
remote sensing  

Article

SS-MLP: A Novel Spectral-Spatial MLP Architecture for
Hyperspectral Image Classification

Zhe Meng 1,* , Feng Zhao 1 and Miaomiao Liang 2

����������
�������

Citation: Meng, Z.; Zhao, F.; Liang,

M. SS-MLP: A Novel Spectral-Spatial

MLP Architecture for Hyperspectral

Image Classification. Remote Sens.

2021, 13, 4060. https://doi.org/

10.3390/rs13204060

Academic Editors: Javier Marcello

and Paul Scheunders

Received: 28 August 2021

Accepted: 6 October 2021

Published: 11 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Telecommunication and Information Engineering (School of Artificial Intelligence), Xi’an University
of Posts and Telecommunications, Xi’an 710121, China; zhaofeng201@xupt.edu.cn

2 School of Information Engineering, Jiangxi University of Science and Technology, GanZhou 341000, China;
liangmiaom@jxust.edu.cn

* Correspondence: zhemeng@xupt.edu.cn

Abstract: Convolutional neural networks (CNNs) are the go-to model for hyperspectral image (HSI)
classification because of the excellent locally contextual modeling ability that is beneficial to spatial
and spectral feature extraction. However, CNNs with a limited receptive field pose challenges
for modeling long-range dependencies. To solve this issue, we introduce a novel classification
framework which regards the input HSI as a sequence data and is constructed exclusively with
multilayer perceptrons (MLPs). Specifically, we propose a spectral-spatial MLP (SS-MLP) architecture,
which uses matrix transposition and MLPs to achieve both spectral and spatial perception in global
receptive field, capturing long-range dependencies and extracting more discriminative spectral-
spatial features. Four benchmark HSI datasets are used to evaluate the classification performance of
the proposed SS-MLP. Experimental results show that our pure MLP-based architecture outperforms
other state-of-the-art convolution-based models in terms of both classification performance and
computational time. When comparing with the SSSERN model, the average accuracy improvement
of our approach is as high as 3.03%. We believe that our impressive experimental results will foster
additional research on simple yet effective MLP-based architecture for HSI classification.

Keywords: hyperspectral image (HSI); multilayer perceptrons (MLPs); spectral-spatial classification

1. Introduction

With the advance of hyperspectral imaging techniques, hyperspectral imagery (HSI)
presents greater resolution in both spatial and spectral dimensions [1,2]. Thanks to the abun-
dant spectral bands (typically, hundreds of narrow contiguous channels), more fine-grained
ground objects distinguishment becomes possible with their subtle spectral difference. This
outstanding characteristic promotes the wide application of HSI in many fields, such as
precision agriculture [2], military defense [3], and environmental governance [4].

Classification is one of the major tasks in HSI processing, which aims at distinguishing
the land-cover class for different pixels. For classifying HSI, a simple and intuitive way
is directly feeding hyperspectral pixels (high-dimensional vectors) into classifiers such as
random forest (RF) and support vector machine (SVM) [5]. However, some challenges, such
as the spectral mixing, the highly correlated spectral bands, and the complex nonlinear
structure of hyperspectral data, bring difficulties to the precise classification of HSI [6].
Additionally, high-spatial-resolution remote sensing HSI usually presents high diversity in
content. However, the representation ability of traditional hand-crafted features based on
domain knowledge may not be enough to discriminate classes with a subtle variation [7,8].

In recent years, extracting discriminative features from high-dimensional spectral
signatures has achieved great success with the utilization of deep learning [9], and HSI
classification accuracy has made promising improvements. For instance, Zhou et al. [10]
combined stacked autoencoders (SAEs) with a local Fisher discriminant regularization
to learn compact and discriminative feature mappings with high inter-class difference
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and intra-class aggregation. Mou et al. [11] and Hang et al. [12] proposed to treat
spectral signatures as sequential data and employed recurrent neural networks (RNNs) to
learn relationships from different spectral channels, e.g., spectral correlation and band-to-
band variability.

The convolutional neural network (CNN) is among the most popular networks
adopted for HSI classification, which can capture contextual spatial information in an
end-to-end and hierarchical manner [13,14]. Cao et al. [15] proposed a unified Bayesian
framework in which a CNN coupled with Markov random fields are utilized to classify
HSI. Liu et al. [16] proposed a content-guided CNN to reduce the misclassification of
pixels, particularly those near the cross-classes regions. Jia et al. [17] proposed a 3D Gabor
CNN in which CNN kernels are replaced with 3D Gabor-modulated kernels, to improve
the robustness against the scale and orientation changes. In addition, some works pro-
posed to integrate traditional spectral-spatial feature extraction method with CNNs, to
lessen the workload of the network and mitigate the overfitting problem. For example,
Aptoula et al. [18] fed stacked attribute filtered images into CNNs for spatial–spectral clas-
sification. Huang et al. [19] designed a dual-path siamese CNN to classify HSI, which uses
both extended morphological profiles-based spatial information and raw pixel vector-based
spectral information as inputs. Besides, considering that HSI is 3D data cube, researchers
proposed to use 3D CNNs to extract discriminative features. Paoletti et al. [20] employed a
3D CNN to take full advantage of the structural characteristics of hyperspectral data and
used a border mirroring strategy to effectively process border regions. Sellami et al. [21]
developed a 3D convolutional encoder-decoder architecture to extract spectral-spatial
features from the most informative spectral bands that are selected by an adaptive dimen-
sionality reduction method. To reduce the model complexity of the 3D CNN, Roy et al. [22]
proposed a hybrid model consisting of 2D CNN and 3D CNN. In addition, Wang et al. [23]
decomposed 3D convolution kernel into three small 1D convolution kernels to reduce the
number of parameters, preventing the 3D CNN from suffering the overfitting problem.

To further improve feature discrimination and HSI classification accuracy, some pow-
erful deep networks have been developed. Li et al. [24] proposed a two-stream CNN
architecture based on the squeeze-and-excitation concept, which can capture spectral, local
spatial, and global spatial features simultaneously. Cao et al. [25] developed a novel
residual network to promote the extraction of deep features, in which hybrid dilated con-
volutions are utilized to enlarge convolution kernels’ receptive field without increasing
the computational complexity. Dong et al. [26] proposed a cooperative spectral–spatial
attention dense network, which can emphasize salient spectral–spatial features with two
cooperative attention modules. Zhang et al. [27] proposed a 3D multiscale dense network
to take full advantage of features at different scales for HSI classification. In addition, the
capsule neural network (CapsNet) [28], generative adversarial networks (GANs) [29], and
a graph convolutional network (GCN) [30] have also been applied for HSI classification
and obtained competitive performance.

Recent studies motivate a reconsideration of the image classification process from a
sequence data perspective to capture long-range dependencies [31,32]. He et al. [32] pro-
posed a multihead self-attention mechanism-based transformer for HSI classification, which
can capture dependencies between any two pixels in an input region. Tolstikhin et al. [33]
proposed an MLP-mixer architecture based exclusively on multilayer perceptrons (MLPs),
which can obtain the global receptive field by combining matrix transposition with token-
mixing projection and thus account for long-range dependencies. Subsequently, several
MLP-based architectures [34,35] have been proposed. They demonstrated that neither
convolutions nor self-attention are necessary for obtaining promising performance and a
simpler MLP-based architecture can perform as well as the state-of-the-art convolution-
based models.

