190 60

2.3. Ground Truth Data Acquisition

The field survey was conducted in August 2019. It should be noted that the proposed
approach used superpixels as the basic unit of classification, implying that the samples used
for classification were obtained by assigning observations of the community categories to
the superpixels where the sampling points were located. Therefore, field sampling was
conducted in patches with a homogeneous grassland community, and the locations of field
points were recorded by GPS. In addition to field sampling, more samples were selected for
classification based on previous studies [36,45]. A total of 378 field sites with RES (45 sites),
STC (41 sites), STT (67 sites), ARF (30 sites), STB (44 sites), STS (72 sites), and ACS (79 sites)
were included in the current study. Of these, 70% were used for training the classification
model and 30% were used for testing the classification accuracy. Considering no significant
changes in the extend of the grassland in Siziwang Banner between 2019 to 2020 [34,37], we

https://step.esa.int/main/toolboxes/snap/
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masked off non-grassland areas to eliminate their interference of the classification results
using the 10 m resolution Siziwang Banner land cover map for 2020 [37].

3. Methods

The flow chart of the proposed classification method of grassland community is
summarized in Figure 2. The method consists of four parts, including the part of image
processing which is introduced in Section 2.2, and the other three parts are discussed in
detail in this section.

Figure 2. The flow chart of the proposed classification method for grassland communities in
this paper.

3.1. Watershed-Based Superpixel Segmentation

The watershed algorithm is a segmentation method based on analysis of geomorphol-
ogy and is widely used in RS image processing [46,47]. The algorithm achieves image
segmentation by connecting pixels with similar features (usually refers to gray values) to
each other in spatial location thus forming a closed contour. Specifically, at first, the gray
value of all pixels in an image is extracted and a distance threshold is set. Then, taking
the pixel with the smallest gray value as the initiation point, the horizontal plane (i.e.,
the image gray level) raises from the minimum gray value. When the horizontal plane
reaches the neighboring pixels, the horizontal distance from these pixels to the initiation
point is calculated, and if it is less than the threshold distance, these pixels are flooded
(implying that they are included as pixels inside the segmented object), otherwise dams
(i.e., watersheds) are set on these pixels to segment these neighboring pixels. Increase in
the horizontal plane then more dams are set, and when the horizontal plane reaches the
maximum of gray value, these dams complete the segmentation of the whole image [48].
The process of watershed segmentation is presented in Figure 3.
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Figure 3. Schematic diagram showing watershed segmentation.

It is worth noting that setting of the distance threshold has a significant effect on
the results of segmentation and classification [49]. A large threshold leads to inclusion of
heterogeneous pixels within the segmented object, whereas a small threshold results in
inadequate image segmentation. The stepwise evolution analysis (SEA) method proposed
by Hu et al. (2017) [50] was used in the current study to obtain the optimal segmentation
scale. The first step of SEA is to construct the scale set model [51] that records the image
segmentation results at each scale on the already segmented images. Concretely, the
neighboring segments are merged pairwise in descending order of dissimilarity, and binary
segmentation trees [52] are used to record the new segments created during the merging
process and the hierarchical relationships between all child segments and parent segments.
When the merging is completed, the scale set model of the image is built. An example
of a scale set model is shown in Figure 4. The larger the segmentation scale is, the more
under-segmentation exists; conversely, the more over-segmentation exists. Subsequently,
SEA solves for the optimal segmentation scale by evaluating the risk of over- and under-
segmentation at each scale using the minimum risk Bayesian decision algorithm [53]. The
performance of this method has been confirmed in several studies [54–56]. It is worth
noting that since speckle noise in SAR data would interfere with the performance of
segmentation [57,58], we only performed segmentation on multispectral data. Then, the
segmented vector layer was applied to SAR data to segment it.

Figure 4. An example of a scale set model.
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3.2. Feature Extraction and Selection

Four categories of features derived from Sentinel-1 and -2 were utilized in this study,
including spectral information, VIs, textural features, and backscatter information (Table 4).
VIs included NDVI, Enhanced Vegetation Index (EVI), Simple Ratio Index (SR), and Red
Edge Normalized Difference Vegetation Index (NDVI705). The textural features used in this
study were derived from the gray-level co-occurrence matrix (GLCM), and seven GLCM
indicators of two backscatter coefficients and eight spectral bands were calculated with a
window size of 9× 9, which has been reported by several studies as suitable for extracting
textures from Sentinel images [38,59]. The abovementioned features were calculated from
SNAP software at the pixel level. For each superpixel, the mean and standard deviation of
these features were computed.

Table 4. Description of features extracted from Sentinel-1 and 2 images.

Categories Features Description Reference

Spectral
Information

Band 2, 3, 4, 5, 6, 7, 8, and 8b
The reflectance in red,
blue, green, NIR, and

red edge band

[42]

Vegetation Indices

NDVI ρnir−ρred
ρmir+ρred

[60]
SR ρnir

ρred
[60]

EVI 2.5× ρnir−ρred
ρnir+6×ρred−7.5×ρblue+1 [61]

NDVI705
ρ750−ρ705
ρ750+ρ705

[62]

Textural
Features

GLGM_Variance, GLGM_Homogeneity,
GLGM_Contrast, GLGM_Dissimilarity,
GLGM_Entropy, GLGM_Correlation,

GLGM_Second Moment

Variance, Homogeneity,
Contrast, Dissimilarity,
Entropy, Correlation,
and Second Moment

of VV and VH polarization

[63]

Backscatter
Information

σVV and σVH
Backscatter coefficient

of VV and VH polarization
[39]

ρnir , ρred, ρblue, ρ705, and ρ750 represent NIR, red, blue, red edge 1, and red edge 2 band of Sentinel-2, respectively.

Notably, not all the extracted features contribute to improving the classification accu-
racy [64]. Therefore, several feature selection algorithms have been proposed to eliminate
the effects of noisy data on classification results. The Recursive Feature Elimination with
Cross-Validation (RFECV) algorithm is widely used in image analysis for automatic se-
lection of the optimal feature subset without human intervention [18]. RFECV first ranks
the features in order of importance and then selects the optimal feature subset by cross-
validation [65]. The above two processes are specifically as follows.

1. N features are fed into a classifier, and importance of each feature is calculated;
2. The feature with the lowest importance is removed from the current feature set, and

the other features are input into the classifier again to calculate importance of each
feature;

3. Step 2 is repeated until the feature set was empty;
4. All features are sorted by decreasing order of importance, and a threshold is selected.

The features with importance greater than this threshold are then retained.

