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Abstract: Formaldehyde (HCHO) is one of the most important carcinogenic air contaminants in
outdoor air. However, the lack of monitoring of the global surface concentration of HCHO is currently
hindering research on outdoor HCHO pollution. Traditional methods are either restricted to small
areas or, for research on a global scale, too data-demanding. To alleviate this issue, we adopted
neural networks to estimate the 2019 global surface HCHO concentration with confidence intervals,
utilizing HCHO vertical column density data from TROPOMI, and in-situ data from HAPs (harmful
air pollutants) monitoring networks and the ATom mission. Our results show that the global surface
HCHO average concentration is 2.30 µg/m3. Furthermore, in terms of regions, the concentrations in
the Amazon Basin, Northern China, South-east Asia, the Bay of Bengal, and Central and Western
Africa are among the highest. The results from our study provide the first dataset on global surface
HCHO concentration. In addition, the derived confidence intervals of surface HCHO concentration
add an extra layer of confidence to our results. As a pioneering work in adopting confidence
interval estimation to AI-driven atmospheric pollutant research and the first global HCHO surface
distribution dataset, our paper paves the way for rigorous study of global ambient HCHO health risk
and economic loss, thus providing a basis for pollution control policies worldwide.

Keywords: surface formaldehyde; neural network model; interval estimation; TROPOMI;
global distribution

1. Introduction

Formaldehyde (HCHO) is a carcinogenic trace gas and toxic pollutant in the atmo-
sphere [1]. It is considered to be one of the most important carcinogens in outdoor air
by the U.S. Environmental Protection Agency (EPA) among 187 harmful air pollutants
(HAPs) [2], and accounts for more than 50% of the total risk of HAP-related cancer in the
United States [3]. Thirteen out of every one million people are afflicted with nasopharyn-
geal carcinoma after being exposed to an average concentration of one microgram per
cubic meter of HCHO over a lifetime [4]. As the most abundant aldehyde compound
in the atmosphere, HCHO is one of the major volatile organic compounds (VOCs) and
pollutants in the troposphere [5], which has a close relationship with the formation and
extinction of O3 and NO2 in the atmosphere; Thus, HCHO pollution is a global-scale issue.
Ambient HCHO can be produced both naturally and artificially by sources including the
photolysis of isoprene from vegetation [6,7], farmland emissions [8], energy production,
and automobile exhaust emissions [9,10].

Surface concentration represents the amount of HCHO that people are exposed to,
and is the direct data source of health risk estimation. Nevertheless, despite the crucial
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role of HCHO in human health and in the atmosphere, it is difficult to monitor HCHO
systematically and comprehensively by using traditional ground-based methods because
of the large error and the expensive cost [11]. As a result, there is still no regular or
large-scale monitoring of HCHO over most regions of the world. Most countries and
regions with serious pollution fail to measure the surface HCHO concentration. Only in the
United States is there a HAPs sampling network that collects HCHO information; however,
this is limited to cities and industrial sites [12].

In contrast, remote sensing technology can not only monitor the long-term and large-
scale dynamics, but also avoid many interference factors. Currently, there are many satellite
missions reporting HCHO vertical column density (VCD), which provides fundamental
datasets for much related research. The main sensors used to measure the concentration of
HCHO VCD in the atmosphere include GOME-1 [13], GOME-2 [14], SCIAMACHY [15],
OMI [16] and TROPOMI [17]. In terms of precision, TROPOMI is the most advanced
atmospheric monitoring spectrometer, with the highest resolution, a swath of 2600 km and
daily global coverage [18]. However, most satellite-based retrieval can only provide the
total column concentration due to their limitations in vertical resolution. Therefore, most
studies on ambient HCHO only focus on the total amount in the vertical column in certain
regions, such as North America [19], South America [20], Europe [21], Asia [22,23] and
Africa [7], instead of focusing on surface concentration.

With increasing attention towards health risks and photochemical pollution, demand
for HCHO surface concentration distribution from a global perspective is growing more
urgent. Many efforts have been put towards deriving surface concentration from total
column concentration, such as by using the fixed forms of linear models to assess the
relationship between VCD and in-situ concentration (the concentration on the spot, which
refers to surface concentration and high-altitude concentration from ATom flight data in our
study) of NO2, SO2, CO, PM [24], or by using R2 to assess the relationship between vertical
column density and ground in-situ concentration [25]. However, these methods seem to
be less accurate and may only be limited to specific pollutants. In the few other existing
studies, HCHO surface concentration was derived by applying the vertical distribution
profile from the GEOS-Chem model to the satellite-derived total column concentration [26].
However, the atmospheric transportation model itself requires numerous input parame-
ters, which may impede its application to the global scale with a reasonable spatial and
temporal resolution. Therefore, our main focus here is to derive the global surface HCHO
concentration distribution based on satellite-derived total column HCHO concentration
and a quite limited in-situ HCHO concentration.