In this paper, inspired by the simple yet effective design in [33], we propose a pure
MLP-based architecture, called spectral-spatial MLP (SS-MLP), for high-performance HSI
classification, which does not use the attention mechanism or convolutions. The SS-MLP
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has a very concise architecture in which matrix transposition and MLPs are utilized to
achieve a global receptive field, encoding spatial and spectral information effectively. In
addition to MLPs, the standard architectural components like normalization layers and
skip connections are integrated in our model, in order to achieve promising performance.
Experimental results on four representative HSI datasets: University of Pavia, University
of Houston, Indian Pines, and HYRANK are impressive. The proposed SS-MLP can obtain
higher classification accuracies with less parameters compared with other state-of-the-art
convolution-based models. Moreover, it is fast to execute.

The remainder of this paper consists of five Sections. Section 2 briefly reviews the
classic MLP architecture. Section 3 describes the proposed SS-MLP. Section 4 presents the
experimental results, followed by a discussion in Section 5. Finally, Section 6 concludes
this article.

2. MLP

Figure 1 shows a multilayer perceptron (MLP) architecture, which is made up of a
series of fully connected layers [36]. As can be seen, there are three types of layers, namely,
the input, output, and hidden layers. The data flows from the input layer to the output
layer in a feed-forward fashion. Formally, for the lth layer, let a(l−1) denote the input, and
its output al can be calculated as follows:

al = δ(Wla(l−1) + b(l)) (1)

where Wl and b(l) are the weights and bias at layer l and δ refers to the nonlinear activation
function (e.g., sigmoid and rectified linear unit).

Input Layer Hidden Layers Output Layer

Figure 1. Standard MLP architecture where each layer is fully connected with the adjacent layers.

Compared with the convolution-based architecture, the MLP with a global capacity
is better at capturing the long-range dependencies [37]. This is because each output node
is related to all input nodes. More recently, MLP-based architectures have become an ap-
pealing alternative to CNNs in computer vision [33–35,38,39]. For instance, Chen et al. [38]
proposed a MLP-like architecture, CycleMLP, for dense prediction tasks (e.g., instance
segmentation and object detection), which can deal with images with variable scales.
Yu et al. [39] proposed a spatial shift MLP architecture for image classification, where
spatial shift operations are employed to achieve communications between different spa-
tial positions.

The main drawback of MLP is that it usually involves a large number of parameters.
Let nl denote the node number at layer l. The number of parameters within an MLP is
the sum of the weights and the bias between all adjacent layers, i.e., ∑L−1

i=0 (n
ln(l+1) + 1),

where L denotes the layer number. Therefore, for the task of HSI classification, the MLP
is usually employed at the architecture tail to perform the final classification [40]. For
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instance, Yang et al. [41] implemented a deep CNN with two-branch architecture for HSI
classification, in which low and mid-layers are pretrained on other data sources, with a two-
layer MLP performing the final classification. Xu et al. [42] proposed a novel dual-channel
residual network for classifying HSI with noisy labels, which employs a noise-robust loss
function to enhance model robustness and utilizes a single layer MLP for classification. To
overcome this drawback, we adopt a weight sharing strategy in the proposed MLP-based
architecture, which can lead to significant memory savings and will be detailed in the
following Section.

3. Methodology

Figure 2 shows the architecture of the proposed SS-MLP, which takes a neighbor
region (context) that is centered at the target pixel as input. Like current transformer
models, such as ViT [31] and HSI-BERT [32], the proposed SS-MLP processes the HSI cubes
as sequential data to encode the spatial information. The extracted region is flattened
into a pixel sequence, which is then linearly projected into a new vector space using pixel
embedding. The sequence of embedding vectors serves as input to the rest of the network.
Several consecutive SS-MLP blocks that consist of one spatial MLP (SaMLP) and one
spectral MLP (SeMLP) are used to learn discriminative spectral-spatial representations.
Finally, the learned features are fed into a global average pooling layer followed by a single
fully connected layer for label prediction.

Hyperspectral Image
145 × 145 × 200

11 × 11 × 200

Flattened Region

p1 p2 p3 p121p5

Pixel Embedding

p4

1 × 1 × 200

N × (SS-MLP Block)

1 × 1 × 24

Global Average Pooling

Fully Connected Layer

Class: Woods

Neighbor Region

Figure 2. An overview of the spectral-spatial MLP (SS-MLP) for HSI classification. Our SS-MLP regards input HSI patches
as pixel sequences and uses MLPs with global receptive field to learn long-term dependencies. It mainly consists of pixel
embedding and several SS-MLP blocks with identical architecture.
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3.1. Pixel Embedding

Let X ∈ RP×P×C be the neighbor region of the target pixel, where P× P is the spatial
size and C is the number of spectral bands. X is flattened into a pixel sequence in raster scan
order [32,43]. We denote the obtained pixel sequence as Xp ∈ RN×C, where N = P× P is
the number of pixels.

Pixel embedding is employed to reduce the cost of computation, which transforms the
sequence of pixels (high-dimensional spectral vectors) into a vector space with a smaller
dimension, yielding Xe ∈ RN×D, where D < C is a predefined dimension. It can be viewed
as one layer of the whole network. Specifically, we use a trainable linear transformation to
implement pixel embedding, which works independently and identically on each pixel
and can be written as:

Xe = XpW+b (2)

where W ∈ RC×D is a trainable weight matrix and b ∈ RD is the bias term.

3.2. SS-MLP Block

After pixel embedding, the dimension-reduced pixel sequence, shaped as a
“pixels × channels” (N×D) table, is directly fed into several SS-MLP blocks of identical
architecture to learn spectral-spatial features.

The architecture of the SS-MLP block is shown in Figure 3. It simply contains two
types of MLP: spatial MLP (SaMLP) and spectral MLP (SeMLP). SaMLP acts on each
channel independently. It takes individual column of the table as input to capture repre-
sentative spatial features. The SaMLP allows communication between pixels at different
spatial locations, achieving a global receptive field in the region. In other words, each
pixel is cognizant of every other pixel in the sequence. SeMLP operates on each pixel
independently, allowing communication between different channels. It takes individual
row of the table as input to extract discriminative spectral features. By integrating the
SaMLP and SeMLP, discriminative spectral–spatial features can be extracted from HSI
cubes. In addition, we adopt the skip connection mechanism of [44] to enhance information
exchange between layers, which has been demonstrated to be an effective strategy for
modern neural architecture design [45–47].

L
ay

er
 N

or
m

Channels

P
ixels

T

C
ha

nn
el

s

Pixels
SaMLP

SaMLP

SaMLP

SaMLP

SaMLP

T

L
ay

er
 N

or
m

SeMLP
SeMLP
SeMLP
SeMLP
SeMLP
SeMLP
SeMLP
SeMLP
SeMLP

Skip Connections Skip Connections

Weight Sharing Weight Sharing

Figure 3. The SS-MLP block. This block includes a spatial MLP (SaMLP) and a spectral MLP (SeMLP), which have similar
architecture and are used to learn spatial and spectral representations separately. Note that the SaMLP is shared across
different channels, while the SeMLP is shared across different pixels, achieving significant memory savings. The input and
output of the SS-MLP block have the same dimension.

The SaMLP and SeMLP have similar architecture and both consist of two fully con-
nected layers and a non-linear activation, as shown in Figure 4. We adopt the Gaussian
error linear unit (GELU) [48] as the activation function, which acts on each row of its input
tensor independently.

GELU(z) = zΦ(z) = z · 1
2

[
1 + erf

(
z/
√

2
)]

(3)

where erf(x) =
∫ x

0 e−t2
dt and Φ(z) is the cumulative distribution function of Gaussian

N (µ = 0, σ2 = 1). In addition, the dropout regularization technique of [49] is used to
prevent overfitting.
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Fully Connected Layer

GELU

Dropout

Fully Connected Layer

Dropout

MLP

Figure 4. The MLP architecture with two fully connected layers and a Gaussian error linear unit
(GELU) [48] activation function. In addition, a dropout layer [49] is added after each fully connected
layer to prevent overfitting, with a dropout rate of 50%.