In previous studies, the threshold was usually determined by repeated experiments [18].
To capture the optimal feature subset automatically, the RFE with cross-validation (RFECV)
algorithm was employed in this study. RFECV used the classifier in RFE to calculate the
validation error of all feature subsets (2n − 1) consisting of n features, and the number of
features in the subset with the lowest average validation error was the optimal number
of features. The optimal features were then selected based on the ranking obtained by
RFE [66]. Since RF excels in feature selection and ranking [67], it was chosen as the classifier
of RFE (hereafter RF_RFE) in this study.
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3.3. Classification Selection and Hyperparameter Optimization Based on GP Algorithm

The GP algorithm is a search and optimization technique that simulates the process
of Darwinian biological evolution [68]. It expresses the feasible solutions for the problem
by using individuals. The initial population evolves to the optimal individual tree, i.e.,
the optimal solution, for the solution problem after genetic operations such as replication,
crossover, and mutation, guided by the fitness function.

3.3.1. Individual Tree

GP is an evolutionary algorithm, which inherits the Genetic algorithm’s (GA) idea of
breeding offspring from parents by selection. However, unlike the traditional coding (fixed-
length gene) model of GA, individuals in GP are represented in a hierarchical structure
instead of a string, most often in a tree structure [69].

The individual tree comprises the terminal set (TS) and function set (FS), whereby TS
and FS hold the input variables and the functions that perform operations on the input
variables, respectively. Figure 5 shows an individual tree expressing (X−Y) + 3, where
the functions (+, −) on the internal nodes and the variables (X, Y, 3) on the leaf nodes
are generated from FS and TS, respectively. In this study, GP was performed using the
scikit-learn, xgboost, TPOT, and DEAP packages in Python. TS comprises the superpixels
awaiting classification and samples. FS comprises the classification models in the sklearn
machine learning Python package, including Logistic Regression (LR), Stochastic Gradient
Descent (SGD), K-nearest neighbor (KNN), Decision Tree (DT), Naive Bayes (NB), Support
Vector Machine (SVM), Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA), Bagging, Random Forest (RF), AdaBoost, Extremely Randomized Trees
(ET), Gradient Tree Boosting (GBDT) and Multilayer Perception (MLP), etc.

Figure 5. An example of individual tree.

3.3.2. Genetic Operator

GP contains three genetic operators: replication, crossover, and mutation. The struc-
ture of individual trees can change when new trees are generated owing to the genetic op-
erators.

• The replication operator selects a few individuals in the current population according
to certain rules and retains them directly to the next generation.

• The crossover operator randomly selects two individuals as parents from the current
population. A node is then randomly selected as the crossover point in each parent
individual, and the part below this node represents the segment to be exchanged
(called the crossover segment). Offspring individuals are generated by swapping the
crossing segments of parent individuals. The crossover process of individual trees
(X−Y) + 3 and (9 + 4) + (X÷Y) is presented in Figure 6.

• The mutation operator randomly selects a node in a parent individual as a mutation
point and replaces the subtree below the mutation point with a randomly gener-
ated individual tree. Figure 7 illustrates the mutation process of the individual tree
(X−Y) + 3.
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Figure 6. The crossover process of individual trees (X−Y) + 3 and (9 + 4) + (X÷Y).

Figure 7. The mutation process of in the individual tree (X−Y) + 3.

3.3.3. Fitness Function

After individuals are generated, it is necessary to evaluate their level of fitness to the
environment. Those with high fitness are directly retained as the next generation or used
for performing crossover or mutation operations to generate new individuals, which will
improve the fitness of the next generation. In the current work, classification accuracy was
adopted as the fitness function.

3.3.4. Flow of the GP Algorithm

GP algorithm first constructs several individual trees to form the initial population
and then iterates over these trees. After each iteration, the algorithm calculates the fitness of
individual trees and determines whether the iteration termination condition is satisfied. The
iteration ends if the condition is satisfied. Otherwise, replication, crossover, and mutation
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operations are performed to generate new individuals to form the next generation of
populations for a new iteration. The flowchart of GP algorithm is shown in Figure 8.

Figure 8. The flowchart of GP algorithm.

In this study, the setting of GP parameters follows a standard GP process [70]. GP first
generated 100 individual trees and evaluated their classification accuracy. Then, the top
20% of individuals were selected using the tournament selection method [71], following
the criterion of high classification accuracy and few internal nodes. Specifically, first,
three individuals were randomly selected from the population, followed by elimination
of the individual with the lowest classification accuracy, and then the one with fewer
internal nodes was selected from the remaining two individuals and replicated to the
next generation population. This procedure was repeated until the number of selected
individuals reached 20% of the total population. To creat the rest of individuals of the new
population, each selected individuals was replicated five times and subjected to the genetic
operation with a 5% crossover rate and a 90% mutation rate to generate new offspring
for the next iteration. After each iteration, the individual with the highest classification
accuracy was stored, and the current one would be replaced if a higher accuracy was found
in the later iterations. The iteration was terminated when 100 iterations were completed
(i.e., the generation reached 100), and the individual with the highest classification accuracy
recorded in the iteration was selected as the optimal classification model [72].

3.4. Segmentation and Classification Evaluation

The Overall Goodness F-measure (OGF) method was used to measure the segmenta-
tion performance in this study. The value of OGF ranged from 0 to 1. The segmentation
scale corresponding to the maximum OGF value was used as the optimal scale [73]. OGF
was calculated as follows:

OGF =
(

1 + α2
) MInorm × LVnorm

α2 ×MInorm + LVnorm
, (1)
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where MInorm and LVnorm represent normalized [0,1] measures of Moran’s I (MI) [74] and
local variance (LV) [75]. α is a parameter used to adjust the relative weights of MInorm
and LVnorm in Equation (1). α = 1, >1, and <1 indicate equal weights for MInorm and
LVnorm, higher weights for LVnorm, and higher weights for MInorm, respectively. Usually, the
optimal segmentation scale is obtained when these two indicators are balanced, therefore,
α was set to 1 in this study [55].

LV was calculated as follows:

LV =
1

nw × nh

N

∑
i=1

aiσi, (2)

where nw and nh represent the width and height of the image, N is the number of segments,
ai and σi represent the area and standard spectral deviation of the ith segment. A lower LV
value indicates a better intra-segment homogeneity [76].

MI was calculated as shown below:

MI =
N ×

(
∑N

i=1 ∑
N,i 6=j
j=1 ωi,j(xi − x̄)

(
xj − x̄

))(
∑N

i=1 ∑N
j=1 ωi,j

)
×

(
∑N

i=1(xi − x̄)2
) , (3)

where N represents the number of segments, xi is the mean value of spectral reflectance of
ith segment, and x̄ is the mean value of spectral reflectance of the whole image. wi,j is used
to measure the spatial adjacency of segment i and j. If segment i and j are adjacent, wi,j = 1,
otherwise 0. A lower MI value means a higher inter-segment heterogeneity [77].

The current study determined the classification accuracy using user’s accuracy (UA),
producer’s accuracy (PA), overall accuracy (OA), and Kappa coefficient (Kappa). PA
and UA were derived from the confusion matrix and were used for determination of the
classification effect of each class, whereas OA and kappa were used to evaluate the overall
classification results.