Neural networks, a powerful type of machine learning algorithm, have gained
a reputation for revealing hidden patterns in data with great accuracy in various fields,
such as image classification [27], object detection [28], image denoising [29], image syn-
thesis [30], person re-identification [31], etc. However, some algorithms, such as vanilla
neural networks, do not assign confidence levels or confidence intervals to point estimation
results, which are necessary for scientific estimation and public policy decision-making.
To quantify the uncertainty of results derived from neural networks, a diversity of ap-
proaches has been adopted, including Bayesian neural network [32], delta method [33],
bootstrap [34], mean variance estimation [34], and interpreting dropout as performing
variational inference [35]. However, these methods are either computationally demanding
or strongly based on assumptions. The quality-driven (QD) method, a method based on
LUBE for deriving confidence intervals for neural networks by combining the uncertainty
estimating loss and the neural network loss function as a whole [36], is not only compatible
with gradient descent algorithms but also shrinks the average confidence interval length
up to 10% compared with previous attempts [37]. Therefore, to enhance the credibility of
our model, this method is leveraged to obtain the interval estimation of surface concen-
tration of HCHO. By combining the point and interval estimation, we attempt to strike
a balance between maintaining accuracy and controlling uncertainty in the form of a pre-set
confidence level.
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The potential health impact of HCHO compared to the lack of global surface mon-
itoring data demands an efficient way to get a better understanding of global HCHO
surface distribution given this limited data. In this paper, as a novel study, we derived the
global surface concentration of HCHO in 2019 by feeding TROPOMI VCD data and limited
surface HCHO concentration data into a neural network model. In addition, besides the
capture of the seasonal changes of key areas, confidence intervals for the derived surface
HCHO were also estimated by using QD method. As a novel work on adopting interval
estimation in AI-driven atmospheric pollutant research and deriving the first dataset of
global HCHO surface distribution, our paper will pave the way for rigorous study on
global ambient HCHO health risks and economic loss, thus providing a basis for pollution
control policies worldwide.

2. Data and Methods

To estimate the global distribution of HCHO surface concentration, we used two
discrete in-situ data sources and Sentinel-5P TROPOMI VCD data on the corresponding
location (as shown by the red points in Figure 1) to train our neural network model. We
then applied our model on the global scale and estimated the surface HCHO distribution
with confidence intervals.
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2.1. Datasets
2.1.1. Sentinel-5P VCD Data

The data on vertical column density (VCD) of HCHO in this study comes from
TROPOMI (Tropospheric Monitoring Instrument), which is carried on Sentinel-5P [18,38].
Sentinel-5P is a global air pollution monitoring satellite launched by the ESA on 13 October
2017 as part of the Copernicus project. TROPOMI can effectively observe trace gas com-
ponents in the atmosphere around the world, including NO2, O3, SO2, HCHO, CH4, CO
and other important indicators closely related to human activities, and can strengthen the
observation of aerosols and clouds [39].

In terms of accuracy, TROPOMI is currently the most advanced atmospheric mon-
itoring spectrometer, with the highest spatial resolution. The satellite provides global
coverage daily with a spatial resolution of 5.5 km × 3.5 km and an equator crossing
time at about 13:30 local time, which effectively ensures the comparability of data in
different regions [17]. Sentinel-5P data are currently available for public access (https:
//s5phub.copernicus.eu/dhus/#/home accessed on 21 June 2021). The averaged uncer-
tainty of TROPOMI VCD HCHO data is 1.2 × 1016 molec.cm−2 (80%) [40], and the method
used for the derivation of HCHO VCD from UV spectral measurements is the Differential
Optical Absorption Spectroscopy method [17].

We used the data for 2019 because (a) 2018 is the first year that Sentinel-5P was in
operation, and the algorithm of the product was not as stable then; (b) 2020 was within

https://s5phub.copernicus.eu/dhus/#/home
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the global COVID-19 pandemic, which might have had a special impact on anthropogenic
sources, making the result less representative in terms of their long-term status.