Each SS-MLP block takes an input of the same size. For the sake of simplicity, here we
omit block index and denote the input of each block as X̂ ∈ RN×D. The SaMLP operates
on columns of X̂ (i.e., channels) and is shared across all columns, mapping RN 7→ RN .
Note that we apply the same SaMLP to each row of a transposed input table X̂T to achieve
the same result. The SeMLP operates on rows of X̂ (i.e., pixels), mapping RD 7→ RD. It
is shared across all rows to provide the positional invariance property. For the proposed
model, sharing the parameters of the SaMLP/SeMLP within each block leads to significant
memory savings. In addition, since every output point is related to every input point,
the SaMLP and SeMLP obtain a global receptive field in the spatial and spectral domains,
which can capture richer global context information.

Mathematically, the computation process of the SS-MLP block can be written as:

Y∗,m = W2σ(W1LN(X̂)∗,m) + X̂∗,m for m = 1, · · · , D (4)

On,∗ = W4σ(W3LN(Y)n,∗) + Yn,∗ for n = 1, · · · , N (5)

where m and n are the column and row indexes, respectively, σ is the GELU activation
function, and O ∈ RN×D is the output of the SS-MLP block. The intermediate matrix Y
obtained by the SaMLP has the same dimensions as the input and output matrices, X and O.
LN refers to the Layer Normalization of [50], which is applied to speed-up the training of
the model. W1 ∈ R N

2 ×N and W2 ∈ RN× N
2 are the weights of the two fully connected layers

in the SaMLP. W3 ∈ R4D×D and W4 ∈ RD×4D are the weights of the two fully connected
layers in the SeMLP. The output of a SS-MLP block serves as the input of the next one, and
so forth until the last block.

3.3. Classifying HSIs Using the Proposed SS-MLP

After processing by the last SS-MLP block, discriminative spectral-spatial features
are extracted and are vectorized into a 1-D array using global average pooling and then
fed into a single fully connected layer. Finally, a softmax function is attached for label
prediction. Let f denote the feature vector that is fed into the softmax function. The
conditional probabilities of each class can be calculated by:
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pi =
e fi

∑L
j=1 e f j

, i = 1, · · · , L (6)

where L denotes the number of ground-truth classes. The label of the target pixel is
determined by the maximum probability.

Our SS-MLP model relies only on matrix multiplications, scalar non-linearities, and
changes to data layout (i.e., transpositions and reshapes). Since these operations are all
differentiable, the proposed model can be optimized using the standard optimization
algorithms. Specifically, the learnable parameters are optimized using the Adam optimizer
for 100 epochs. The learning rate is initialized with 0.001 and gradually reduced to 0.0
following a half-cosine shape schedule. The batch size is fixed to 100 and the weight decay
is set as 0.0001.

4. Experimental Results
4.1. Datasets

To evaluate the effectiveness of our SS-MLP, we first conduct experiments on the
University of Pavia (UP), University of Houston (UH), and Indian Pines (IP) hyperspectral
benchmark datasets.

• UP: This hyperspectral scene was captured in 2001 by the reflective optics spectro-
graphic imaging system (ROSIS)-03 airborne instrument, which covers an urban area
surrounding the Engineering School of the University of Pavia in the city of Pavia,
Northern Italy. The spatial dimensions of this scene are 610 × 340 pixels, with a
1.3 m ground sampling distance (GSD). The data cube contains a total of 115 spectral
reflectance bands in the wavelength range from 0.43 to 0.86 µm (VNIR). Before the
experiments, 12 very noisy bands were removed. Therefore, the data dimensionality
is 610× 340× 103. There are mainly 9 categories of ground materials in the scene.

• UH: This hyperspectral scene was gathered by the Compact Airborne Spectrographic
Imager (CASI)-1500 sensor on June 23, 2012 between 17:37:10 and 17:39:50 UTC, which
covers the campus of University of Houston and the neighboring urban area in the
city of Texas, United States. It consists of 349× 1905 pixels with a GSD of 2.5 m. The
considered scene contains 144 spectral reflectance bands in the wavelength range
from 0.38 to 1.05 µm (VNIR), forming a data cube of dimension 349× 1905× 144.
This dataset was provided by the 2013 IEEE Geoscience and Remote Sensing Society
(GRSS) data fusion contest and has been calibrated to at-sensor spectral radiance units.
There are mainly 15 categories of ground materials in this dataset.

• IP: This hyperspectral scene was acquired in 1992 by the airborne visible/ infrared
imaging spectrometer (AVIRIS) sensor, which covers the agricultural Indian Pines test
site in northwestern Indiana, United States. This hyperspectral scene mainly comprises
crops of regular geometry and irregular forest regions. The spatial dimensions of this
scene are 145× 145 pixels, with a 20 m GSD. In addition, it consists of 224 spectral
reflectance bands in the wavelength range from 0.4 to 2.5 µm, spanning the VNIR-
SWIR. In our experiments, four null bands and other 20 water absorption bands (104–
108, 150–163, and 220) have been removed, keeping the rest 200 bands for analysis.
Therefore, the data dimensionality is 145× 145× 200. There are mainly 16 categories
of ground materials in the data.

To make the proposed SS-MLP fully comparable with other spectral-spatial classifi-
cation approaches reported in the literature, we use the same fixed training and test sets
that are adopted by other state-of-the-art methods [51–55]. In other words, the number of
training and test samples and their spatial locations are exactly the same with those used
in previous studies. Figures 5–7 depict the false color image and the spatial distribution of
the fixed training and test samples for the UP, UH, and IP datasets, respectively. Tables 1–3
list the class name and the number of training and test samples on the three datasets.
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(a) (b) (c)

Asphalt
Meadows

Gravel
Trees

Metal Sheets
Bare Soil
Bitumen

Bricks
Shadows

Figure 5. ROSIS-3 University of Pavia (UP) hyperspectral dataset with 103 bands across the spectral range from 0.43 to
0.86 µm. (a) False-color composite image for the hyperspectral data using bands 81, 21, and 41 as R, G, B, respectively.
(b) Training samples. (c) Test samples.

(a)

(b)

(c)

Healthy Grass Stressed Grass Synthetic Grass Trees Soil
Water Residential Commercial Road Highway

Railway Parking Lot 1 Parking Lot 2 Tennis Court Running Track

Figure 6. CASI-1500 University of Houston (UH) hyperspectral dataset with 144 bands across the
spectral range from 0.38 to 1.05 µm. (a) False-color composite image for the hyperspectral data using
bands 108, 28, and 27 as R, G, B, respectively. (b) Training samples. (c) Test samples.
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(a) (b) (c)
Alfalfa Corn-notill Corn-mintill Corn Grass/pasture Grass/trees Grass/pasture-mowed Hay-windrowed
Oats Soybean-notill Soybean-mintill Soybean-clean Wheat Woods Buildings-Grass-Trees-Drives Stone-Steel Towers

Figure 7. AVIRIS Indian Pines (IP) hyperspectral dataset with 200 bands across the spectral range from 0.4 to 2.5 µm.
(a) False-color composite image for the hyperspectral data using bands 37, 20, and 12 as R, G, B, respectively. (b) Training
samples. (c) Test samples.

Table 1. Number of samples on the UP dataset. Note that the standard training and test sets are used.

