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Abstract: With the acceleration of urbanization, increasing water pollution means that monitoring
and evaluating urban water quality are of great importance. Although highly accurate, traditional
evaluation methods are time consuming, laborious, and vastly insufficient in terms of the continuity
of spatiotemporal coverage. In this study, a water quality assessment method based on remote
sensing reflectance optical classification and the traditional grading principle is proposed. In this
method, an optical water type (OWT) library was first constructed using the measured in situ remote
sensing reflectance dataset based on fuzzy clustering technology. Then, comprehensive scoring rules
were established by combining OWTs and 12 water quality parameters, and water quality was graded
into different urban water quality levels (UWQLs) based on the scoring results. Using the proposed
method, the relative water quality of urban waterbodies was qualitatively evaluated at the macro
level based on images from the multispectral imager of Sentinel-2. In addition, there was a significant
positive correlation between the UWQLs and the water quality index (WQI). These results indicate
the potential of this method for quantitative assessment of urban water quality, providing a new way
to evaluate water quality using remote sensing algorithms in the future.

Keywords: urban water quality assessment; optical water types; urban water quality levels; Sentinel-2 MSI

1. Introduction

Urban waterbodies include rivers, ponds, lakes, and reservoirs, which have important
functions in society, such as drinking water supply, flood control and drainage, tourist land-
scapes, and ecological corridors [1]. With the acceleration of urbanization, pollutants such
as nitrogen, phosphorus, harmful organic substances, heavy metals, and microorganisms
produced by urban activities are discharged into the water environment and can exceed
water quality standards. In this case, such pollutants cause the deterioration of water qual-
ity, ultimately seriously damaging waterbody functioning [2,3]. Water quality evaluation is
the premise for environmental supervision departments to control water pollution [4,5].
Therefore, it is critical to obtain exhaustive water quality evaluation information efficiently
and accurately.

In urban water quality assessment research, there are two main types of traditional
evaluation methods: (1) On the premise of continuously collecting water quality parame-
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ters, single or multiple parameters of an urban water area are directly or indirectly analyzed
and evaluated. For example, by appraising the trend of variation in total suspended matter
(TSM) [5], dissolved oxygen (DO) [2,6], pH [6,7], and so on, the water quality status of
some urban rivers/lakes affected by urbanization in some developing countries have
been studied [8,9]. (2) Water quality grade indices are constructed using the single-factor
assessment method and water quality index (WQI) [10,11]. For example, [12] studied
the variation tendency of surface water quality in China from 2003 to 2017 by referring
to the National Surface Water Environmental Quality Standards (GB 2002-3838). These
standards divide surface water quality into classes I, II, III, IV, and V (good to bad) based on
24 water quality parameters and the single-factor assessment method [13,14]. In addition,
based on water quality monitoring data (2014–2016) from the Huangbaihe River basin, [13]
classified the water quality of urban rivers by combining GB 2002-3838 and the WQI, which
is a dimensionless number calculated by combining multiple water quality parameters.
Although these traditional methods are simple and authentic, they rely on a large number
of onsite samples and are time consuming and labor intensive [15]. Moreover, the spatial
scale of the evaluation results is relatively small and the spatial–temporal continuity is low;
thus, it is difficult to fully meet the needs of environmental supervision departments.

Remote sensing is an emerging technology that was developed in the early 1960s, and
has the advantages of a wide range, long timeseries, and low cost [16]. Owing to these
advantages, remote sensing has been widely applied to urban water quality assessment.
Water quality parameters such as chlorophyll-a (Chla) [17,18], total suspended matter [19],
colored dissolved organic matter (CDOM) [19], and transparency (SD) [18] have been
retrieved from the remote sensing images of water areas significantly affected by urban
activities, and the mapping results have been used in dynamic monitoring and the evalua-
tion of water quality [15,20]. It is worth noting that only the water quality parameters with
optical signals can be precisely retrieved by remote sensing. However, water pollution is
often the consequence of comprehensive changes in multiple water quality indicators, and
it is impossible to fully reflect the water quality status based on one indicator or several in-
dicators. Fortunately, changes in water quality eventually cause changes in the water color
indicators of remote sensing images. Therefore, some scholars have conducted research on
using water optical classification to retrieve water quality parameters and perform water
quality assessments [21–27].