Offline HCHO data from 1 January to 31 December 2019 were collected. According
to the technical documents, data points whose quality index (QA_value) was less than
0.5 were removed in order to ensure the best quality. After performing mosaic on the
datasets and applying Ordinary Kriging interpolation, we obtained the distribution of
global average total column concentration of HCHO with a resolution of 0.05◦ by 0.05◦

(Figure 2). The data beyond 60◦ S and 60◦ N were discarded due to the sparsity of satellite
data and scarceness of human activities, which has little impact on health risk estimation.
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2.1.2. In-Situ Data

Since our study aimed to estimate the surface concentration of HCHO on a global
level, we needed surface-level concentration data covering diverse types of underlying
surfaces as well as different altitudes in order to train our model. Therefore, the following
two data sources were considered.

ATom aerial in-situ data. NOAA/NASA’s atmospheric tomography mission (ATom)
is a systematic global sampling of the atmosphere in the United States from 2016 to 2018,
and provides continuous profile analysis from 0.2 km to 12 km. The volume mixing ratio
of HCHO in air was provided by ATom flight measurements. A large number of gases
and aerosol payloads were deployed on NASA’s DC-8 aircraft; among these, HCHO was
measured by the ISAF instrument [41,42]. This instrument uses laser-induced fluorescence
(LIF) to obtain the high sensitivity needed to detect HCHO in the upper troposphere and
lower stratosphere, where it has an abundance of about ten parts per trillion. LIF can
also achieve a quick response to measure the abundance of HCHO in the fine structure
outflow of convective storms. These HCHO measurements can be used to elucidate the
mechanism of convective transport and to quantify the effects of boundary layer pollutants
on ozone photochemistry and cloud microphysics in the upper atmosphere [43]. Atom
data are taken only once at quite arbitrary hours of the day. Since the ocean is relatively free
from anthropogenic VOC sources, and since sea water buffers the air–sea VOC exchange at
quite a steady rate (and which is quite hard to observe) [44,45], we assume that the diurnal
VOC concentration variation can be ignored. Therefore, we took the Atom HCHO data
as a diurnal average, since a remarkable percentage of HCHO comes from the secondary
product of VOC oxidation [46].
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HAPs ground monitoring data. We obtained ground HCHO observations from EPA
SLTS network at https://www.epa.gov/outdoor-air-quality-data accessed on 21 June 2021,
which reports diurnal average HCHO concentration throughout the year. Here, we used
5965 data points from 109 sites in 2019, covering the whole country, as shown in Figure 3a.
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Figure 3. (a) The geographical distribution of our data, where red represents ATom aerial in-situ data points and green
represents HAPs ground monitoring network. (b) The meaning of “Height” and “Altitude” for ATom mission data.

These two datasets generally represented the diurnal average HCHO level, and
covered a wide range of latitudes from −8.1977◦ S to 82.9404◦ N as well as a diverse
variety of landscapes in the U.S. The selection of the HAP dataset was to ensure that the
concentration distribution feature at ground level was represented in our model, and the
use of ATom data was to ensure that our model could be generalized and applied at the
global scale.

Since ATom data are obtained far above the surface, and the vertical distribution of
HCHO usually changes largely from ground to 1~2 km above [47], we took the “Height”
of the aircraft measurements as another input variable in our model to control the impact
of vertical distribution along the column. For HAPs ground in-situ data, we assigned 0 as
the height.

Figure 4 illustrates how the in-situ data were matched up with the satellite data
spatially. The circle represents the center of each pixel of satellite data, and the brown lines
indicate the vertical projection of in-situ data. The in-situ data is matched with the nearest
pixel center of a satellite data grid, as shown by the red arrows in Figure 4.
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2.1.3. Global DEM Data

Since descriptive statistics showed a negative relationship between surface altitude
and in-situ concentration, with a Pearson’s correlation of r = −0.3907 in our in-situ dataset,
we used global Digital Elevation Model (DEM) data as one of the input variables, “Alti-
tude”, in order to estimate the ground-level concentration. The relationship between the
variables “Height” and “Altitude” is shown in Figure 3b.

In our study, we used the Shuttle Radar Topography Mission (SRTM) DEM product
and resampled it to a resolution of 0.05◦. This dataset had an initial resolution of 90 m at
the equator and was provided in WGS84 projection with a resolution of 1 arc [48].