4. Results
4.1. Segmentation Performance Evaluation

In this study, we performed superpixel segmentation on Sentinel-2 multispectral
images based on SEA. To test the segmentation effect of the images under the SEA work,
we calculated the OGF values corresponding to the segmentation scales from 0 to 1000.
As shown in Figure 9a,b, the OGF curve initially increased and then gradually decreased,
and the maximum value was achieved when the scale was close to 180. The optimal
scale obtained by the SEA method was 177, and its corresponding OGF value was very
close to the peak of the OGF curve. To visually examine the performance of segmentation
based on SEA, we compared the segmentation results of three sub-regions within the
study area (Figure 8c) at scales larger and smaller than 177 with the OGF value of 0.67
(i.e., 155 and 221) with that of scale 177. As shown in Figure 8d, at 155 scale, there are
several fragmented spots in the image due to over-segmentation (yellow markers); at scale
221, there are obvious unsegmented objects (red markers); and at 177 scale, the image
visually maintains a relative balance between intra-segmentation homogeneity and inter-
segmentation heterogeneity, with few over- and under-segmentation. The results indicated
the effectiveness of applying SEA method to achieve accurate segmentation of the images
in this study.
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Figure 9. Evaluation of Segmentation Performance. (a) OGF curve corresponding to the segmentation scale from 0 to
1000. (b) OGF curve corresponding to the segmentation scale from 139 to 272. (c) False-color composite Sentinel-2 image
of Siziwang on July 3, 2019. (d) Segmentation results for the three subregions of Siziwang at scales of 155, 177, and 221,
respectively.

4.2. Feature Selection Result

By using RF_RFE, 67 out of 168 features (hereafter MSVT) in Section 3.2 were retained
(Table 5). The more features derived by mean (hereafter MF) were retained compared
with those obtained through standard deviation (hereafter SDF), giving a total of 37 and
30 features, respectively. Specifically, for spectral information, the findings for spectral
information showed that all spectral bands of MF were retained, whereas only the red and
NIR bands were retained in the SDF. This indicated that the spectral information of the
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superpixels extracted by the mean value was more effective than the standard deviation
in this study. For VIs, NDVI, SR, and NDVI705 were retained in both MF and SDF for
VIs, whereas EVI was excluded. For the textural features, MF extracted from SAR images
were more retained than those of multispectral images, while the opposite is true for SDF.
And for the backscattering information, both MF and SDF of the VV and VH polarization
backscattering coefficient were preserved.

Table 5. Feature subset of multispectral and SAR bands, VIs, and textural features screened by RF_RFE.

Categories Statistics Features

Spectral Information Mean Band 2, 3, 4, 5, 6, 7, 8, 8b
Standard Deviation Band 4, 7, 8b

Vegetation Indices Mean NDVI, SR, NDVI705
Standard Deviation NDVI, SR, NDVI705

Textural Features Mean

Band 2 (Homogeneity, Second Moment,
Dissimilarity, Entropy, Correlation) *,

Band 4 (Entropy, Homogeneity, Second Moment),
Band 7 (Entropy), Band 8 (Second Moment)

σVV (Second Moment, Entropy, Dissimilarity,
Correlation, Contrast, Homogeneity, Variance),

σVH (Correlation, Second Moment, Entropy,
Contrast, Variance, Homogeneity, Dissimilarity)

Standard Deviation
Band 2 (Homogeneity, Entropy, Correlation)

Band 3 (Homogeneity, Entropy), Band 7 (Entropy, Second Moment)
Band 4 (Homogeneity, Dissimilarity, Entropy, Correlation),

Band 8 (Entropy, Correlation), Band 8b (Entropy, Second Moment)
σVV (Variance, Contrast, Entropy, Contrast, Second Moment)

σVH (Second Moment, Correlation)

Backscatter Information Mean σVV , σVH
Standard Deviation σVV , σVH

* denotes the Homogeneity, Dissimilarity, Second Moment, and Entropy of Band 2.

To explore the effects of textural features and VIs on classification accuracy of grass-
land communities in the subsequent experiments, we performed feature selection for the
dataset only containing Sentinel-2 multispectral and Sentinel-1 SAR bands, and the results
(hereafter MS) are shown in Table 6.

Table 6. Feature subset of multispectral and SAR bands screened by RF_RFE.

Categories Statistics Features

Spectral Information Mean Band 2, 3, 4, 7, 8
Standard Deviation Band 2, 4

Backscatter Information Mean VV, VH
Standard Deviation VV

4.3. Classification Result Assessment

The optimal classification model for the MSVT dataset generated by GP is shown
in Figure 10. The model comprises a primary classifier Linear Support Vector Machine
(LinearSVC) and a secondary classifier Extremely Randomized Tree (ET) and uses the
stacking strategy [78] to connect them. During the classification process, LinearSVC was
first trained with initial samples, and then its training results were used to train ET together
with the initial samples. Finally, the final classification results were output by ET.
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Figure 10. The optimal classification model of the MSVT dataset obtained by GP algorithm.

To evaluate the effectiveness of this fusion model, we classified grassland communities
using LinearSVC and ET separately with the same dataset (the hyperparameters of the
classifiers remained unchanged) and compared the results with that of the fusion model
(Tables 7 and 8). The results of Experiment 1, 2, and 3 showed that the classification
accuracies of LinearSVC and ET were similar (76.32% to 74.68%), but both were lower than
the accuracy of the fusion model (84.21%).

Three contrast experiments were conducted to validate whether the usage of textural
features, VIs, and GP-optimized classification models were able to improve the classification
accuracy of grassland community (Table 9). In Experiment 6, the optimal classification
model obtained by GP was the Gradient Boosting Decision Tree (GBDT). The findings
showed that the fusion model had the highest classification accuracy for experiments using
the MSVT dataset, and there was no significant difference between the results obtained from
the three single classifier-based experiments. The classification accuracy of SVM commonly
used in the classification of grassland communities was between that obtained using ET and
LinearSVC. And experiments using the MS dataset showed that the classification accuracy
of the model obtained by GP (i.e., GBDT) was higher than that of SVM by about 13%. In
addition, the accuracy of the classification results using the MSVT dataset was significantly
higher than those using MS under the same conditions. The classification accuracy of
experiment 1 was 24.56% higher compared with that of experiment 6, and the classification
accuracy of experiment 4 was 28.95% higher compared with that of experiment 5.

Table 7. OA and Kappa of the six experiments.

Experiment Classifier (Input Variable) OA (%) Kappa

1 LinearSVC + ET (MSVT) 84.21 0.8086
2 LinearSVC (MSVT) 76.32 0.7126
3 ET (MSVT) 73.68 0.6827
4 SVM (MSVT) 75.44 0.7035
5 SVM (MS) 46.49 0.3594
6 GBDT (MS) 59.65 0.5157
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Table 8. PA and UA of the six experiments.