Water optical classification aims to classify natural waters according to their optical
properties, and the most common classification method is clustering technology [23]. The
optical water types (OWTs) obtained by remote sensing reflectance clustering can not only
represent the optical diversity of water [28], but also reflect the variation in underwater
biogeochemistry [29]. In addition, OWTs are also directly used for the interpretation
and analysis of ecological diversity and patterns in the study of ocean and inland lake
water [30]. This shows the potential of OWTs to distinguish water quality differences
in wide-ranging water areas. In urban water quality research, OWTs have been used to
identify and classify black-odorous water in urban areas. For instance, [26] applied a
CIE (Commission Internationale de L’Eclairage) color purity algorithm to identify black-
odorous water in urban rivers using multispectral remote sensing images. However, it is
insufficient to divide urban water into ordinary water and black-odorous water. Further
subdivision and comparative evaluation of urban water quality is important for urban
water management and protection. Therefore, the purpose of this study is to: (1) construct
a comprehensive assessment method for urban water quality based on remote sensing
reflectance optical classification and the traditional water quality grading principle; and
(2) apply this method to satellite images acquired by the multispectral imager (MSI) sensor
on the Sentinel-2 platform of the European Space Agency to explore its capability.
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2. Materials and Methods
2.1. Study Area

Nanjing, Yangzhou, Changzhou, Changsha, and Wuxi in China were selected as the
study areas (Figure 1). These cities are all located in the Yangtze River basin, covering
abundant waterbody types. Among them, Nanjing (118◦22′–119◦14′E, 31◦14′–32◦37′N) is
an important gateway city with a population density of 1290 per km2 in the Yangtze River
Delta Economic Belt of China and covers an area of 971.62 km2. There are hundreds of
waterbodies of different sizes in Nanjing, including the Yangtze River, Qinhuai River, Chu
River, and Gucheng Lake [31]. The main city zone is traversed by the main stream of the
Yangtze River, and some river reaches in the built-up area are relatively turbid because
of large sediment inputs. Yangzhou (119◦01′–119◦54′E, 32◦15′–33◦25′N) covers an area
of 148.96 km2 at the intersection of the Yangtze River and the Beijing–Hangzhou Grand
Canal with a population density of 694 per km2, and is characterized by a dense water
network. Changzhou (119◦08′–120◦12′E, 31◦09′–32◦04′N) and Wuxi (119◦31′–120◦36′E,
31◦07′–32◦02′N) are central cities in the Yangtze River Delta region of China. Changzhou
has a relatively high population density (881 per km2) and an urban development area
of 261.2 km2. It is a typical water-scarce city characterized by extensive water pollution
despite its abundant water resources (total surface water volume of 6.062 × 109 m3) [32].
Wuxi is located at the northeastern corner of Taihu Lake with a population density of
1671 per km2, which is an industrial hub that accommodates thousands of factories. Rivers
in Wuxi mainly flow into Lake Taihu, thus directly affecting the water quality of the lake [33].
Changsha (111◦53′–114◦5′E, 27◦51′–28◦40′N) is located in the northeastern part of Hunan
Province, and is an important central city in the middle reaches of the Yangtze River, with
an urbanized area of 374.64 km2 and a population density of 617 per km2. Changsha is also
known as the “Xiangliu Basin,” and the Liuyang, Laodao, and Meixi rivers from different
origins are injected into the Xiangjiang River in the urban area, which flows through
the middle of the city into Dongting Lake [34]. In summary, these cities have various
types of water types that exhibit different water quality characteristics corresponding to
their geographical environments and urban industrial structures. In addition, changes
in terrain characteristics (such as the degree of flatness in each urban surface), climatic
conditions (e.g., precipitation, sunshine and so on), and human activities of each city have
also led to variations in the density of the water network and water volume. Therefore,
the water quality assessment method based on the observation data of these cities has
wide applicability.

2.2. In Situ Data Collection

From 2014 to 2019, 463 water samples were collected from the study area, and the re-
mote sensing reflection (Rrs) and water quality parameters were measured simultaneously.

2.2.1. Determination of Remote Sensing Reflection

An ASD FieldSpec spectroradiometer (ASD Inc., Boulder, CO, USA) was used to
measure the in situ Rrs. The sensor had 512 channels over a spectral range of 350–1050 nm.
The collected spectra with a spectral resolution of 1.5 nm were interpolated into a 1 nm
scale. In accordance with the Ocean Optics Protocols [35], the above-water measurement
method was used to measure the radiance spectra of the reference panel, water, and sky,
respectively. Ten spectra were collected at each site. The abnormal spectra were eliminated,
while the valid spectra were retained and averaged. Finally, Rrs(λ) was derived using
Equation (1) [36]:

Rrs(λ) =
(

Lt − r × Lsky

)
/
(

Lp × π/ρp

)
(1)

where Lt is the measured total radiance of the water surface; r denotes skylight reflectance
at the air–water surface, and its value is affected by water surface roughness caused by
wind speed (2.2% for calm weather; 2.5% for a wind speed of <5 m/s; 2.6–2.8% for a wind
speed of ~10 m/s); Lsky is the measured radiance from the sky; LP is the measured radiance
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of the gray reference panel (SG-3183, SphereOptics GmbH of Germany); and ρp is the
reflectance of the gray diffuse panel (30%).

Figure 1. Locations and distributions of sampling points in (a) Nanjing, (b) Yangzhou, (c) Changzhou, (d) Changsha, and
(e) Wuxi.