2.2. Data Processing

After collecting and organizing data into formattable structure, we visualized and
preprocessed these data. Then, two neural networks were implemented for point and
interval estimations by using PyTorch, a well-known deep-learning framework. Our code
is available online (https://github.com/dingyizhe2000/Interval-HCHO-Concentration-
Estimation accessed on 21 June 2021).

The preprocessed data with the ground truth from in-situ HCHO concentration were
then divided randomly into two groups; 90% of the dataset was used to train our models
and 10% was used for validation. After that, global VCD data were fed into the model in
order to derive global surface level HCHO concentration.

2.2.1. Preprocessing

In theory, a neural network is able to handle input data with a varied distribution;
however, a significant defect was noticed in the training process without preprocessing,
owing to the highly imbalanced and skewed distribution of the HCHO concentration (both
column and in-situ). Therefore, we first applied log-transformation to the raw data. As
shown in Figure S1, the logarithm of the HCHO concentration data shows a bell-shaped
distribution, and increments in estimation accuracy have also proven the effectiveness of
log-transformation.

2.2.2. Neural Network Architecture

As a universal function approximator, the neural network played a vital role in
helping us derive the point and interval estimations of the HCHO concentration. However,
instead of training a single network to get these estimations jointly, two separate neural
networks were constructed for point and interval estimation, respectively, because several
experiments which we carried out indicated that a joint model always has to compromise
between point estimation and interval estimation, thus greatly reducing the accuracy of
point estimation.

Like ordinary multi-layer perceptrons, each neural network in our model contained
three input nodes, three BFR blocks (with the ReLUs in the last blocks disabled). The
network for point estimation had one output node, and the other network for interval
estimation had two nodes. The structure of our model is shown in Figure 5.

For the sake of stabilizing the training and prediction procedure, instead of stacking
full-connection and non-linear activation layers, we proposed to stack BFR blocks, which
are made up of a batch normalization layer, a full connection layer and a ReLU activation
layer sequentially.

Batch normalization (BN) was first introduced to address Internal Covariate Shift,
a phenomenon referring to the unfavorable change of data distributions in the hidden
layers. Just like data standardization, BN forces the distribution of each hidden layer to
have exactly the same means and variances dimension-wise, which not only regularizes
the network but also accelerates the training procedure by reducing the dependence of
gradients on the scale of the parameters or of their initial values [49].

The full connection (FC) layer was connected immediately after the BN layer in order
to provide linear transformation, where we set the number of hidden neurons as 50. The

https://github.com/dingyizhe2000/Interval-HCHO-Concentration-Estimation
https://github.com/dingyizhe2000/Interval-HCHO-Concentration-Estimation
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output from the FC layer was non-linearly activated by ReLU function [49,50]. The specific
method is shown in the Supplemental materials.
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2.2.3. Loss Function

Objective functions with suitable forms are crucial for applying stochastic gradient
descent algorithms to converge while training. Though point estimation only needs to take
precision into consideration, two conflicting factors are involved in evaluating the quality
of interval estimation: higher confidence levels usually yield an interval with greater length,
and vice versa.

With respect to point estimation loss, we found that dispensing with more elaborate
forms, a l1 loss is sufficient for training rapidly:

Lpoint = E|y− ŷ|. (1)

Interval estimation loss is relatively complex compared to point estimation loss. The
QD-loss takes the confidential level and interval length into consideration simultane-
ously [37]:

Linterval = MPIW + η · {0, (1− α)− PICP} 2. (2)

On the one hand, in order to control the confidential level of the interval estimator, α
is set to indicate at most how many intervals proportionally failing to cover the true value
can be tolerated. We set multiple α′s, including 0.05, 0.10 and 0.20 in our model in order
to derive interval predictions of various confidence levels and average coverage length,
and it was verified that higher α yields shorter intervals. PICP indicates the covering rate
of intervals:

PICP = P{L < y < U} ≈ 1
n ∑n

i=1 I
{

L̂j < yi < Ûj

}
, (3)

where I
{

L̂j < yi < Ûj

}
= 1 if and only if L̂j < yi < Ûj, else it equals 0.