Experiment Classifier (Input Variables) Accuracy (%)
Category

RES STC STT ARF STB STS ACS

1 LinearSVC+ET (MSVT) PA 100 84.61 75 100 44.44 85.71 89.29
UA 87.5 68.75 80 75 80 88.89 92.59

2 LinearSVC (MSVT) PA 100 81.82 55 85.71 42.86 80.77 80
UA 81.25 56.25 73.33 75 60 77.78 88.89

3 ET (MSVT) PA 80 100 63.16 83.33 27.27 80 78.57
UA 75 62.5 80 62.5 60 74.07 81.48

4 SVM (MSVT) PA 100 100 57.14 60 44.44 81.48 82.14
UA 75 43.75 80 75 80 81.48 85.19

5 SVM (MS) PA 57.89 0 35.71 0 0 62.5 36.36
UA 78.57 0 47.62 0 0 83.33 80

6 GBDT (MS) PA 63.64 68.75 46.67 100 44.44 75 45.16
UA 50 73.33 50 40 30.77 77.78 66.67

Table 9. Optimization results obtained in experiments 4, 5 and 6.

Experiment Optimization
Method

Input
Variables

Classifier Hyperparameter

4 random
search MSVT SVM

the penalty factor: 16
kernel function: polynomial

the parameter coef0 of polynomial: 0.1
the parameter degree of polynomial: 5

the parameter gamma of polynomial: 0.1

5 random
search MS SVM

radial basis function (RBF)
the parameter gamma of RBF: 0.1

kernel function: the penalty factor: 17

6 GP MS GBDT

learning rate: 0.1
the number of trees: 100

the maximum depth of a tree: 8
the number of features for splitting: 5

the minimum number of samples in a leaf node: 7
the minimum number of samples for node splitting: 8

the ratio of samples used for training to total samples: 85%

The results from Experiment 1 were used for mapping the Siziwang grassland commu-
nity. As shown in Figure 11, the seven grassland communities were regionally distributed.
The Reaumuria soongarica (Pall.) Maxim grassland and the Stipa caucasica subsp. glareosa (P.
A. Smirn.) Tzvelev grassland were mainly concentrated in the north region of Siziwang,
the Stipa sareptana var. krylovii (Roshev.) P. C. Kuo & Y. H grassland and the Stipa breviflora
Griseb grassland were distributed in the southeast region, the Achnatherum splendens (Trin.)
Nevski grassland and the Stipa tianschanica var. gobica (Roshev.) P. C. Kuo & Y. H grassland
were mainly grown in the central region, and the Artemisia frigida willd grassland was
slightly distributed in the southwest region.
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Figure 11. The classification results of Siziwang grassland community.

5. Discussion
5.1. The Effect of Input Variables on Classification Accuracy

In this study, we used Sentinel-2 multispectral and Sentinel-1 SAR imagery with large
swath width to accommodate regional-scale studies. However, due to the spectral and
spatial resolutions of satellite-based RS data are generally low, the phenomenon of “the
same object with different spectrum” and “the different object with same spectrum” often
occurs when observing grassland communities on a large scale [22,38], thus reducing the
accuracy of classification.

To enhance accuracy of classification, textures and VIs were incorporated with regular
multispectral and SAR bands for classification. According to the results, the classification
accuracy was significantly improved by adding textures and VIs compared to using only
regular multispectral and SAR bands, either using the random search or GP-optimized
classification model. Taking the SVM-based classification results as an example, the SVM
classifier using the MS dataset even after optimization showed limited ability to discrimi-
nate among the seven grassland communities in the study area (OA 46%) and showed no
ability at all to discriminate against the three communities of STC, STB, and ARF. On the
contrary, the SVM using the MSVT dataset showed significant discrimination ability of the
three communities, and the OA increased by about 29%.

The above results emphasize the role of textures and VIs extracted from spaceborne
RS data in the classification of grassland communities. Yet, current studies suggest that
there is still potential for multispectral and SAR imagery to improve the classification
accuracy of grassland communities in addition to deriving textures and VIs. On the
one hand, given the possible differences in the growth rhythms of different grassland
communities [79], the involvement of phenological differences in the growth process of
different communities derived from the time-series multispectral data may improve the
classification accuracy [80]. On the other hand, the dual-polarization approach of Sentinel-1
limits the extraction of polarization features [41]. If expensive full-polarization SAR images,
such as RADARSAT-2 and GaoFen-3, are available in the study, rich polarization features of
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grasses can be extracted by polarization decomposition methods (e.g., Cloude, Krogager),
which can provide more references for classification [15,81].

5.2. The Effect of Classification Model on Classification Accuracy

In addition to using more features, it is essential to optimize the classification model
based on the extracted feature set, thus improving the classification accuracy of grassland
communities [82]. Therefore, in the current study, the Genetic Programming algorithm was
used on the derived feature set to obtain the optimal classification model for that feature
set. And our results indicated that both using the MS and MSVT datasets, the classification
models optimized using GP yielded more accurate results than SVM, which is commonly
used in grassland classification studies [63]. In particular, when using MSVT, GP generated
a fusion model consisting of LinearSVC and ET by its easily scalable tree structure [68],
with significantly improved classification results compared to single classifiers.

These findings indicate that the classification accuracy of grassland communities can
be significantly enhanced by GP-optimized classification models when using the same
dataset. Moreover, GP can combine different classifiers using the structural characteristics
of individual trees to form complex classification models compared with algorithms such
as randomized search and grid search, which can only optimize individual classifiers [67].
And when faced with difficult problems, these fusion models that can achieve complemen-
tary advantages among classifiers are reported to perform better compared with single
classifiers when solving difficult problems [29].

The above classification models are all based on machine learning algorithms. Cur-
rently, deep learning algorithms (DL), represented by convolutional neural networks
(CNN), Sparse Coding, and Deep Belief Network (DBN), are gradually being used in RS
vegetation classification owing to their ability of deep feature mining [83]. DL with deep
network structures allows end-to-end learning thus it can extract deep characteristics of
vegetation from RS images without human intervention [84]. We intend to explore the
GP-optimized DL model for grassland community classification and expect to improve the
classification accuracy further.

5.3. The Universality of the Proposed Method

Universality is an important consideration in evaluating the usefulness of vegetation
classification methods. A classification method with high universality means that the
method obtained in the current study area can be applied to other areas and still achieve
promising results. Therefore, it has a higher application value than the methods with
low universality [85,86]. Three key parts of the method that significantly affect the final
classification results include segmenting the image at the optimal scale, selecting the
optimal subset of features, and generating the optimal classification model. The optimal
solutions of the three parts were all determined automatically using the optimization
algorithms, thus reducing manual intervention and improves universality of this approach.
When this approach is adopted in other study areas, we suppose that it could still perform
well owing to its ability to automatically determine the optimal solutions based on new
images in each step.

5.4. The Future Work

Benefiting from the large swath width and free of charge of the spaceborne mid-
resolution RS images, this research achieved regional scale grassland community classi-
fication at low cost. In future studies, we intend to use the proposed method to classify
grassland communities at national scales and larger scales, considering that there are few
classification products on grassland communities at these scales [15]. However, researching
such a large scale requiring a large number of RS images, so we plan to do this work on a
cloud platform (e.g., Google Earth Engine [87]) to improve efficiency. With the superior
capabilities of the cloud server, we can quickly preprocess and analyze the imagery, which
greatly reduces the cost of the work. Meanwhile, we intend to explore DL techniques to
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build classification models and optimize the structure of classification models using GP
algorithms in anticipation of better classification results.