2.2.2. Measurement of Water Quality Parameters

Water quality parameters were measured at the sampling site and in the laboratory.
Some water quality parameters such as the DO concentration (DO meter, YSI-550A-12),
oxidation–reduction potential (ORP, ORP meter, CT8022), and SD (Secchi disk, SD20), pH
(PH meter, SX-620) were measured at the sampling site [9,37]. At the same time, water
samples were collected using Niskin bottles from a 10 cm water depth at each sampling site.
Samples were then frozen at−20 ◦C and transported to the laboratory [38]. Then, the water
quality parameters, including the Chla concentration, TSM concentration, total nitrogen
(TN) concentration, ammonia nitrogen (NH4-N) concentration, total phosphorus (TP)
concentration, sulfide concentration, dissolved organic carbon (DOC) concentration, and
absorption coefficient of CDOM (aCDOM(λ)), were measured in the laboratory. Among them,
Chla, TN, NH4-N, TP, and aCDOM(λ), were analyzed by SHIMADZU UV spectrophotometer
(UV-3600Plus), and the analysis methods were hot ethanol extraction [39], digital titrimetric,
nesslerization [40], molybdenum blue [41], and the filtration twice method [42], respectively.
TSM and DOC were analyzed through gravimetric and combust method [43,44], and the
equipment used was a temperature-controlled oven (SXL-1016) and SHIMADZU TOC-L
analyzer, respectively. Sulfide was acquired through a sulfide tester (LHW-1A) [9]. Before
the measured water quality data were included in the dataset, their quality was checked,
and finally a total of 463 sets of water quality parameter data were used in this study
(Table 1).
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Table 1. Values of 12 water quality parameters in the in-suit dataset.

Parameters SD PH DO ORP Chla TSM TN NH4-N TP Sulfide DOC aCDOM(440)

MEAN
± S.D.

0.39 ±
0.19

7.72 ±
0.70

5.06 ±
4.17

15.34 ±
105.54

77.02 ±
101.27

35.61 ±
35.68

6.56 ±
6.39

4.70 ±
5.85

0.68 ±
0.74

0.54 ±
0.54

5.61 ±
2.81 1.43 ± 0.93

MIN 0.01 5.50 0.09 −320.00 0.02 3.00 0.37 0.02 0.03 0.003 1.85 0.17
MAX 1.21 10.10 23.89 235.00 660.09 337.00 37.21 48.5 5.53 6.27 23.98 8.00

2.3. Sentinel-2 MSI Data Acquisition and Preprocessing

Level-1C (L1C) MSI data from the Nanjing built-up area on 19 July 2017, were down-
loaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/) to apply
the water quality assessment method [45]. Considering the spectral and spatial resolutions
for urban water monitoring, bands with spatial resolutions of 10 m and 20 m were used in
this study [46]. To maintain the resolution consistency, images with a spatial resolution of
20 m were resampled to 10 m.

The Sen2Cor processor was used to perform atmospheric correction on the images to
obtain the Level-2A Bottom of Atmosphere reflectance product (derived from the associated
L1C data). The performance of Sen2Cor was evaluated by comparing the Sentinel-2 MSI
and synchronized field-measured Rrs values. Figure 2 shows the Rrs distribution of the
in situ observations and atmospheric correction values of 34 synchronized samples. The
scattered points were fitted with a 1:1 line. The mean absolute percentage error (MAPE)
was <26% and the root mean square error (RMSE) was <0.0056 sr−1, suggesting that the
Sen2Cor processor can be used in the study region [23].

Figure 2. Performance of the Sen2Cor processor based on Sentinel-2 MSI.

2.4. Urban Water Quality Assessment Method Based on Optical Classification

This study proposes an urban water quality assessment method based on combining
optical classification and water quality scoring rules. Using this method, the water quality
assessment procedure can be divided into three parts: first, an OWT library was constructed
using the Rrs dataset measured in situ; second, comprehensive scoring rules were estab-
lished by combining OWTs and water quality parameters; and finally, the water quality
was graded into urban water quality levels (UWQLs) based on the comprehensive scores.

2.4.1. Construction of the OWT Library

Clustering analysis can classify objects with similar attributes into the same type and
has been successfully used in case I or II water classification studies. In [47] was proposed
a fuzzy clustering algorithm (FCMm) by improving the fuzzy c-means algorithm. Using
this method, the fuzzy parameters can be adaptively calculated in accordance with the

https://scihub.copernicus.eu/


Remote Sens. 2021, 13, 4047 6 of 20

output dataset to further improve the clustering effect. Therefore, the urban OWT library
was constructed using the FCMm algorithm based on the Rrs measured in situ.

To highlight the spectral shape characteristics and eliminate the differences caused by
the different observation times and locations [48], the measured Rrs was first normalized
(Equation (2)).