Remote Sens. 2021, 13, 4055 8 of 22

On the other hand, the average length of intervals subject to PICP > 1− α should be
minimized. However, intervals that fail to capture their corresponding data point should
not be encouraged to shrink further. The average interval length to penalize is therefore

MPIW =
1

∑n
i=1 I

{
L̂j < yi < Ûj

} ∑n
j=1

(
Ûj − L̂j

)
k̃ j , (4)

where k̃ j = σ
(
s ·
(
yj − L̂j

))
· σ
(
s ·
(
Ûj − yj

))
works as a continuous approximation to-

wards “hard” I
{

L̂j < yi < Ûj

}
, since the sigmoid function σ is known for providing a

differentiable alternative to discrete stepwise functions, and s = 160 is a super-parameter
for smoothness.

3. Results
3.1. Point Estimation

The point estimation model in this study showed relatively high accuracy and was
generally consistent with previous studies on the vertical distribution of HCHO. Figure 6
shows the point estimation value of in-situ concentration with the change of vertical column
density (VCD) and height when altitude at sea level is fixed. It can be seen that in-situ
concentration is negatively correlated with height and positively correlated with VCD.
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To evaluate the performance of our model, statistics including MAE and RMSE were
calculated based on the training and validation datasets, respectively. As shown in Table 1,
both MAEs and RMSEs were around 1µg/m3. As for relative bias, MAE to the average
of surface concentration: MAE

mean o f true value was 0.495997 on the training set and 0.540923

on the validation set; RMSE to the average of surface concentration: RMSE
mean o f true value was

0.390205 on the training set and 0.449029 on the validation set. Although the values seem
to be somewhat high, they are in the same order of magnitude as the uncertainty of the
TROPOMI data, which has a 40–80% bias with MAXDOS sites. In addition, this bias can be
diluted by calculating long term averages during the process of deriving health risks.

Table 1. MAE and RMSE of point estimation for surface concentration (unit: µg/m3).

Dataset. MAE RMSE

Training 1.294 1.018
Validation 1.295 1.075
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By loading the global DEM, logarithm VCD and the height (0 m at surface) into the
model, the annual average of the global surface HCHO distribution map was derived. As
shown in Figure 7, there are generally six regions where HCHO surface concentration is
high, namely the Amazon area, Southeastern U.S., Central and Western Africa, Northeast-
ern India, South East Asia, and North China, with an average concentration of more than
4 µg/m3. The seasonal change of HCHO in these key areas is discussed in Section 3.3.
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The uneven distribution of HCHO concentration on the sea and land surface is also
noticeable in Figure 7, which shows that the HCHO concentration is relatively lower and
more homogeneous on the sea surface than on the land. The statistics given in Table 2 also
confirm this. It can be seen that the annual mean of surface HCHO concentration is about
2.21 µg/m3 over the ocean and 2.77 µg/m3 over land.

Table 2. Statistics of surface HCHO concentration for sea surface, land surface and combined (unit:
µg/m3).

Standard Dev. Mean Minimum Maximum

Sea 0.414 2.12 1.49 6.22
Land 0.859 2.77 0.006 6.53

Global 0.644 2.30 0.006 6.53

Cities, as the regions with the densest population, deserve specific attention towards
their surface HCHO concentration due to its known and potential harms to people living
there. Table 3 shows the surface concentration of HCHO for some of the typical cities in
these regions, with Jakarta and Singapore, two major cities in South East Asia, ranking the
highest and the second highest with 6.18 and 5.83 µg/m3, respectively.

3.2. Interval Estimation

Besides point estimation, the model in this study also provided estimations of the
upper and lower bounds of surface concentration of HCHO, so that the uncertainty, or
variability of the surface concentration can be evaluated. In Figure 8a, the relationship
between the estimated upper bound, lower bound and the point estimation are displayed
in a 3D space. Figure 8b shows the results of cross-validation on the validation set. The
point estimation lies around the red line, in the middle of the upper bound and lower



Remote Sens. 2021, 13, 4055 10 of 22

bound (90% CI). It is worth emphasizing that the captured uncertainty, or the interval
length, delineates the variability of the data itself, not the lower trustworthiness of our
model or its estimations.

Table 3. Surface HCHO concentration in some typical cities.