Class No. Class Name Training Test

1 Asphalt 548 6304
2 Meadows 540 18,146
3 Gravel 392 1815
4 Trees 524 2912
5 Metal Sheets 265 1113
6 Bare Soil 532 4572
7 Bitumen 375 981
8 Bricks 514 3364
9 Shado ws 231 795

Total 3921 40,002

Table 2. Number of samples on the UH dataset. Note that the standard training and test sets are used.

Class No. Class Name Training Test

1 Healthy Grass 198 1053
2 Stressed Grass 190 1064
3 Synthetic Grass 192 505
4 Trees 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot1 192 1041
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Table 2. Cont.

Class No. Class Name Training Test

13 Parking Lot2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2832 12,197

Table 3. Number of samples on the IP dataset. The spatially disjoint training and test sets are used.

Class No. Class Name Training Test

1 Alfalfa 26 20
2 Corn-notill 726 702
3 Corn-mintill 431 399
4 Corn 132 105
5 Grass/pasture 255 228
6 Grass/trees 372 358
7 Grass/pasture-mowed 14 14
8 Hay-windrowed 254 224
9 Oats 10 10

10 Soybean-notill 522 450
11 Soybean-mintill 1270 1185
12 Soybean-clean 300 293
13 Wheat 109 96
14 Woods 648 617
15 Buildings-Grass-Trees-Drives 197 189
16 Stone-Steel Towers 60 33

Total 5326 4923

4.2. Evaluation Metrics

The overall accuracy (OA), average accuracy (AA), Kappa coefficient, and F1-score are
used for quantitative analysis. To demonstrate the stability of our results, each experiment
is conducted five times across different seeds and the mean and standard variation of the
scores are reported.

4.3. Parameter Analysis

The model complexity of the SS-MLP is controlled by the network depth, i.e., the num-
ber of SS-MLP blocks, and the embedding dimension D. Considering that low complexity
leads to underfitting and high complexity may result in the waste of computational re-
sources and overfitting, we aim to find the smallest model depth and embedding dimension
without incurring underfitting.

The OA of SS-MLP with different model depths is summarized in Table 4. As can be
seen, the best OAs are achieved when the model depth is set to 3, 2, and 1 for the UP, UH,
and IP datasets, respectively. Table 5 lists the OA of SS-MLP with different embedding
dimensions. Note that when the embedding dimension is set to 24, the OA index reaches
the maximum value on the three datasets.

Table 4. OA (%) of SS-MLP with different model depths. Note that we use the number of SS-MLP
blocks to represent model depth. The best results are highlighted in bold font.

Number of Blocks UP UH IP

1 91.86 ± 2.52 85.54 ± 0.37 68.65 ± 0.65
2 93.91 ± 1.86 85.86 ± 0.96 67.17 ± 1.54
3 96.23 ± 0.51 84.96 ± 0.56 66.14 ± 1.26
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Table 5. OA (%) of SS-MLP with different embedding dimension D. For our model, pixel embedding
is used to reduce the redundant spectral information and the default value of D is 24. The best results
are highlighted in bold font.

D UP UH IP

24 96.23 ± 0.51 85.86 ± 0.96 68.65 ± 0.65
48 95.56 ± 1.20 85.54 ± 0.76 66.94 ± 1.12
72 95.74 ± 0.62 85.40 ± 0.59 67.76 ± 1.36
96 96.01 ± 0.35 85.03 ± 0.32 67.53 ± 0.83

4.4. Comparison Methods

Next, we compare our SS-MLP with the following spectral-spatial methods:

• DenseNet [56]: A deep&dense CNN which employs shortcut connections between lay-
ers to avoid the vanishing model gradient and enhance network generalization. It ex-
ploits both low-level and high-level features extracted from HSI data for classification.

• FDMFN [57]: A fully dense multiscale fusion network which exploits the comple-
mentary and correlated multiscale features from different convolution layers for HSI
classification. With the fully dense connectivity pattern, any two layers in the network
are connected to ensure maximum information flow.

• MSRN [58]: A multiscale residual network which integrates multiscale filter banks
(1× 1 and 3× 3 filters) into depthwise convolution operations, in order to not only
learn multiscale information from HSI data but also reduce the computational cost of
the network.

• DPRN [59]: A deep pyramidal residual network which is made up several pyramidal
bottleneck residual blocks. As the network depth increases, more feature maps are
generated to improve the diversity of high-level spectral–spatial features.

• SSSERN [60]: A spatial–spectral squeeze-and-excitation residual network which ex-
tracts distinguishable features through spatial and spectral attention mechanisms,
emphasizing meaningful features and suppressing unnecessary ones in the spatial
and spectral domains simultaneously.

For the compared networks, their default parameter configurations are used. The
training details of the compared methods are summarized in Appendix A. To make a fair
comparison between different approaches, the input 3D HSI patches’ spatial size is fixed
to 11× 11, following the set up of [56,59,60]. All the networks are implemented on the
PyTorch platform using a personal computer with a RTX 2080 GPU.

4.5. Comparison Results

Tables 6–8 present the quantitative classification results for the UP, UH, and IP datasets,
respectively. As can be seen, the proposed SS-MLP consistently provides superior perfor-
mances in terms of three overall indices: OA, AA, and Kappa, over the other methods
applied to all three datasets.

Focusing on the UP dataset, the SS-MLP achieves OA, AA, and Kappa values of
96.23%, 95.48%, and 94.93%, respectively, while the second-best model (SSSERN) obtains
94.63%, 94.53%, and 92.71%, respectively. The promotions of the OA, AA, and Kappa
values are 1.60%, 0.95%, and 2.22%, respectively. However, the F1-score obtained by our
model is slightly lower than that achieved by SSSERN (only 0.24% less). Regarding the UH
dataset, in comparison with the SSSERN model, our SS-MLP achieves 0.87%, 0.46%, 0.92%,
and 0.70% gains in terms of OA, AA, Kappa, and F1-score, respectively.

With the IP dataset, our model shows 4.17%, 2.28%, 3.68%, 4.09%, and 4.65% improve-
ments (in terms of OA) over DenseNet, FDMFN, MSRN, DPRN, and SSSERN, respectively.
Note that the F1-score obtained by our SS-MLP is as high as 71.46%, which is 8.33% point
higher than that of SSSERN (63.13%). The reason for the remarkable promotions may be
that the proposed SS-MLP with a global receptive filed is able to achieve better reason-
ing over a longer context, which is suitable for processing IP scene with larger smooth
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regions (e.g., large area of farmland). As for the UP and UH datasets, they have more
detailed regions and the local detail information is important. Therefore, we obtain limited
improvements for these two datasets.

Table 6. Classification accuracies (%) on the UP dataset. The input HSI patch size is fixed to 11× 11 for different models.
SS-MLP achieves higher OA score while spending less time than other compared methods. “M” and “s” indicate millions
and seconds. The best results are highlighted in bold font.