NRrs(λ) =
Rrs(λ)∫ 900

400 Rrs(λ)dλ
(2)

where λ is the wavelength and NRrs(λ) is the integral-normalized Rrs(λ) (dimensionless).
The integral-normalized Rrs of the original spectra were used as the input of the

FCMm algorithm to obtain the OWTs. Additionally, the trial and error method was used
to determine the appropriate clustering number K [49], and K was finally determined
by a comprehensive analysis of the indicators of training effectiveness (partition entropy,
partition coefficient, modified partition coefficient, and fuzzy silhouette index).

2.4.2. Establishment of the Comprehensive Scoring Rules of Urban Water Quality

In general, OWTs, which were generated according to the spectral characteristics of
Rrs, could reflect the water quality information. However, it is not clear which type of
OWT represents better water quality and which type represents worse water quality. To
use OWTs to evaluate water quality directly, we tried to establish the relationship between
OWTs and water quality indicators monitored by conventional methods [9]. Therefore,
12 water quality parameters were selected to verify the effect of OWTs on water quality.
The selection of parameters was based on the following aspects: nutritional status (Chla,
TN, TP, and pH), turbidity (as TSM), black-odorous degree (DOC, NH4-N, SD, ORP, and
Sulfide), and others (DOC and aCDOM(440)).

To evaluate the water quality of the different OWTs, a grading scheme was developed
based on the above 12 water quality parameters. The specific steps were as follows: (1) The
25% trimmed mean (hereafter trimmed mean) of each water quality variable of each
OWT was calculated to represent the content of the water quality parameters in each
OWT. (2) The trimmed means of different OWTs were sorted, in which the values of nine
parameters (Chla, TN, TP, pH, TSM, NH4-N, sulfide, aCDOM(440), and DOC) were sorted
from large to small, while the values of CDO, SD, and ORP were sorted from small to large.
Then, the series of 12 sorted values were scored in ascending order from 1 to n, where n is
the number of OWT types. Therefore, 12 series of sub-scores of 12 water quality parameters
were obtained. (3) The total scores of each OWT were calculated by summing the scores of
all parameters in the specific OWT type. (4) The total scores of each OWT were then sorted
in descending order. The higher the score, the better the water quality. For the convenience
of expression, the water quality was named UWQL*. For example, if a certain OWT had
the highest score, its water quality level was expressed as UQWL1.

3. Results and Analysis
3.1. Optical Water Types of Urban Waterbodies
3.1.1. OWTs Classified by Rrs Measured In Situ

The results show that eight OWTs could be obtained by FCMm clustering technology
combined with the evaluation of trial and error. That is, the OWT library included eight
types of OWTs, namely OWT1–OWT8. Among them, OWT4 contained the most samples,
followed by OWT2 and OWT6, collectively accounting for 58% of the total samples. OWT1,
OWT3, and OWT5 contained almost the same number of samples, while OWT7 and
OWT8 had the least number of samples and collectively accounted for just 6% of the total
samples. Figure 3 shows the Rrs spectra of the OWTs. The mean Rrs values of the OWTs
showed different magnitudes and spectral characteristics. Although all Rrs values had
reflection peaks around 550 nm, 650 nm, 700 nm, and 800 nm, the degrees of steepness
were quite different for each OWT. The common feature of OWT1, OWT2, and OWT4 in
the visible band was that their reflection peaks at 550 nm were higher than those at 650 nm,
700 nm, and 800 nm, and that the spectral magnitudes in the near-infrared band were
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relatively small. The peak at 550 nm could be attributed to the weak absorption of Chla
and carotene, and the enhancement of particle scattering caused by biological sources (e.g.,
phytoplankton) and non-biological sources (e.g., sediments) [50,51]. The mean Rrs spectra
of OWT3 in the visible band were smooth and the magnitude was approximately twice that
of other OWTs. This was because the scattering associated with sediment is very strong
and masks the spectral fluctuations caused by the absorption of water components [47].
In contrast, the reflection peak of OWT5 was obvious in the visible band. Its reflection
peak near 700 nm was the steepest among all OWTs, which was caused by the combined
effect of fluorescence from algae and high backscattering in the red and near-infrared
regions of the spectrum associated with high algal particle concentrations [52–54]. OWT6
and OWT7 fluctuated relatively smoothly in the range of 400–900 nm, although the peak–
trough characteristics in the spectrum of OWT7 were somewhat similar to those of OWT5.
OWT8 had similar characteristics to all OWTs in the visible light band, but maintained
an upward trend in the near-infrared range, which differed to the normal Rrs spectrum of
water. Combined with information from the sampling site photographs, it was found that
the surface conditions of OWT8 were vastly complex, with duckweed coverage or aquatic
vegetation growth on the water surface. Therefore, the near-infrared spectral uplift reflects
the spectral characteristics of green plants.

Figure 3. Spectral curves of each OWT (a–h). The thin blue curves are Rrs measured in situ and the red bold curves are the
mean Rrs of each OWT.