6. Conclusions

In the past, expensive hyperspectral and high-resolution RS images were the major
data sources for grassland classification at community level. However, these images are
only suitable for small-scale studies due to their small swath width and high prices. For
large-scale studies, spaceborne mid-resolution RS images with swath widths of several
hundred kilometers are more practical. However, due to the limitation of data quality, it is
difficult to distinguish different types of grassland communities using only raw images.
To enhance the accuracy of classification using these images, in this study, we proposed
a regional-scale superpixel-based grassland communities classification approach using
the GP-optimized classification model with Sentinel-2 multispectral bands, their derived
VIs and textures, and Sentinel-1 SAR bands and their derived textures. The method was
tested in Siziwang grassland of China and achieved an accurate classification of the seven
communities with an overall accuracy of 84.21% and a kappa coefficient of 0.81. Our
results showed that the addition of VIs and textures, as well as the use of GP-optimized
classification models, contribute significantly to the classification accuracy of grassland
communities. In addition, the proposed method obtains the optimal segmentation scale,
the optimal feature subset, and the optimal classification model by using optimization
algorithms instead of manual experiments, which makes it more universal, and thus has
a higher application value. This research implies the potential of using VIs and textures
extracted from multispectral and SAR imagery, and GP-optimized classification models
to improve the classification of grassland communities, also provides a reference for the
classification of other vegetation communities over large areas using spaceborne mid-
resolution RS images.

Author Contributions: Conceptualization, Z.W. and J.Z.; funding acquisition, J.Z.; methodology, Z.W.
and J.Z.; project administration, J.Z.; resources, J.Z., S.Z., D.Z. and L.X.; software, Z.W.; supervision,
J.Z. and F.D.; validation, J.Z.; visualization, S.Z. and L.X.; formal analysis, Z.W., J.Z. and F.D.;
investigation, M.J. and Q.F.; data curation, Z.W. and D.Z.; writing—original draft preparation, Z.W.;
writing—review and editing, J.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the CAS Strategic Priority Research Program (Grant: No.
XDA19030402), the National Natural Science Foundation of China (Grant: Nos. 41871253, 42071425),
the Taishan Scholar Project of Shandong Province (Grant: No. TSXZ201712), and the Natural Science
Foundation of Shandong (Grant: Nos. ZR2020QE281, ZR2020QF067, 2018GNC110025).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request.

Acknowledgments: The authors would like to thank Zhongwen Hu for his help in the stepwise
evolution analysis algorithm. The authors also thank also thank editors and reviewers for providing
comments and suggestion to improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, Q.; Liu, Q.; Meng, X.; Zhang, J.; Yao, F.; Zhang, H. The Impact of Seasonality and Response Period on Qualifying the

Relationship between Ecosystem Productivity and Climatic Factors over the Eurasian Steppe. Remote Sens. 2021, 13, 3159.
[CrossRef]

2. De Simone, W.; Allegrezza, M.; Frattaroli, A.R.; Montecchiari, S.; Tesei, G.; Zuccarello, V.; Di Musciano, M. From Remote Sensing
to Species Distribution Modelling: An Integrated Workflow to Monitor Spreading Species in Key Grassland Habitats. Remote
Sens. 2021, 13, 1904. [CrossRef]

http://doi.org/10.3390/rs13163159
http://dx.doi.org/10.3390/rs13101904


Remote Sens. 2021, 13, 4067 20 of 23

3. Rapinel, S.; Mony, C.; Lecoq, L.; Clement, B.; Thomas, A.; Hubert-Moy, L. Evaluation of Sentinel-2 time-series for mapping
floodplain grassland plant communities. Remote Sens. Environ. 2019, 223, 115–129. [CrossRef]

4. Adamo, M.; Tomaselli, V.; Tarantino, C.; Vicario, S.; Veronico, G.; Lucas, R.; Blonda, P. Knowledge-based classification of grassland
ecosystem based on multi-temporal WorldView-2 data and FAO-LCCS taxonomy. Remote Sens. 2020, 12, 1447. [CrossRef]

5. Erinjery, J.J.; Singh, M.; Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats
using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 2018, 216, 345–354. [CrossRef]

6. Pitkänen, T.P.; Käyhkö, N. Reducing classification error of grassland overgrowth by combing low-density lidar acquisitions and
optical remote sensing data. ISPRS J. Photogramm. Remote Sens. 2017, 130, 150–161. [CrossRef]

7. Xu, D. Distribution Change and Analysis of Different Grassland Types in Hulunber Grassland. Ph.D. Thesis, Chinese Academy
of Agricultural Sciences Dissertation, Beijing, China, 2019.

8. Oddi, L.; Cremonese, E.; Ascari, L.; Filippa, G.; Galvagno, M.; Serafino, D.; Cella, U.M.D. Using UAV Imagery to Detect and Map
Woody Species Encroachment in a Subalpine Grassland: Advantages and Limits. Remote Sens. 2021, 13, 1239. [CrossRef]

9. Dong, X.; Zhang, Z.; Yu, R.; Tian, Q.; Zhu, X. Extraction of information about individual trees from high-spatial-resolution
UAV-acquired images of an orchard. Remote Sens. 2020, 12, 133. [CrossRef]

10. Melville, B.; Lucieer, A.; Aryal, J. Assessing the impact of spectral resolution on classification of lowland native grassland
communities based on field spectroscopy in Tasmania, Australia. Remote Sens. 2018, 10, 308. [CrossRef]

11. Melville, B.; Lucieer, A.; Aryal, J. Classification of lowland native grassland communities using hyperspectral Unmanned Aircraft
System (UAS) Imagery in the Tasmanian midlands. Drones 2019, 3, 5. [CrossRef]

12. Demarchi, L.; Kania, A.; Ciężkowski, W.; Piórkowski, H.; Oświecimska-Piasko, Z.; Chormański, J. Recursive feature elimination
and random forest classification of natura 2000 grasslands in lowland river valleys of poland based on airborne hyperspectral
and LiDAR data fusion. Remote Sens. 2020, 12, 1842. [CrossRef]

13. Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land
cover classification. Remote Sens. Environ. 2017, 197, 15–34. [CrossRef]

14. Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A new generation
of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies.
ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [CrossRef]

15. Lopatin, J.; Fassnacht, F.E.; Kattenborn, T.; Schmidtlein, S. Mapping plant species in mixed grassland communities using close
range imaging spectroscopy. Remote Sens. Environ. 2017, 201, 12–23. [CrossRef]

16. Hong, G.; Zhang, A.; Zhou, F.; Brisco, B. Integration of optical and synthetic aperture radar (SAR) images to differentiate grassland
and alfalfa in Prairie area. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 12–19. [CrossRef]