Class DenseNet FDMFN MSRN DPRN SSSERN SS-MLP

1 88.99 ± 2.16 83.72 ± 2.19 90.88 ± 2.04 88.05 ± 1.58 93.32 ± 1.19 91.63 ± 1.63
2 98.74 ± 0.19 94.78 ± 3.72 98.91 ± 0.19 98.66 ± 0.41 97.45 ± 1.92 97.94 ± 0.95
3 76.13 ± 4.92 74.18 ± 6.25 67.81 ± 5.46 69.84 ± 4.57 88.94 ± 5.49 84.40 ± 1.96
4 95.82 ± 1.84 97.14 ± 0.81 97.39 ± 0.73 96.59 ± 0.49 94.91 ± 1.18 94.64 ± 0.70
5 99.34 ± 0.27 99.28 ± 0.13 99.34 ± 0.12 99.44 ± 0.16 97.84 ± 1.09 97.97 ± 0.73
6 60.15 ± 5.25 85.28 ± 5.54 64.57 ± 4.80 73.77 ± 8.07 81.85 ± 6.88 98.50 ± 0.81
7 94.52 ± 2.91 94.86 ± 2.63 90.66 ± 2.97 89.72 ± 2.73 99.82 ± 0.12 99.84 ± 0.21
8 97.72 ± 0.74 98.06 ± 0.49 98.53 ± 0.37 96.69 ± 1.05 98.67 ± 0.42 98.73 ± 0.49
9 96.10 ± 1.69 97.06 ± 0.54 97.36 ± 0.57 96.68 ± 0.58 97.94 ± 0.62 95.67 ± 0.83

OA 91.33 ± 0.65 91.63 ± 1.46 91.94 ± 0.63 92.28 ± 1.30 94.63 ± 0.96 96.23 ± 0.51
AA 89.72 ± 0.83 91.59 ± 0.48 89.49 ± 0.77 89.94 ± 1.52 94.53 ± 1.04 95.48 ± 0.29

Kappa × 100 88.08 ± 0.91 88.78 ± 1.85 88.94 ± 0.90 89.46 ± 1.81 92.71 ± 1.29 94.93 ± 0.68
F1-score 90.46 ± 1.04 90.64 ± 1.10 90.52 ± 0.55 90.40 ± 1.34 94.36 ± 0.92 94.12 ± 0.62

Parameters (M) 1.65 0.54 0.06 1.96 0.15 0.06
Time (s) 311.88 106.11 101.48 766.84 131.89 90.66

Regarding the computational complexity, we compare the number of parameters
and runtimes for different networks. As can be observed from Tables 6–8, the SS-MLP
contains considerably fewer parameters than the DenseNet, FDMFN, DPRN, and SSSERN.
Moreover, it is the fastest classification model. Consider the UP dataset. Our SS-MLP
contains 41.5, 9.0, 32.7, and 2.5 times fewer parameters than the DenseNet, FDMFN, DPRN,
and SSSERN, respectively. Although MSRN have approximately the same number of
parameters as our SS-MLP, it requires more execution times (101.48 s vs. 90.66 s). Similar
results can be seen on the UH and IP datasets.

For the UP and UH datasets, the differences between the second-best model SSSERN
and the proposed SS-MLP are 1.60 (94.63 ± 0.96 vs. 96.23 ± 0.51) and 0.87 (84.99 ± 0.45 vs.
85.86 ± 0.96), respectively. As for the IP dataset, the difference between the second-best
model FDMFN and our SS-MLP is 2.28 (66.37 ± 2.78 vs. 68.65 ± 0.65). Although our
SS-MLP’s improvements are not very significant on the UH dataset, it requires the fewest
number of parameters and takes the shortest time to achieve satisfactory accuracy, which
demonstrates the efficiency of our method.

DenseNet and DPRN have millions of parameters, which result in a high probability of
incurring the phenomenon of overfitting. This is because DenseNet has a deep architecture
which consists of 22 inner convolution blocks, while DPRN uses larger convolution kernels
(i.e., 7× 7 instead of the widely used 3× 3) to increase the receptive field. In addition,
during the feature extraction process, DenseNet adopts pooling operation to reduce data
variance and computation complexity. However, the spatial resolution of learned feature
maps is also reduced, resulting in the detail information loss. This is because HSI classifi-
cation models (e.g., DenseNet) usually take image patches as input, which have a small
spatial size (e.g., 11× 11). Due to the spatial detail information loss and the high probability
of overfitting, DenseNet performs relatively poor on the three datasets. FDMFN and MSRN
can utilize contextual information at different scales for classification, achieving satisfactory
performance. When learning spectral-spatial features, SSSERN keeps the spatial size of
input hyperspectral data fixed to avoid spatial information loss. In addition, it uses spec-
tral attention modules to emphasize useful bands for classification and suppress useless
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bands. Moreover, SSSERN utilizes spatial attention modules to emphasize pixels that are
useful for classification (i.e., highlighting pixels from the same class as the center pixel)
and suppress useless pixels. In this way, SSSERN is able to extract discriminative spectral-
spatial features from the HSI cubes and achieves promising classification performance.
However, the CNN-based models (i.e., DenseNet, FDMFN, MSRN, DPRN, and SSSERN)
have limited receptive field, which makes the learned features focusing more on local
information and may result in the misclassifications inside objects. As for the proposed
SS-MLP, it is constructed based on MLPs with global receptive field, which can capture
long-range dependencies. In addition, to avoid detail information loss, we do not use any
downsampling operation during the feature extraction phase. Moreover, due to the weight
sharing strategy, our SS-MLP architecture is lightweight, which can alleviate the overfitting
problem and is suitable for HSI classification task with limited training samples. Therefore,
our model achieves competitive performance in comparison with other methods.

Table 7. Classification accuracies (%) on the UH dataset. The input HSI patch size is fixed to 11× 11 for different models.
SS-MLP achieves higher overall accuracies while using fewer parameters than other compared methods. “M” and “s”
indicate millions and seconds. The best results are highlighted in bold font.

Class DenseNet FDMFN MSRN DPRN SSSERN SS-MLP

1 82.03 ± 0.65 82.64 ± 0.39 82.51 ± 0.31 82.32 ± 0.44 81.79 ± 0.46 82.74 ± 0.26
2 85.13 ± 0.04 84.40 ± 0.88 84.55 ± 0.64 84.47 ± 0.33 84.66 ± 0.65 84.87 ± 0.56
3 92.24 ± 2.82 89.07 ± 4.08 92.55 ± 3.44 92.55 ± 2.11 97.31 ± 3.52 97.39 ± 2.32
4 91.29 ± 0.92 92.86 ± 0.52 90.55 ± 2.28 91.63 ± 1.50 90.30 ± 1.00 91.10 ± 1.35
5 99.70 ± 0.52 100.0 ± 0.00 99.17 ± 0.70 99.00 ± 0.41 99.92 ± 0.07 99.66 ± 0.37
6 94.13 ± 4.35 97.76 ± 1.95 98.32 ± 2.10 97.62 ± 2.37 96.92 ± 1.44 96.50 ± 1.08
7 84.76 ± 1.03 85.28 ± 2.49 83.60 ± 1.58 88.08 ± 1.39 85.73 ± 2.84 83.99 ± 2.29
8 71.42 ± 3.22 72.93 ± 13.49 73.77 ± 4.77 73.87 ± 3.45 70.41 ± 3.71 77.02 ± 0.98
9 73.05 ± 2.34 80.51 ± 2.83 82.97 ± 4.66 80.59 ± 3.00 79.11 ± 3.25 77.15 ± 2.48

10 60.31 ± 4.76 60.10 ± 3.16 61.45 ± 5.36 63.84 ± 2.21 66.20 ± 1.11 67.07 ± 1.17
11 80.65 ± 2.18 80.15 ± 2.95 80.68 ± 6.58 70.53 ± 2.96 82.41 ± 1.44 89.68 ± 5.13
12 90.93 ± 6.60 93.05 ± 3.04 95.97 ± 2.19 91.32 ± 3.19 94.14 ± 3.62 95.52 ± 1.69
13 80.14 ± 1.94 86.39 ± 3.24 88.84 ± 3.44 78.81 ± 0.79 75.58 ± 2.57 80.56 ± 3.35
14 97.98 ± 1.45 95.06 ± 6.16 92.39 ± 5.20 86.96 ± 2.09 99.84 ± 0.20 99.92 ± 0.16
15 82.62 ± 8.94 85.41 ± 7.59 96.83 ± 2.14 68.37 ± 7.45 99.53 ± 0.83 87.61 ± 7.44