City Name Surface HCHO (µg/m3) City Name Surface HCHO (µg/m3)

Jakarta, Indonesia 6.18 Beijing, China 5.23
Singapore 5.83 Patna, India 5.07

Colon, Panama 5.66 Ha Noi, Vietnam 5.06
Kuala Lumpur, Malaysia 5.61 Guangzhou, China 5.00

Dhaka, Bangladesh 5.51 Tianjin, China 4.89
Lagos, Nigeria 5.49 Manaus, Brazil 4.50

Bangkok, Thailand 5.42 Montgomery, U.S. 4.44
Shijiazhuang, China 5.38 Houston, U.S. 4.22

Ho Chi Minh City, Vietnam 5.27 Freetown, Sierra Leone 4.15
Kolkata, India 5.26 Kolwezi, R. D. Congo 3.81Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 23 
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of the height and vertical column density of HCHO when the altitude is fixed at 0 m, where CI
represents confidence level. The results in this figure were obtained by feeding the equally spaced
mock data into the two models. (b) The comparison of the models’ estimation and the real value in
the validation set. Taken logarithm and standardized to 0–1 for proper visualization.

Confidence level, together with covering length, lay the foundation for the trustworthi-
ness and precision of our interval prediction. As shown in Table 4, the interval estimation
model obtained the covering rates and the ratio of true values covered by the predicted
interval of 94.41% and 88.74%, exceeding the pre-set confidence levels of α = 0.9 and
α = 0.8, respectively.

Table 4. Statistics of interval estimation for surface concentration (unit: µg/m3).

α
Covering

Rate
Avg

Length Bound Std Mean Min Max

0.9 94.41% 4.530
U 3.528 7.112 0.00684 16.40
L 0.354 0.670 0.00193 4.273

0.8 88.74% 3.864
U 3.518 6.446 0.00972 12.35
L 0.545 0.968 0.00128 1.898

In addition, as expected in Section 2.2.3, a higher confidence level yielded a longer aver-
age interval length (Interval length = Upper Bound–Lower Bound), which was 4.530 µg /m3

for α = 0.9, 17% more than 3.864 µg /m3 for α = 0.8. Such a phenomenon can also be seen
in the statistics, shown in Table 4, for minimum, maximum and mean values of the upper
and lower bounds, respectively, for the two confidence levels.

However, the standard deviation of upper bounds seems to be larger than that of
the lower bounds under both scenarios in Table 4. From the density scatter plot between
these two, shown in Figure 9, it can be seen that that the upper bound estimation is
not deterministic, though interval estimation successfully covers the true values (and
point estimations, as discussed below) of surface concentration. Nevertheless, further
exploration of seasonal changes of HCHO in some key areas in Section 3.3 could explain
that seasonal variations of surface HCHO may contribute to the majority of the uncertainty
in interval estimation.
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Global distribution of the estimated upper and lower bounds is given in Figure 10a. It
shows that the upper and lower bounds generally share the same global pattern, though
with different magnitudes, with a range of between 3.77 and 8.83 µg/m3 for upper bounds
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and from 0.52 to 1.03 µg/m3 for lower bounds. The interval length6 of 90% confidence
interval is 4.77 µg/m3.
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As shown in Figure 10b, the upper and lower bounds share a significantly positive
relation, and a majority of predicted intervals are in the regions of 0.5~1.0 µg/m3 for lower
bounds and 5~10 µg/m3 for upper bounds. y = x aims for indicating the relative positions
of true values in the predicted intervals. In addition, the predicted intervals can essentially
cover true values.

3.3. Seasonal Changes of HCHO in Some Key Regions

To better understand the seasonal variation of surface HCHO, the distribution pattern
of four typical months of some key areas where surface concentration is relatively high
were analyzed.

America. Figure 11 shows the surface concentration in February, May, August, and
November in South America and around the Caribbean Sea. The Amazon Basin, Paraguay,
and Eastern Central America had a high HCHO surface concentration in May and August,
which is attributed to the large number of tropical rain forests and HCHO released by
biomass combustion in the dry season [51]. In addition, the southeastern coast of the
U.S. had the highest concentration in August and was almost free from HCHO pollution
in February and November, which may be because plants are more active and release
more volatile organic compounds (VOCs), particularly biogenic isoprene, during the
summer [46]. The Andes Mountains had a significantly low concentration, with a value of
less than 0.5 µg/m3.
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Africa. As shown in Figure 12, there are two regions in Africa whose HCHO surface
concentration is relatively high. One is in the south of R. D. Congo around the city of
Kolwezi, a mining center with a humid subtropical climate. The surface concentration
of HCHO here reaches its maximum in July. The other pollution belt stretches along the
Gulf of Guinea, which is famous for its rainforest climate. Oxidation of biological isoprene
released from tropical rain forest and biomass burning are the main cause of formaldehyde
pollution [52,53].
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Indo-Pacific. As shown in Figure 13, there are several regions in the Indo-Pacific
where the timing of high HCHO concentrations differ from each other; this may result from
several different reasons. First, Malaysia and the Indonesian islands, due to their large
number of tropical rain forests, have relatively high concentrations all the year round and
reach their maximum in December [54]. Second, the surface HCHO concentration of the
China-Indochina Peninsula reach their maximum in March, while the high concentration
center moves to the Gulf of Tonkin and Pearl River Delta in June. Third, the Bay of
Bengal and the coasts nearby witness a high concentration in September. Fourth, the
Beijing-Tianjin-Hebei Urban Agglomeration (BTH) has no rainforest distribution but mass
population and economic activities, which contribute to a high HCHO concentration
through most of the year [55]. The concentration there reached its maximum in 2019
around September.
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4. Discussion
4.1. Improvements and Innovativeness