3.1.2. OWTs in the Urban Built-Up Area of Nanjing Based on Sentinel-2 MSI Images

Compared with the traditional multispectral images, MSI added a blue light band and
several red edge bands, making the spectral curve closer to the spectral characteristics of
the ground observation results. However, the above classification method is still applicable
to MSI data. To explore this, the field-measured integral-normalized Rrs values were
simulated to MSI-based derived Rrs using the spectral response function (SRF), according
to Equation (3) [43]:

Rrs(bi) =

∫ λn
λm

SRF(λ) × Rrs_meas(λ)dλ∫ λn
λm

SRF(λ)dλ
(3)

where Rrs(b i) denotes the simulated Rrs
(
sr−1) for the i-th band of MSI, with integration

from λm to λn for the i-th band.
Then, the standard spectra curves of the cluster centers of each OWT were calculated

(Figure 4a). The results show that the simulated MSI spectrum not only retained the optical
shape features of each OWT, but also retained the amplitude characteristics; therefore, MSI
data can be used for OWT classification [55].
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Figure 4. Standardized spectral curves of OWTs based on the Sentinel-2 MSI spectral channel (a). The distribution of OWTs
in the built-up area of Nanjing on 19 July 2017, based on a Sentinel-2 MSI image (b).

Taking Nanjing as a case study area, the FCMm method was applied to the MSI image
on 19 July 2017, to obtain the OWTs of Nanjing. To gauge the precision of the classification
results of the Sentinel-2 MSI image, 34 synchronized samples were used to calculate the
recognition accuracy (RA), using Equation (4) [26]:

RA =
Ncorrect identification

Nsum
(4)

where Ncorrect identification represents the number of samples that are consistent with
the ground truth classification results, and Nsum is the total number.

The results show that the RA reached 85%. In addition, all eight OWTs were obtained
for the built-up area of Nanjing (Figure 4b). Among them, OWT3 and OWT4 were the
most widely distributed waterbodies and were mainly associated with lakes of different
sizes or river reaches adjacent to the Yangtze River. OWT1, OWT2, OWT5, OWT6, OWT7,
and OWT8 were scattered in some small waterbodies, such as narrow rivers. The spatial
differences in the OWTs in the built-up area of Nanjing indicate that the water in this area
has extremely complex optical characteristics.

3.2. Urban Water Quality Grading Evaluation Based on OWTs
3.2.1. Grading Evaluation of OWTs Using the Comprehensive Scoring Rules Based on
In Situ Data

To compare and evaluate the water quality difference of the eight OWTs, the scoring
rules suggested in Section 2.4.2 were used to grade the OWTs. Because OWT8 was covered
by duckweed or vegetation, it was excluded from the scoring sequence and renamed as an
UWQL mask (UWQLM). The scoring results show that the total scores ranged from 66 to
27 (Table 2). The scores of OWT1 and OWT2 were the same; hence, these two OWTs were
combined into one UWQL. Finally, the water quality (from better to worse) of the OWTs
was UWQL1 > UWQL2 > UWQL3 > UWQL4 > UWQL5 > UWQL6, according to the score
values. The large score gap of each UWQL indicates strong separability between the OWTs.

Table 2. Water quality grading results of the OWTs.

OWTs OWT1 OWT2 OWT3 OWT4 OWT5 OWT6 OWT7 OWT8

SCORE 66 66 58 48 38 33 27 -
UWQLs UWQL1 UWQL1 UWQL2 UWQL3 UWQL4 UWQL5 UWQL6 UWQLM
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In addition, the boxplots of water quality indicators were analyzed to further un-
derstand the water quality characteristics of the UWQLs (Figure 5). The mean Chla
(37.55 mg/m3) and TSM concentrations (22.71 mg/L) of UWQL1 were relatively low,
and the mean SD value was the highest (0.47 m) of all UWQLs. The Chla concentration
(17.71 mg/m3) of UWQL2 was generally very low, while the mean of the TSM concen-
tration (54.14 mg/L) was the highest with low mean water transparency (0.31m). Hence,
this water contained a large amount of sediment and was quite turbid. In addition, the
mean sulfide concentration reached the level IV class according to environmental quality
standards for surface water in China (GB 3838-2002) [14], which may have been due to
the contribution of sulfate minerals in the sediment [56]. UWQL4 had relatively high
mean Chla (207.8 mg/m3) and DO concentrations (7.98 mg/L), which reached the levels
of class I (GB 3838-2002). The strong photosynthesis caused by abundant phytoplankton
increased the oxygen content in this type of waterbody [57]. Additionally, the nutrients
were extremely high in UWQL5 and UWQL6 waters, while the DO content and ORP
were both low. The mean TN and TP concentrations reached the standards of class V, and
the mean DO concentration reached class IV. Therefore, these two types of water may be
accompanied by black-odorous phenomena, which could be due to the serious impact of
urban activities [9]. Overall, the variations in the water quality indicators revealed different
features of each UWQL.