OA 82.84 ± 0.71 84.04 ± 1.04 84.91 ± 0.64 82.64 ± 0.52 84.99 ± 0.45 85.86 ± 0.96
AA 84.42 ± 0.82 85.71 ± 0.88 86.94 ± 0.89 83.33 ± 0.25 86.92 ± 0.44 87.38 ± 1.08

Kappa × 100 81.44 ± 0.77 82.77 ± 1.10 83.73 ± 0.70 81.22 ± 0.56 83.78 ± 0.47 84.70 ± 1.02
F1-score 84.17 ± 1.09 83.15 ± 1.34 84.49 ± 0.87 82.59 ± 0.93 84.54 ± 1.09 85.24 ± 1.18

Parameters (M) 1.66 0.54 0.06 1.98 0.16 0.04
Time (s) 224.06 78.49 72.12 554.79 96.14 55.36
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Table 8. Classification accuracies (%) on the IP dataset. The input HSI patch size is fixed to 11× 11 for different models.
SS-MLP achieves higher overall accuracies while using fewer parameters than other compared methods. “M” and “s”
indicate millions and seconds. The best results are highlighted in bold font.

Class DenseNet FDMFN MSRN DPRN SSSERN SS-MLP

1 36.00 ± 26.53 80.00 ± 25.10 56.00 ± 29.22 59.00 ± 20.59 96.00 ± 3.74 96.00 ± 4.90
2 56.41 ± 12.54 61.14 ± 14.75 58.01 ± 4.94 61.14 ± 8.73 44.36 ± 12.36 59.26 ± 9.53
3 42.26 ± 4.77 54.14 ± 11.19 47.67 ± 7.59 48.77 ± 5.95 46.27 ± 9.36 47.52 ± 3.55
4 82.29 ± 13.12 73.33 ± 10.02 57.90 ± 12.08 53.52 ± 4.52 75.43 ± 9.18 70.67 ± 7.36
5 27.02 ± 1.23 27.46 ± 0.21 27.46 ± 0.21 27.46 ± 0.21 27.46 ± 0.21 27.63 ± 0.00
6 96.70 ± 2.89 98.32 ± 0.92 95.25 ± 2.60 94.47 ± 1.05 97.15 ± 1.43 97.49 ± 1.42
7 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00
8 99.82 ± 0.22 99.91 ± 0.18 99.91 ± 0.18 99.82 ± 0.36 99.91 ± 0.18 100.0 ± 0.00
9 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 98.00 ± 4.00

10 86.93 ± 3.12 80.89 ± 2.00 85.07 ± 2.99 86.36 ± 4.33 81.78 ± 2.92 90.67 ± 1.79
11 52.19 ± 2.24 52.02 ± 1.50 54.84 ± 2.22 51.90 ± 0.89 54.58 ± 3.88 48.25 ± 3.84
12 18.84 ± 5.41 23.89 ± 8.32 14.54 ± 4.75 14.27 ± 2.95 20.89 ± 6.41 58.98 ± 9.36
13 98.54 ± 1.41 99.17 ± 0.42 98.54 ± 1.56 97.50 ± 2.60 96.88 ± 1.47 97.71 ± 0.78
14 90.15 ± 3.14 92.58 ± 2.02 85.77 ± 4.61 93.03 ± 2.17 95.40 ± 1.99 96.34 ± 1.40
15 59.26 ± 7.80 61.80 ± 16.15 77.04 ± 7.72 48.78 ± 5.77 56.83 ± 7.94 77.99 ± 17.48
16 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 98.18 ± 2.42

OA 64.48 ± 1.32 66.37 ± 2.78 64.97 ± 0.78 64.56 ± 1.63 64.00 ± 1.38 68.65 ± 0.65
AA 71.65 ± 2.07 75.29 ± 3.25 72.37 ± 1.80 71.00 ± 1.57 74.56 ± 1.12 79.04 ± 1.20

Kappa × 100 60.02 ± 1.52 62.02 ± 3.09 60.42 ± 0.87 59.86 ± 1.83 59.48 ± 1.65 64.81 ± 0.71
F1-score 62.16 ± 1.05 65.71 ± 3.13 64.13 ± 2.06 63.05 ± 1.26 63.13 ± 1.73 71.46 ± 0.88

Parameters (M) 1.67 2.30 0.06 2.11 0.17 0.02
Time (s) 431.76 215.41 132.69 724.57 192.84 95.49

Figures 8–10 provide the classification maps generated by different approaches on
the three datasets. As can be observed, the SS-MLP produces well-defined classification
maps in terms of border delineation. For the UH dataset, the classification map obtained by
our SS-MLP is more aligned with ground object boundaries, particularly for the “Railway”
class. Figure 11 shows the classification maps for the “Railway” class obtained by different
methods. As can be observed, the DenseNet, FDMFN, MSRN, and DPRN misidentify
parts of the middle area of “Railway” as “Parking Lot 2” (denoted by blue color). For the
SSSERN, it misidentifies parts of the middle area of “Railway” as “Road”. The reason
for the misclassifications may be that these five convolution-based methods have limited
receptive filed and thus focus more on local information, resulting in the misclassifications
inside large scale objects. However, the proposed SS-MLP with a global receptive filed
can capture long-range spatial interactions, which is better at classifying objects from a
global perspective. That may be the reason why the proposed SS-MLP achieves a better
classification performance on the “Railway” class.

In addition, for the IP dataset, the classification accuracies obtained by our method
are similar to that achieved by SSSERN in most categories. However, our SS-MLP achieves
significant improvements over SSSERN in the “Soybean-clean” category (58.98 ± 9.36 vs.
20.89 ± 6.41). The “Soybean-clean”, “Soybean-notill”, and “Soybean-mintill” categories
are similar, which make accurate separation difficult. For “Soybean-clean” category, all
methods obtain poor accuracy (lower than 60%). However, the proposed SS-MLP can
achieve a better classification performance compared with other methods, possibly since
global information is important for accurately classifying this category with large-scale
areas. Without the help of global receptive field, pixels inside large objects are usually
mistaken as other objects with high similarity. Figure 12 shows the features learned by
SSSERN model and the proposed SS-MLP. Note that the final spectral-spatial features
extracted before global average pooling are displayed. As can be seen, our SS-MLP tends to



Remote Sens. 2021, 13, 4060 15 of 25

focus on pixels in different areas of the input HSI patch and hence can reason in an enlarged
spatial range and from a global prospective. However, SSSERN pays more attention on
local information. Therefore, we hypothesize that the success of detecting this category
arises from the SS-MLP’s characteristic of global receptive field.

(a) (b) (c)

(d) (e) (f)
Asphalt Meadows Gravel Trees Metal sheets Bare soil Bitumen Bricks Shadows

Figure 8. Classification maps on the UP dataset. (a) DenseNet, OA = 91.33%. (b) FDMFN, OA = 91.63%.
(c) MSRN, OA = 91.94%. (d) DPRN, OA = 92.28%. (e) SSSERN, OA = 94.63%. (f) SS-MLP, OA = 96.23%.

(a)

(b)

Figure 9. Cont.