It is clear that the global surface distribution of HCHO with point and interval estima-
tion is able to be obtained successfully by using neural network models like those described
above. To show the improvement of Sentinel-5P in pollutant health estimation, the point
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estimation model was applied to both Sentinel-5P VCD data and OMI VCD data for July
2019. Zooming in on the view of America, two things can be seen from the comparison.

First, Sentinel-5P is far less disturbed by noise along the satellite trail. This was
precisely the goal of the designers of Sentinel-5P before its launch [56]. The improvement
of signal-to-noise ratio in TROPOMI is well illustrated by Figure 14.
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Second, although Sentinel-5P and OMI generally give the same distribution trend,
Sentinel-5P shows an obviously higher level of HCHO. This can be attributed to the slightly
higher concentration levels in VCD data, as is shown in Figure 15. In shown area, due
to the non-linear character of the model, a 17.8% higher observed VCD level leads to a
42.2% higher level of surface HCHO estimation, which would make a huge difference to
further health risk estimation. Therefore, the high sensitivity of the model requires very
precise HCHO VCD observation. This phenomenon calls for more studies on the validation
between TROPOMI and OMI.
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The results of global surface concentration estimation for 2019 give a closer look at the
global distribution pattern of HCHO. Obviously, HCHO tends to prevail on the plain of
the continent, instead of over the oceans or in high altitude areas. According to previous
studies, this can be attributed to the scarceness of VOC sources such as chemical industry,
combustion, and rainforests, which are common precursors of the free radical reaction of
HCHO production [57–59]. By mapping the distribution of HCHO, two kinds of sources
around the world can be distinguished preliminarily. One is plant-related, including the
Amazon, South East Asia, and the Gulf of Guinea; the other is human-related, including
the North China Plain and Pearl River Delta [60,61]. More work is needed to accurately
identify the source of these HCHO-polluted areas.

In addition, we introduce here for the first time interval estimation using the neural
network model for the conversion from VCD to global surface concentration of HCHO,
increasing the credibility of the model by providing uncertainty information. This new
idea can make up for the deficiency of inexplicability of the neural network model [62],
thus being useful for the application of neural network models in the field of estimating
atmospheric pollutants or health risk in the future.



Remote Sens. 2021, 13, 4055 18 of 22

4.2. Limitations and Potential Improvements

Despite the improvements and innovativeness mentioned before, the shortage of
in-situ data hinders the further improvement of model accuracy. On one hand, the existing
HCHO in-situ concentration data is seriously insufficient in both the spatial and temporal
dimensions. Only the U.S. monitors HCHO in-situ concentration routinely, mostly in urban
areas. Even if ATom data are also adopted, in-situ concentration data in low latitude regions
and rural areas is still sparse, which may lead to estimation bias in the regions outside
urban America. On the other hand, it is also difficult to reach a better result by adding more
covariates into our model. Experiments with additional covariate inputs such as latitude
and months have failed, with degenerated or overfitting outputs. In addition, the large
gap between true values and the upper bounds from our interval estimation model may
suggest a heterogeneous in-situ concentration of HCHO distribution in different months or
seasons, since the model is required to give the interval estimations on the scale of a whole
year, rather than on a fine time scale. The seasonal changes of HCHO in some key areas, as
discussed in Section 3.3, have also demonstrated this phenomenon directly.