17. Wang, X.; Zhang, S.; Feng, L.; Zhang, J.; Deng, F. Mapping Maize Cultivated Area Combining MODIS EVI Time Series and the
Spatial Variations of Phenology over Huanghuaihai Plain. Appl. Sci. 2020, 10, 2667. [CrossRef]

18. Wang, C.; Xiao, Z.; Wu, J. Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data.
Phys. Med. 2019, 65, 99–105. [CrossRef] [PubMed]

19. Yang, X.; Yang, T.; Ji, Q.; He, Y.; Ghebrezgabher, M.G. Regional-scale grassland classification using moderate-resolution imaging
spectrometer datasets based on multistep unsupervised classification and indices suitability analysis. J. Appl. Remote Sens. 2014, 8,
083548. [CrossRef]

20. Masjedi, A.; Zoej, M.J.V.; Maghsoudi, Y. Classification of polarimetric SAR images based on modeling contextual information and
using texture features. IEEE Trans. Geosci. Remote Sens. 2015, 54, 932–943. [CrossRef]

21. Xun, L.; Zhang, J.; Cao, D.; Yang, S.; Yao, F. A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral
imagery. ISPRS J. Photogramm. Remote Sens. 2021, 181, 148–166. [CrossRef]

22. Khan, I.; Zhang, X.; Rehman, M.; Ali, R. A literature survey and empirical study of meta-learning for classifier selection. IEEE
Access 2020, 8, 10262–10281. [CrossRef]

23. Prošek, J.; Šímová, P. UAV for mapping shrubland vegetation: Does fusion of spectral and vertical information derived from a
single sensor increase the classification accuracy? Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 151–162. [CrossRef]

24. Mora, A.; Santos, T.; Łukasik, S.; Silva, J.; Falcão, A.J.; Fonseca, J.M.; Ribeiro, R.A. Land cover classification from multispectral
data using computational intelligence tools: A comparative study. Information 2017, 8, 147. [CrossRef]

25. Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review.
Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef]

26. Eiben, A.E.; Schoenauer, M. Evolutionary computing. Inf. Process. Lett. 2002, 82, 1–6. [CrossRef]
27. Mehr, A.D.; Nourani, V. A Pareto-optimal moving average-multigene genetic programming model for rainfall-runoff modelling.

Environ. Model. Softw. 2017, 92, 239–251. [CrossRef]
28. Fayed, H.A.; Atiya, A.F. Speed up grid-search for parameter selection of support vector machines. Appl. Soft Comput. 2019, 80,

202–210. [CrossRef]
29. Le, T.T.; Fu, W.; Moore, J.H. Scaling tree-based automated machine learning to biomedical big data with a feature set selector.

Bioinformatics 2020, 36, 250–256. [CrossRef] [PubMed]
30. Liu, B.; Hu, H.; Wang, H.; Wang, K.; Liu, X.; Yu, W. Superpixel-based classification with an adaptive number of classes for

polarimetric SAR images. IEEE Trans. Geosci. Remote Sens. 2012, 51, 907–924. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2019.01.018
http://dx.doi.org/10.3390/rs12091447
http://dx.doi.org/10.1016/j.rse.2018.07.006
http://dx.doi.org/10.1016/j.isprsjprs.2017.05.016
http://dx.doi.org/10.3390/rs13071239
http://dx.doi.org/10.3390/rs12010133
http://dx.doi.org/10.3390/rs10020308
http://dx.doi.org/10.3390/drones3010005
http://dx.doi.org/10.3390/rs12111842
http://dx.doi.org/10.1016/j.rse.2017.05.024
http://dx.doi.org/10.1016/j.isprsjprs.2018.09.006
http://dx.doi.org/10.1016/j.rse.2017.08.031
http://dx.doi.org/10.1016/j.jag.2013.10.003
http://dx.doi.org/10.3390/app10082667
http://dx.doi.org/10.1016/j.ejmp.2019.08.010
http://www.ncbi.nlm.nih.gov/pubmed/31446358
http://dx.doi.org/10.1117/1.JRS.8.083548
http://dx.doi.org/10.1109/TGRS.2015.2469691
http://dx.doi.org/10.1016/j.isprsjprs.2021.08.021
http://dx.doi.org/10.1109/ACCESS.2020.2964726
http://dx.doi.org/10.1016/j.jag.2018.10.009
http://dx.doi.org/10.3390/info8040147
http://dx.doi.org/10.1080/01431161.2018.1433343
http://dx.doi.org/10.1016/S0020-0190(02)00204-1
http://dx.doi.org/10.1016/j.envsoft.2017.03.004
http://dx.doi.org/10.1016/j.asoc.2019.03.037
http://dx.doi.org/10.1093/bioinformatics/btz470
http://www.ncbi.nlm.nih.gov/pubmed/31165141
http://dx.doi.org/10.1109/TGRS.2012.2203358


Remote Sens. 2021, 13, 4067 21 of 23

31. Zhang, G.; Jia, X.; Hu, J. Superpixel-based graphical model for remote sensing image mapping. IEEE Trans. Geosci. Remote Sens.
2015, 53, 5861–5871. [CrossRef]

32. Csillik, O. Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels. Remote Sens.
2017, 9, 243. [CrossRef]

33. Farooq, A.; Jia, X.; Hu, J.; Zhou, J. Multi-resolution weed classification via convolutional neural network and superpixel based
local binary pattern using remote sensing images. Remote Sens. 2019, 11, 1692. [CrossRef]

34. Gao, Y. Research on Landscape Dynamic and Ecological Pattern Optimization in Desert Steppe-Taking the Siziwang Banner of
inner Mongolia as an Example. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2019.

35. Wang, D. Study on Community Characteristics of Plants in Peturning Farmland to Grassland in Farming Pastoral Ecotone-Taking
Siziwang Banner as an Example. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2019.

36. Zhang, X. Scrub, Desert, and Steppe. In Vegetation and Its Geographical Pattern in China: An Illustration of the Vegetation Map of the
People’s Republic of China (1 : 1000000); Geological Publishing House: Beijing, China, 2007; pp. 257–385.

37. Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.; Mathis, M.; Brumby, S. Global land use/land cover with Sentinel-2
and deep learning. In Proceedings of the IGARSS 2021—2021 IEEE International Geoscience and Remote Sensing Symposium,
Brussels, Belgium, 12–16 July 2021.

38. Ienco, D.; Interdonato, R.; Gaetano, R.; Minh, D.H.T. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land
cover mapping via a multi-source deep learning architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [CrossRef]

39. Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES
Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [CrossRef]

40. Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J. M.; McNairn, H. ; Rao, Y. S. Dual polarimetric radar
vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. 2020, 247, 111954.

41. Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Proceedings 2019, 18, 11. [CrossRef]
42. Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using

Sentinel-2 data. GISci. Remote Sens. 2020, 57, 1–20. [CrossRef]
43. Cordeiro, M.C.; Martinez, J.M.; Peña-Luque, S. Automatic water detection from multidimensional hierarchical clustering for

Sentinel-2 images and a comparison with Level 2A processors. Remote Sens. Environ. 2021, 253, 112209. [CrossRef]
44. Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse,

A.; et al. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [CrossRef]
45. Su, Y.; Guo, Q.; Hu, T.; Guan, H.; Jin, S.; An, S.; Chen, X.; Guo, K.; Hao, Z.; Hu, Y.; et al. An updated vegetation map of China (1:

1000000). Sci. Bull. 2020, 65, 1125–1136. [CrossRef]
46. Yang, J.; Kang, Z.; Cheng, S.; Yang, Z.; Akwensi, P.H. An individual tree segmentation method based on watershed algorithm and

three-dimensional spatial distribution analysis from airborne LiDAR point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2020, 13, 1055–1067. [CrossRef]

47. Biswas, H.; Zhang, K.; Ross, M.S.; Gann, D. Delineation of Tree Patches in a Mangrove-Marsh Transition Zone by Watershed
Segmentation of Aerial Photographs. Remote Sens. 2020, 12, 2086. [CrossRef]

48. Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern
Anal. Mach. Intell. 1991, 13, 583–598. [CrossRef]

49. Zhang, X.; Sun, Y.; Shang, K.; Zhang, L.; Wang, S. Crop classification based on feature band set construction and object-oriented
approach using hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4117–4128. [CrossRef]

50. Hu, Z.; Li, Q.; Zhang, Q.; Zou, Q.; Wu, Z. Unsupervised simplification of image hierarchies via evolution analysis in scale-sets
framework. IEEE Trans. Image Process. 2017, 26, 2394–2407. [CrossRef] [PubMed]

51. Guigues, L.; Cocquerez, J. P.; Le Men, H. Scale-sets image analysis. Int. J. Comput. Vis. 2006, 68, 289–317. [CrossRef]
52. Vilaplana, V.; Marques, F.; Salembier, P. Binary partition trees for object detection. IEEE Trans. Image Process. 2008, 17, 2201–2216.

[CrossRef] [PubMed]
53. Davis, D.R.; Kisiel, C.C.; Duckstein, L. Bayesian decision theory applied to design in hydrology. Water Resour. Res. 1972, 8, 33–41.

[CrossRef]
54. Chen, M.; Ke, Y.; Bai, J.; Li, P.; Lyu, M.; Gong, Z.; Zhou, D. Monitoring early stage invasion of exotic Spartina alterniflora using

deep-learning super-resolution techniques based on multisource high-resolution satellite imagery: A case study in the Yellow
River Delta, China. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102180. [CrossRef]

55. Wu, Z.; He, L.; Hu, Z.; Zhang, Y.; Wu, G. Hierarchical segmentation evaluation of region-based image hierarchy. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2019, 12, 2718–2727. [CrossRef]

56. Hu, Z.; Zhang, Q.; Zou, Q.; Li, Q.; Wu, G. Stepwise evolution analysis of the region-merging segmentation for scale parameteriza-
tion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2461–2472. [CrossRef]

57. Cui, J.; Zhang, X.; Wang, W.; Wang, L. Integration of optical and SAR remote sensing images for crop-type mapping based on a
novel object-oriented feature selection method. Int. J. Agric. Biol. Eng. 2020, 13, 178–190. [CrossRef]

58. Cai, Y.; Li, X.; Zhang, M.; Lin, H. Mapping wetland using the object-based stacked generalization method based on multi-temporal
optical and SAR data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102164. [CrossRef]

59. Stromann, O.; Nascetti, A.; Yousif, O.; Ban, Y. Dimensionality reduction and feature selection for object-based land cover
classification based on Sentinel-1 and Sentinel-2 time series using Google Earth Engine. Remote Sens. 2020, 12, 76. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2015.2423688
http://dx.doi.org/10.3390/rs9030243
http://dx.doi.org/10.3390/rs11141692
http://dx.doi.org/10.1016/j.isprsjprs.2019.09.016
http://dx.doi.org/10.1016/j.rse.2011.05.028
http://dx.doi.org/10.3390/ECRS-3-06201
http://dx.doi.org/10.1080/15481603.2019.1650447
http://dx.doi.org/10.1016/j.rse.2020.112209
http://dx.doi.org/10.3390/rs9060584
http://dx.doi.org/10.1016/j.scib.2020.04.004
http://dx.doi.org/10.1109/JSTARS.2020.2979369
http://dx.doi.org/10.3390/rs12132086
http://dx.doi.org/10.1109/34.87344
http://dx.doi.org/10.1109/JSTARS.2016.2577339
http://dx.doi.org/10.1109/TIP.2017.2676342
http://www.ncbi.nlm.nih.gov/pubmed/28278462
http://dx.doi.org/10.1007/s11263-005-6299-0
http://dx.doi.org/10.1109/TIP.2008.2002841
http://www.ncbi.nlm.nih.gov/pubmed/18854257
http://dx.doi.org/10.1029/WR008i001p00033
http://dx.doi.org/10.1016/j.jag.2020.102180
http://dx.doi.org/10.1109/JSTARS.2019.2926425
http://dx.doi.org/10.1109/JSTARS.2018.2833102
http://dx.doi.org/10.25165/j.ijabe.20201301.5285
http://dx.doi.org/10.1016/j.jag.2020.102164
http://dx.doi.org/10.3390/rs12010076


Remote Sens. 2021, 13, 4067 22 of 23

60. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.
[CrossRef]

61. Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote
Sens. Environ. 2008, 112, 3833–3845. [CrossRef]

62. Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms
for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [CrossRef] [PubMed]

63. Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 6,
610–621. [CrossRef]

64. Li, Q.; Wang, C.; Zhang, B.; Lu, L. Object-based crop classification with Landsat-MODIS enhanced time-series data. Remote Sens.
2015, 7, 16091–16107. [CrossRef]

65. Misra, P.; Yadav, A.S. Improving the classification accuracy using recursive feature elimination with cross-validation.Int. J. Emerg.
Technol. 2020, 11, 659–665.

66. Akhtar, F.; Li, J.; Pei, Y.; Xu, Y.; Rajput, A.; Wang, Q. Optimal features subset selection for large for gestational age classification
using gridsearch based recursive feature elimination with cross-validation scheme. In Frontier Computing; Hung J., Yen N., Chang
J.W., Eds.; Springer: Singapore, 2020; pp. 63–71.

67. Pullanagari, R.R.; Kereszturi, G.; Yule, I. Integrating airborne hyperspectral, topographic, and soil data for estimating pasture
quality using recursive feature elimination with random forest regression. Remote Sens. 2018, 10, 1117. [CrossRef]

68. Koza, J.R.; Koza, J.R. Ruggedness of Genetic Programming. In Genetic Programming: On the Programming of Computers by Means of
Natural Selection; MIT Press: Cambridge, MA, USA, 1992; pp. 569–582.