Remote Sens. 2021, 13, 4060 16 of 25

(c)

(d)

(e)

(f)

Healthy grass Stressed grass Synthetic grass Trees Soil Water Residential
Road Highway Railway Parking lot 1 Parking lot 2 Tennis court Running track Commercial

Figure 9. Classification maps on the UH dataset. (a) DenseNet, OA = 82.84%. (b) FDMFN, OA = 84.04%. (c) MSRN, OA = 84.91%.
(d) DPRN, OA = 82.64%. (e) SSSERN, OA = 84.99%. (f) SS-MLP, OA = 85.86%.

(a) (b) (c)

Figure 10. Cont.
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(d) (e) (f)
Alfalfa Corn-notill Corn-mintill Corn Grass/pasture Grass/trees Grass/pasture-mowed Hay-windrowed
Oats Soybean-notill Soybean-mintill Soybean-clean Wheat Woods Buildings-Grass-Trees-Drives Stone-Steel Towers

Figure 10. Classification maps on the IP dataset. (a) DenseNet, OA = 64.48%. (b) FDMFN, OA = 66.37%. (c) MSRN, OA = 64.97%.
(d) DPRN, OA = 64.56%. (e) SSSERN, OA = 64.00%. (f) SS-MLP, OA = 68.65%.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 11. Classification maps for the “Railway” class obtained by different methods on the UH dataset. (a) False color
image. (b) Ground reference map for “Railway” class. (c) DenseNet. (d) FDMFN. (e) MSRN. (f) DPRN. (g) SSSERN.
(h) SS-MLP.

False Color Image 
for IP dataset

Ground Reference Map 
for Soybean-clean Class

Input HSI Patch
(Soybean-clean)

(Top) Spectral-Spatial Features Learned by SSSERN

(Bottom) Spectral-Spatial Features Learned by SS-MLP

Figure 12. Feature maps learned by SSSERN and the proposed SS-MLP for “Soybean-clean” class from the IP dataset.
SSSERN with local receptive field focuses more on local information, while our SS-MLP with global receptive field can pay
attention to all the pixels in the input HSI patch.
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5. Discussion
5.1. Ablation Analysis of the Proposed SS-MLP

The proposed SS-MLP uses the skip connection mechanism, layer normalization, and
a 50% dropout regularization for improving the training process. To demonstrate the
effectiveness of our model, we construct a baseline network by eliminating skip connection,
layer normalization, and dropout regularization from the SS-MLP. As can be seen from
Table 9, the baseline network obtains poor classification performance. Specifically, the OA
scores obtained by the baseline model are 56.61%, 79.92%, and 62.60% on the UP, UH, and
IP datasets, respectively.

Table 9. Ablation analysis of SS-MLP for understanding the contribution of different components in
the architecture, including skip connection, layer normalization, and dropout regularization. We can
find all these three components have positive contributions to the classification performance. The
best results are highlighted in bold font.

Dataset Skip Connection Layer Normalization Dropout OA(%)

7 7 7 56.61 ± 33.38
UP X 7 7 90.34 ± 1.07

X X 7 94.13 ± 0.87
X X X 96.23 ± 0.51

7 7 7 79.92 ± 0.77
UH X 7 7 82.15 ± 1.15

X X 7 83.97 ± 1.33
X X X 85.86 ± 0.96

7 7 7 62.60 ± 1.53
IP X 7 7 63.15 ± 1.46

X X 7 66.85 ± 2.03
X X X 68.65 ± 0.65

To improve the classification performance of the baseline network, skip connection
mechanism is first introduced, which can enhance the information exchange between
layers and reduce the training difficulty [44]. As can be observed from Table 9, the OA
scores’ improvements obtained by utilizing skip connection mechanism are 33.73%, 2.23%,
and 0.55% on the three datasets, which demonstrate that improving the information flow
is useful to enhance the HSI classification accuracy. In addition, we further adopt layer
normalization [50] to reduce the internal covariate shift during network training, which
can speed up the training phase and benefit generalization. As can be seen, the increases
of OA scores obtained by the combination of layer normalization and skip connection
are 37.52% on the UP dataset, 4.05% on the UH dataset, and 4.25% on the IP dataset,
which demonstrates that the utilization of layer normalization also plays a positive role
in improving classification accuracy. Besides, dropout regularization is used to improve
the training process. Specifically, during the training phase, it randomly deactivates a
percentage of neurons, that is, setting the output of each neuron to zero with a probability.
By dropping neurons randomly, diverse neural networks are formed in different training
epochs, which can reduce the co-adaptation of hidden units and force the network to
learn more robust features [49]. The most commonly used dropout rate is 50%. From
the observation of Table 9, we can find that the network with dropout regularization can
achieve better performance on all three datasets. This suggests that dropout regularization
is beneficial to enhance the classification performance.

To sum up, the utilization of different techniques can effectively obtain different
degrees of improvement in the performance. When using all these three techniques, the
SS-MLP performs the best on all three HSI datasets. Compared with the baseline network,
the OA scores’ enhancements achieved by our SS-MLP are as high as 39.62% on the UP
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dataset, 5.94% on the UH dataset, and 6.05% on the IP dataset, which demonstrates that the
SS-MLP architecture designed in this article is effective for the task of HSI classification.

5.2. Impact of SeMLP and SaMLP

Considering that each pixel in hyperspectral imagery covers a spatial region on
the surface of the Earth, hyperspectral pixels tend to have mixed spectral signatures.
The presence of mixed pixels and the environmental interferes like atmospheric and
geometric distortions often lead to: (1) Spectral signatures that belong to the same land-
cover type may be different. (2) Spectral signatures belonging to different classes may be
similar. Therefore, methods that focus only on the spectral information cannot provide
satisfactory classification accuracy. By exploiting the spatial contextual information such as
textures, geometrical structures and neighboring relationships, spectral-spatial methods
have proven to be an effective way to reduce the classification uncertainty and increase the
classification accuracies.

In this paper, the SeMLP is used to learn discriminative spectral features, and the
SaMLP that can capture relationships between any two pixels in an input region is used
to extract informative global spatial features. To demonstrate the effectiveness of the
integration of SaMLP and SeMLP in our SS-MLP, we also test the networks that only consist
of the SaMLPs and the ones that only contain SeMLPs.

Since the spectral representations learned by SeMLP are complementary to the spa-
tial features learned by the SaMLP, the proposed SS-MLP with both SeMLP and SaMLP
consistently obtain higher OA values than the networks with only SeMLP or SaMLP, as
can be seen from Table 10. On the UP dataset, the OA of our SS-MLP is 96.23%, and it is
8.57% and 2.98% higher than the OA obtained by the network without SaMLP and the one
without SeMLP, respectively. For the UH dataset, combination of both SaMLP and SeMLP
could increase the OA value by 0.56% and 2.05% compared to the network without SaMLP
or SeMLP. As for the IP dataset, removing SaMLP and SeMLP will result in a 5.50% and
2.06% decrease in OA score, respectively. These results demonstrate the importance of both
the SaMLP and SeMLP in SS-MLP.

Table 10. OA (%) of SS-MLP with different architectures. Note that the proposed SS-MLP consists of
both SeMLP and SaMLP. The best results are highlighted in bold font.

Dataset SeMLP SaMLP OA

X 7 87.66 ± 2.38
UP 7 X 93.25 ± 1.82

X X 96.23 ± 0.51

X 7 85.30 ± 0.62
UH 7 X 83.81 ± 0.54

X X 85.86 ± 0.96

X 7 63.15 ± 0.51
IP 7 X 66.59 ± 1.31

X X 68.65 ± 0.65

5.3. Impact of Activation Function

For the proposed SS-MLP model, we adopt the Gaussian error linear unit (GELU) [48]
instead of the widely used rectified linear unit (ReLU) as the activation function. The reason
is that the use of GELU activation function promotes SS-MLP’s classification performance
slightly on the UP and UH datasets, as can be seen from Table 11.
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Table 11. OAs (%) of our SS-MLP with different activation functions on the three datasets.