Good agreement shown in the validation over North America indicated the capability
of the framework of the model we designed; uncertainties will be well under-controlled
and improved once more training datasets covering other part of the world and other
time periods become available in the future as rendered by ongoing and future satellite
missions and also by increased ground-based monitoring activities. Meanwhile, with more
Sentinel-5P data accumulating over time, the model in this study can take more factors such
as latitude and seasons into consideration, which could provide more precise estimation of
global-scale health risks and economic loss based on specific regions and seasons. Besides
the significance of the health risks, the results from this study can also aid research on
the generation of photochemical pollution, the concentration of VOCs, NO2 and other
photochemical reaction-related pollutants.

4.3. Health Risk of HCHO in Major Cities

HCHO, as one of the most important carcinogens in the outdoor environment [2],
draws little attention due to the longtime lack of ground measurement of HCHO in most
countries and regions, leading to a shortage of knowledge about resulting health and
economic losses. Even if the vertical column density of HCHO is currently available and
does partially settle concerns about these issues, it is the ground level HCHO concentration
that reflects the actual amount of concentration people are exposed to.

Taking 2019 as an example, it was assumed that the HCHO concentration has always
been the same as that year. Health risks were calculated using inhalation unit risk and
population data [4,63] (the specific method is shown in the Supplementary materials).
Health risks in the main high-risk cities were calculated and are given in Table 5. It is
indicated that more than a thousand people have the potential to get cancer due to exposure
to HCHO in Jakarta, Dhaka, Bangkok, Kolkata, Beijing and Guangzhou. Jakarta has the
most potential victims of exposure, with 2593. Jakarta, Singapore, Kuala Lumpur, Dhaka
and Lagos are the cities with the highest prevalence of exposure, with 80.34, 75.79, 72.93,
71.63, and 71.37 potential cancer patients per million, respectively. The main cities with
high health risks are concentrated in Southeast Asia, which has been previously neglected
by academia but which may become the next hotspot for research into HCHO pollution
and the attendant health risk.
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Table 5. Potential number of cancer cases in typical cities if HCHO surface concentration remains at
2019 levels.

City Name Patients per Million Population Number of Cases

Jakarta, Indonesia 80.34 32,275,000 2593
Singapore 75.79 5,930,000 449

Kuala Lumpur, Malaysia 72.93 7,820,000 570
Dhaka, Bangladesh 71.63 17,425,000 1248

Lagos, Nigeria 71.37 13,910,000 993
Bangkok, Thailand 70.46 15,975,000 1126

Shijiazhuang, China 69.94 3,765,000 263
Ho Chi Minh City, Vietnam 68.51 10,690,000 732

Kolkata, India 68.38 15,095,000 1032
Beijing, China 67.99 21,250,000 1445
Patna, India 65.91 2,320,000 153

Ha Noi, Vietnam 65.78 8,140,000 535
Guangzhou, China 65.00 19,965,000 1298

Tianjin, China 63.57 13,655,000 868
Manaus, Brazil 58.50 2,020,000 118
Houston, U.S. 54.86 6,285,000 345

Freetown, Sierra Leone 53.95 1,755,000 95
Kolwezi, R. D. Congo 49.53 515,000 26

5. Conclusions

With the benefit of a quality-driven interval estimation algorithm designed for neural
networks, we were able to derive confidence intervals and a precise point estimation of 2019
global surface HCHO at different confidence levels, even with a limited amount of data.
By mapping the HCHO surface concentration distribution, we found that Southeast Asia,
North China, Central and Western Africa, and the rainforest area of Latin America have
relatively more serious HCHO pollution than other regions. Major cities in these regions,
such as Bangkok, Beijing, Guangzhou and Singapore, have an annual concentration over
5.00 µg/m3. The health effects from such high levels of HCHO pollution deserve more
attention from academia and governments.

Our work paves the way for research on formaldehyde-related cancers and provides
guidance for policymaking and insurance pricing. To the best of our knowledge, we are
the first to map the global distribution of HCHO and provide insights on its potential
health risks. With more HCHO VCD data from Sentinel-5P accumulating, the surface
concentration of HCHO dataset covering a longer period of time will be generated, which
will aid in better assessment of the global risk distribution of formaldehyde-related cancers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/rs13204055/s1, Figure S1. (a) Distribution of vertical column density (mmol/sq·m); (b) Distribution
of log (vertical column density); (c) Distribution of log (in-situ concentration); (d) Distribution of in-situ
concentration (µg/cum·m), Method 1. Health Risk, Method 2. Neural Network Architecture.
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//www.epa.gov/outdoor-air-quality-data (accessed on 21 June 2021) for HAPs ground in-situ
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