Figure 5. Boxplots for Chla, TN, TP, TSM, NH4-N, sulfide, DOC concentration, pH, SD, DO concen-
tration, ORP, and aCDOM(440) across six UWQLs (a–l).

3.2.2. Spatial Distribution of Water Quality Types in the Built-Up Area of Nanjing Using
MSI Images

By classifying each of the OWT acquired from the MSI image into UWQLs according
to Table 2, the spatial distribution of UWQLs in Nanjing on 19 July 2017, was obtained.
As shown in Figure 6, UWQL2 and UWQL3 collectively covered an area of 11.27 km2,
accounting for 88.07% of the total area. These were the most widely distributed waterbodies
among all water quality types. In contrast, UWQL1, UWQL5, and UWQLM collectively
covered just 0.35 km2, accounting for the smallest proportions of the total area (1.41%,
0.65%, 0.69%, respectively). UWQL1 was distributed in ornamental ponds, lakes, and some
wide rivers in residential areas. UWQL2 was mainly distributed in the Jiajiang and Qinhuai
river sections that are connected to the Yangtze River. UWQL3 was widely distributed in
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rivers, lakes, and ponds in built-up areas. UWQL4 was distributed in some sections of the
Qinhuai New River, artificial breeding ponds, and the sections of some lakes. The common
feature of UWQL5 and UWQL6 was that they mainly corresponded small rivers and ponds.
Better water quality was mainly associated with waterbodies that are managed regularly;
for example, those adjacent to the Yangtze River with strong flow conditions, or some large
ornamental lakes. In addition, high-nutrient water containing a large amount of algae was
mainly distributed in rivers with weak flow conditions and some artificial breeding ponds.
Poor water quality, which may be accompanied by black-odorous phenomena, was mainly
associated with small waterbodies near dense residential areas or polluting factories.

Figure 6. Results of urban water quality levels based on Sentinel-2 MSI of the built-up area of Nanjing on 19 July 2017.
UWQL1–UWQL6: the six typical water areas of UWQLs.

To explore the rationality of the evaluation results, six typical water areas (Figure 6)
were selected to analyze the formation causes of their water qualities based on the sur-
rounding environmental factors and site photographs (Figure 7).

Figure 7 displays photographs of typical water areas of the UWQLs. An ornamental
pond in the Yangtze River community was a typical water area of UWQL1 (Figure 7a).
Because this waterbody is managed all year round and is unaffected by external pollution,
the water is relatively clean and clear with a sky-blue color. A typical water area of UWQL2
(Figure 7b) was located in a section of the Jiajiang River. As a tributary of the Yangtze River,
this water type often appears turbid yellow because it receives a large amount of sediment
from the Yangtze River [58]. A typical water area of UWQL3 (Figure 7c) was Xuanwu Lake,
which is located in the center of the urban built-up area. Compared with UWQL2, the
water quality of UWQL3 was worse and the color was dark blue). A typical water area of
UWQL4 (Figure 7d) was a breeding pond in Xixia Village. Due to the need for aquaculture,
a large amount of feed is added to the pond, and the excess nutrients promote algal growth,
causing water quality deterioration and an emerald-green color. A typical water area of
UWQL5 (Figure 7e) was a large pond at the junction of the Qinhuai River and Qinhuai
New River, which is surrounded by a large number of residential and commercial areas.
Due to the discharge of domestic sewage, a large amount of organic pollutants flow into
the pond and consume DO, causing water hypoxia. Anaerobic microorganisms multiply
and decompose organic matter, producing black and odor-causing substances [27] and a
gray color. A typical water area of UWQL6 (Figure 7f) was the middle section of the South
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River, where there are many factories (e.g., textile, lathe, and cigarette factories) and dense
residential areas on both sides of the river bank. Affected by the discharge of industrial
wastewater and residential sewage, the water contains a lot of pollutants and the aquatic
environment is seriously damaged, resulting in a yellow-green color [57].

Figure 7. Field photographs of six typical water areas for (a) UWQL1; (b) UWQL2; (c) UWQL3; (d) UWQL4; (e) UWQL5;
(f) UWQL6.

In summary, the water quality assessment results of the built-up area in Nanjing
agreed with the ground investigations, indicating that the proposed method can effectively
reflect the difference in urban water quality.

4. Discussion
4.1. Influence of the Concerned Water Quality Parameters on Rrs

In this study, 12 water quality parameters were used in the grading evaluation method
because they directly or indirectly affected the absolute value and morphological charac-
teristics of Rrs. Therefore, the influence mechanism of the water quality parameters on
Rrs is the basis of using OWTs to evaluate urban water quality, and their influence on Rrs is
analyzed as follows.