Dataset SS-MLP-ReLU SS-MLP-GELU

UP 96.08 ± 0.43 96.23 ± 0.51
UH 85.78 ± 0.82 85.86 ± 0.96
IP 68.65 ± 0.73 68.65 ± 0.65

5.4. Analysis of Learning Curves of SS-MLP

Figure 13 presents the learning curves of our SS-MLP, including the loss and accuracy
of training and validation for all the three datasets. Here, 10% of samples per class are
randomly selected from the training set as validation samples, and the rest 90% are used for
network training. Note that in this paper we follow the widely-adopted training protocol
and set the training epochs to 100. However, from Figure 13, one can see that our SS-MLP
is converged almost around 50 epochs, which means that the time cost of our model can be
further reduced by using fewer training epochs.
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Figure 13. Learning curves of the proposed SS-MLP on (a) UP, (b) UH, and (c) IP datasets. As can be observed, our model
has the characteristic of fast convergence, which can converge at a stable minimum within as few as 50 epochs for these
three datasets.
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5.5. Analysis of General Applicability

In this section, we further investigate the general applicability and performance of the
SS-MLP on a recently released HYRANK hyperspectral benchmark dataset. The HYRANK
datasets contains five hyperspectral scenes: Dioni, Loukia, Erato, Nefeli, and Kiriki, where
the ground reference maps of Dioni and Loukia scenes are available. Researchers usually
use Dioni scene as training set and Loukia scene as test set. Both the Dioni and Loukia
scenes were acquired by the Hyperion sensor on the Earth Observing-1 satellite with
176 spectral bands and a GSD of 30 m. The spatial size of Dioni scene is 250× 1376. The
spatial size of Loukia scene is 249× 945. Both of them contain seven land-cover classes:
Dense Urban Fabric, Non-Irrigated Arable Land, Olive Groves, Dense Sclerophyllous Vege-
tation, Sparse Sclerophyllous Vegetation, Sparsely Vegetated Areas, and Water. HYRANK
benchmark dataset is challenging since it has spatially disjoint training and test sets. Be-
sides, due to the limited spatial resolution (30 m), the highly mixed pixels also poses a
great challenge to accurate classification of land-cover types. From Table 12, it can be
seen that the proposed SS-MLP still obtains improved performance compared with other
methods. In comparison with the second-best model (DPRN), our SS-MLP improves the
OA by 1.08%, using approximately 53× fewer parameters. The HYRANK dataset and the
classification maps obtained by different methods are displayed in the Appendix B.

Table 12. Classification accuracies of different approaches on the HYRANK dataset. “M” indi-
cates millions. The best results are highlighted in bold font.

Method OA (%) Parameters (M)

DenseNet 48.23 ± 1.89 1.66
FDMFN 49.95 ± 2.60 0.54
MSRN 47.73 ± 1.17 0.15
DPRN 52.40 ± 0.93 2.10

SSSERN 48.48 ± 3.20 0.16
SS-MLP 53.48 ± 0.84 0.04

The experimental outcomes on the four benchmark datasets demonstrate the effec-
tiveness of the proposed SS-MLP. It should be noted that owing to the weight sharing
strategy, the number of parameters required by our model is considerably fewer than that
needed by other deep CNN models. Take the UH dataset as an example, DenseNet (1.66 M)
and DPRN (1.98 M) require millions of parameters, while our SS-MLP only needs 40 K
parameters. In addition, although the SSSERN and the proposed model obtain similar
classification accuraices on the UH dataset, our SS-MLP needs 4× fewer parameters, being
approximately 2× faster. These results demonstrate that the proposed SS-MLP can achieve
competitive performance compared with the state-of-the-art methods, but requiring fewer
parameters to be adjusted and less running time.

Our SS-MLP uses matrix transposition and MLPs to achieve both spectral and spatial
perception in global receptive field. However, the local features that can be captured
by CNNs with local receptive field is important for distinguishing small scale objects.
Therefore, how to effectively embed local information in our SS-MLP architecture requires
further investigation.

6. Conclusions

In this article, a novel deep learning architecture based entirely on MLPs is presented
for HSI classification. The proposed SS-MLP uses two consecutive MLPs, i.e., SaMLP and
SeMLP, to learn spatial and spectral representations in the global receptive filed. These
two types of MLPs are interleaved to enable information interaction between spectral
and spatial domains. Furthermore, weight sharing within the SS-MLP block significantly
enhances memory savings. Experiments conducted on four benchmark HSI datasets
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demonstrate that the proposed SS-MLP can yield competitive results with less parameters
compared with several state-of-the-art approaches.

In the future, we will conduct additional experiments to investigate the general
applicability and performance of the SS-MLP across many different HSI datasets. In
addition, we will consider integrating band selection with the proposed SS-MLP, so as to
suppress useless bands and emphasize informative ones for efficient HSI classification.
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Appendix A. Training Details of the Compared Methods

In order to recover the results of the compared methods, we use the training protocols
reported in the corresponding references. Table A1 summarizes the training details of
the compared approaches. DenseNet [56] and SSSERN [60] follow the widely-adopted
training protocol. The training procedure lasts for 100 epochs, using the Adam optimizer
with a batch size of 100 samples. The learning rate is set to 0.001. Note that in accordance
with [57], a half-cosine shape learning rate schedule is adopted for FDMFN, which starts
from 0.001 and gradually reduces to 0.0. As for DPRN, the learning rate is set to 0.1 from
epochs 1 to 149 and to 0.01 from epochs 150 to 200, according to the setup in [59]. Besides,
it should be noted that MSRN’s learning rate is set to 0.001 instead of the default 0.01 [58],
because we found that MSRN can achieve better classification performance with a smaller
learning rate.

Table A1. Training details for different compared methods. SGD refers to the Stochastic Gradient
Descent optimizer.

Models Learning Rate Epoch Optimizer Batch Size Weight Decay

DenseNet [56] 0.001 100 Adam 100 0.0001
FDMFN [57] 0.001 100 Adam 100 0.0001
MSRN [58] 0.001 120 Adam 64 0.0001
DPRN [59] 0.1 200 SGD 100 0.0001

SSSERN [60] 0.001 100 Adam 100 0.0001

http://dase.grss-ieee.org
https://hyperspectral.ee.uh.edu/
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://zhe-meng.github.io/
https://www2.isprs.org/commissions/comm3/wg4/hyrank/
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Appendix B. Classification Maps for the HYRANK Dataset

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
Dense Urban Fabric (1262/288) Non-Irrigated Arable Land (614/542) Olive Groves (1768/1401)

Dense Sclerophyllous Vegetation (5035/3793) Sparse Sclerophyllous Vegetation (6374/2803) Sparsely Vegetated Areas (1754/404) Water (1612/1393)

Figure A1. Hyperion HYRANK dataset with 176 spectral bands. It is worth noting that the number of training and test
samples per class are reported in brackets. (a) False-color composite image for the Dioni training set using bands 23, 11, and
7 as R, G, B, respectively. (b) Ground reference map for the Dioni training set. (c) False-color composite image for the Loukia
test set using bands 23, 11, and 7 as R, G, B, respectively. (d) Ground reference map for the Loukia test set. (e) DenseNet,
OA = 48.23%. (f) FDMFN, OA = 49.95%. (g) MSRN, OA = 47.73%. (h) DPRN, OA = 52.40%. (i) SSSERN, OA = 48.48%.
(j) SS-MLP, OA = 53.48%.
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