69. Xie, C. Video Anomaly Detection in Crowede Scenes Based on Genetic Programming. Master’s Thesis, Nanjing University,
Nanjing, China, 2015.

70. Olson, R.S.; Moore, J.H. TPOT: A tree-based pipeline optimization tool for automating machine learning. In Proceedings of the
Workshop on Automatic Machine Learning; Frank, H., Lars, K., Joaquin, V., Eds.; PMLR: New York, NY, USA, 2016; pp. 66–74.

71. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans.
Evol. Comput. 2002, 6, 182–197. [CrossRef]

72. Olson, R.S.; Urbanowicz, R.J.; Andrews, P.C.; Lavender, N.A.; Moore, J.H. Automating biomedical data science through tree-based
pipeline optimization. In European Conference on the Applications of Evolutionary Computation; Springer: Cham, Switzerland, 2016;
pp. 123–137.

73. Johnson, B.A.; Bragais, M.; Endo, I.; Magcale-Macandog, D.B.; Macandog, P.B.M. Image segmentation parameter optimization
considering within-and between-segment heterogeneity at multiple scale levels: Test case for mapping residential areas using
landsat imagery. ISPRS J. Photogramm. Remote Sens. 2015, 4, 2292–2305. [CrossRef]

74. Shortridge, A. Practical limits of Moran’s autocorrelation index for raster class maps. Comput. Environ. Urban Syst. 2007, 31,
362–371. [CrossRef]

75. Espindola, G.M.; Camara, G.; Reis, I.A.; Bins, L.S.; Monteiro, A.M. Parameter selection for region-growing image segmentation
algorithms using spatial autocorrelation. Int. J. Remote Sens. 2006, 27, 3035–3040 [CrossRef]

76. Wang, Y.; Meng, Q.; Qi, Q.; Yang, J.; Liu, Y. Region merging considering within-and between-segment heterogeneity: An improved
hybrid remote-sensing image segmentation method. Remote Sens. 2018, 10, 781. [CrossRef]

77. Böck, S.; Immitzer, M.; Atzberger, C. On the objectivity of the objective function—Problems with unsupervised segmentation
evaluation based on global score and a possible remedy. Remote Sens. 2017, 9, 769. [CrossRef]

78. Taghizadeh-Mehrjardi, R.; Schmidt, K.; Amirian-Chakan, A.; Rentschler, T.; Zeraatpisheh, M.; Sarmadian, F.; Valavi, R.; Davatgar,
N.; Behrens, T.; Scholten, T. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by
stacking machine learning models and rescanning covariate space. Remote Sens 2020, 12, 1095. [CrossRef]

79. Wang, C.; Guo, H.; Zhang, L.; Qiu, Y.; Sun, Z.; Liao, J.; Liu, G.; Zhang, Y. Improved alpine grassland mapping in the Tibetan
Plateau with MODIS time series: A phenology perspective. Int. J. Digit. Earth 2015, 8, 133–152. [CrossRef]

80. Zhang, J.; Feng, L.; Yao, F. Improved maize cultivated area estimation over a large scale combining MODIS–EVI time series data
and crop phenological information. ISPRS J. Photogramm. Remote Sens. 2014, 94, 102–113. [CrossRef]

81. Zhang, H.; Wang, T.; Liu, M.; Jia, M.; Lin, H.; Chu, L.M.; Devlin, A.T. Potential of combining optical and dual polarimetric SAR
data for improving mangrove species discrimination using rotation forest. Remote Sens. 2018, 10, 467. [CrossRef]

82. Habibi, M.; Sahebi, M.R.; Maghsoudi, Y.; Ghayourmanesh, S. Classification of polarimetric SAR data based on object-based
multiple classifiers for urban land-cover. J. Indian Soc. Remote 2016, 44, 855–863. [CrossRef]

83. Xun, L.; Zhang, J.; Cao, D.; Wang, J.; Zhang, S.; Yao, F. Mapping cotton cultivated area combining remote sensing with a fused
representation-based classification algorithm. Comput. Electron. Agric. 2021, 181, 105940. [CrossRef]

84. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing.
ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [CrossRef]

85. Xu, J.; Zhu, Y.; Zhong, R.; Lin, Z.; Xu, J.; Jiang, H.; Li, H.; Lin, T. DeepCropMapping: A multi-temporal deep learning approach
with improved spatial generalizability for dynamic corn and soybean mapping. Remote Sens. Environ. 2020, 247, 111946.
[CrossRef]

http://dx.doi.org/10.1016/0034-4257(79)90013-0
http://dx.doi.org/10.1016/j.rse.2008.06.006
http://dx.doi.org/10.1078/0176-1617-00887
http://www.ncbi.nlm.nih.gov/pubmed/12749084
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.3390/rs71215820
http://dx.doi.org/10.3390/rs10071117
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.3390/ijgi4042292
http://dx.doi.org/10.1016/j.compenvurbsys.2006.07.001
http://dx.doi.org/10.1080/01431160600617194
http://dx.doi.org/10.3390/rs10050781
http://dx.doi.org/10.3390/rs9080769
http://dx.doi.org/10.3390/rs12071095
http://dx.doi.org/10.1080/17538947.2013.860198
http://dx.doi.org/10.1016/j.isprsjprs.2014.04.023
http://dx.doi.org/10.3390/rs10030467
http://dx.doi.org/10.1007/s12524-016-0558-5
http://dx.doi.org/10.1016/j.compag.2020.105940
http://dx.doi.org/10.1016/j.isprsjprs.2020.12.010
http://dx.doi.org/10.1016/j.rse.2020.111946


Remote Sens. 2021, 13, 4067 23 of 23

86. Meng, B.; Yang, Z.; Yu, H.; Qin, Y.; Sun, Y.; Zhang, J.; Chen, J.; Wang, Z.; Zhang, W.; Li, M.; et al. Mapping of Kobresia pygmaea
Community Based on Umanned Aerial Vehicle Technology and Gaofen Remote Sensing Data in Alpine Meadow Grassland: A
Case Study in Eastern of Qinghai–Tibetan Plateau. Remote Sens. 2021, 13, 2483. [CrossRef]

87. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

http://dx.doi.org/10.3390/rs13132483
http://dx.doi.org/10.1016/j.rse.2017.06.031

	Introduction
	Study Area and Data
	Study Area
	Image Preprocessing
	Sentinel-1 Data
	Sentinel-2 Data

	Ground Truth Data Acquisition

	Methods
	Watershed-Based Superpixel Segmentation
	Feature Extraction and Selection
	Classification Selection and Hyperparameter Optimization Based on GP Algorithm
	Individual Tree
	Genetic Operator
	Fitness Function
	Flow of the GP Algorithm

	Segmentation and Classification Evaluation

	Results
	Segmentation Performance Evaluation
	Feature Selection Result
	Classification Result Assessment

	Discussion
	The Effect of Input Variables on Classification Accuracy
	The Effect of Classification Model on Classification Accuracy
	The Universality of the Proposed Method
	The Future Work

	Conclusions
	References