Chla, TSM, and CDOM are the most typical optically active substances in waterbodies.
They absorb photons and cause light energy to be attenuated in water. Their upward
scattering to the photons forms an upward radiance, which passes through the water
surface to produce remote sensing optical signals [59]. However, in extremely complex
urban water, they also have a significant impact on Rrs. As shown in Figure 8, when the
Chla concentration increased significantly, the peak value of Rrs around 550 nm and 720 nm
increased significantly because of the scattering effect of algae cells and the enhancement
of their fluorescence effect (Figure 8a). In addition, the backscattering effect of suspended
matter increased with the increase in the TSM concentration, leading to a gradual increase
in Rrs at 400–900 nm (Figure 8b). With an increase in aCDOM(440), the Rrs value of the
short-wavelength band exhibited a gradual downward trend because of the extremely
pronounced absorption of CDOM (Figure 8c). Therefore, the obvious difference in all
target components led to a significant change in Rrs, indicating that all target components
markedly affected the spectral characteristics of the urban waterbodies in this study.



Remote Sens. 2021, 13, 4047 12 of 20

Figure 8. Rrs values of the Chla concentration (CH, mg/m3), TSM concentration (TS, mg/L), and aCDOM(440) (CD, m−1)
in different ranges. The typical Rrs spectra of OWT5: a1 (OWT5, Wuxi), a2 (OWT5, Wuxi), and a3 (OWT5, Wuxi) (a). The
typical Rrs spectra of OWT2: b1 (OWT3, Wuxi), b2 (OWT2, Nanjing), and b3 (OWT3, Changzhou) (b). The typical Rrs

spectra of OWT6: c1 (OWT6, Wuxi), c2 (OWT6, Wuxi), and c3 (OWT6, Wuxi) (c).

Next, the Pearson correlation coefficient matrix (Figure 9a) between water quality pa-
rameters (Pearson correlation coefficient is abbreviated as r) further elaborates the influence
mechanism of TN, TP, PH, and DOC on Rrs. Nitrogen and phosphorus are the two basic
elements that support the survival of aquatic organisms [60]. Hence, although TN and TP
have weak optical characteristics, they affect the composition and concentration of pigment
and CDOM of water by affecting the growth of phytoplankton or aquatic plants, and then
affect the Rrs of the water surface [61,62]. In the dataset of this study, the r of TN versus
aCDOM (440) reached 0.47 (p < 0.001), which partially verified the above view. In addition,
pH is the main factor affecting the sediment release of phosphorus. A pH that is too high
or too low can promote the release of different forms of phosphorus [63]. Furthermore,
DOC not only affects multiple processes such as the aquatic system metabolism, nutrient
absorption, and activities of phytoplankton [64], but is also one of the main sources of
CDOM. The DOC concentration exhibited a strong linear correlation with aCDOM (440), with
a r of 0.76 (p < 0.001), indicating the important connection between them (Figure 9a).

Figure 9. Pearson correlation coefficient matrix between 12 water quality parameters, only showing the Pearson correlation
coefficient when p < 0.05 (a), and typical Rrs values of black-odorous water and ordinary water (b). OR: ORP (mV); DO: DO
concentration (mg/L); SD: SD (m); NH: NH4-N (mg/L).

Previous studies have indicated that DO, NH4-N, SD, ORP, and sulfide are the main
substances that make water black and odorous [26,65]. When the ORP and DO concen-
tration are too low, severe hypoxia can occur, indicating that the organic matter content
is too high. A high NH4-N concentration implies the overnutrition of a waterbody and
gives off a peculiar smell. In addition, due to the negative charge of the colloidal particles
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in water, FeS and MnS are adsorbed onto suspended particles, resulting in a black water
color [26]. The black-odorous phenomenon reduces the clarity of water, resulting in a
decrease in SD. Thus, SD is often lower in black-odorous water, which makes the Rrs of the
water surface lower than that of ordinary water [20,66]. Studies have found a distinctive
difference between the Rrs values of urban black-odorous water and ordinary water [26].
Figure 9b shows the typical Rrs values of black-odorous water and ordinary water in urban
areas. Here, the black-odorous phenomenon was determined using the concentration of
DO, NH4-N, SD, and ORP according to the guidelines issued by the Ministry of Housing
and Urban–Rural Development of China [67]. As expected, the three typical Rrs spectra of
black-odorous water were significantly lower and smoother than those of ordinary water.

In summary, among all the water quality parameters selected in this study, Chla, TSM,
CDOM, and SD directly affected the optical characteristics of the studied waterbodies,
whereas TN, TP, pH, DOC, ORP, DO, sulfide, and NH4-N indirectly influenced the optical
characteristics by affecting optically sensitive substances. These results provide good
theoretical support for the comprehensive assessment of urban water quality based on
optical classification.

4.2. Relationship between UWQLs and the WQI

Previous studies have proposed methods to quantitatively evaluate water quality,
of which, the most widely used is the WQI. The WQI is a dimensionless value (0–100)
according to a weighted sum calculation based on multiple water quality parameters and
pre-designed weightings of an in situ water sample [68,69], whereby better water quality
is indicated by a higher WQI value. This study examined the relationship between the
UWQL and WQI to explore the rationality of the UWQL and its potential to quantitatively
assess urban water quality. The mean WQI values of different UWQLs were analyzed.
The results shown in Figure 10 indicate that the scores of the UWQLs and mean WQI
values displayed an increasing linear trend, indicating that the corresponding water quality
evaluation results are consistent and that the qualitative evaluation results of the UWQLs
are reliable. Second, the scores of the UWQLs and mean WQI values exhibited a strong
functional relationship (R2 = 0.83; p < 0.05), which implies that there is a certain conversion
relationship between the UWQL and WQI. This indicates that the UWQL method is likely
to provide a quantitative assessment of urban water quality through further research.

Figure 10. Scatter plot of the mean WQI values versus the scores of the UWQLs.

4.3. Effectiveness of the Data Processing Methods

In this study, to improve the availability and stability of the water quality evaluation
method, two data processing techniques were used.

(1) The normalization method is used to reduce the uncertainty of clustering from
two aspects. On the one hand, owing to differences in sampling times and locations, solar
radiation varies in angular position [70]. The normalization method can eliminate this part
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of the spectral difference to a certain extent, thereby reducing the error introduced in the
clustering process and increasing the stability of the clustering results. On the other hand,
the normalization method can highlight the spectral shape differences between sample
points. Figure 11a presents two curves for OWT3, OWT5, and OWT6, in which the original
spectral shape features were not obvious. That will lead to a poor classification effect. From
the original spectra, most Rrs characteristics were not obvious, except for OWT3-1 and
OWT5-1. However, after normalization, the shape characteristics were highlighted, and the
spectra from the same OWT showed similar shape characteristics, as shown in Figure 11a
versus e, b versus f, c versus g, and d versus h [71,72]. In general, normalization can not
only reduce the system error, but can also improve the clustering effect by improving the
separability of each Rrs. Therefore, it could effectively improve the stability of the results.

Figure 11. Six original spectra and their corresponding normalized Rrs spectra from OWT3, OWT5, and OWT6. The original
and normalized pairs are (a–e), (b–f), (c–g), and (d–h), respectively.

(2) The trimmed means of water quality variables in each OWT were applied to ensure
the stability of the scoring method. To compare the scoring effect of various statistics,
100%, 95%, 90%, 85%, 80%, and 75% of the total samples were randomly selected 100 times
without replacement, and then the mean scores of each OWT were calculated based on
the trimmed mean, mean, and median. Using the trimmed mean method, the water
quality scores calculated under different sample numbers were highly similar (Figure 12a),
indicating that the method is less affected by the sample size. In addition, the score
differences between adjacent OWTs were >3 except for OWT1 and OWT2, which indicates
that the trimmed mean method is robust for different sample sizes. The difference between
the maximum and the minimum scores calculated by different sample sizes and statistical
methods are shown in Figure 12b. Compared with the mean and median, the score range of
the trimmed mean for each OWT was the smallest (except for OWT1, OWT4, and OWT6),
and the mean range under different sample sizes was the lowest (1.179). This indicates
that trimmed mean had better stability because it overcame the disturbance of outliers to a
certain extent and weakened the influence of sample changes on the scoring results. It is
worth noting that under different sample sizes, the score difference between OWT1 and
OWT2 of the trimmed mean was smaller than the mean range of their scores, which further
explains the rationality of dividing them into one UWQL.
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Figure 12. Score differences between adjacent OWTs (bar chart) and the total scores (line chart) obtained by taking the
trimmed mean as a statistic under different sample sizes (100%, 95%, 90%, 85%, 80%, and 75%) (a). The score ranges of the
trimmed mean, mean, and median used as statistics under different sample sizes (100%, 95%, 90%, 85%, 80%, and 75%) (b).

4.4. Advantages, Limitations, and Prospects of the Proposed Method
4.4.1. Advantages

The water quality grading evaluation results were compared with routine water qual-
ity monitoring using the single-factor assessment method of the GB 2002-3838 standards
(Figure 13). According to the GB 2002-3838 standards, all the samples were classified
as classes IV and V or below. However, they were distributed across all UWQL types.
Among them, the class IV samples all belonged to UWQL1; the class V samples were
mainly associated with UWQL1, UWQL2, and UWQL3, and samples below class V, which
accounted for > 85% of samples in the dataset, belonged to all six UWQLs. According
to the GB 3838-2002 standards, classes I, II, and III refer to “good” water quality, while
classes IV and V refer to “bad” water quality. Therefore, the overall water quality of the
investigated urban area was “bad” at the time of this study according to the standards, and
further evaluation is difficult. Hence, the work efficiency of the GB 3838-2002 standards is
reduced in urban water systems compared with the proposed grading evaluation methods
developed based on the urban water dataset. In addition, the presentation of the spatial
distribution information of water quality using remote sensing images is helpful for the
environmental supervision department to grasp the water quality situation of a city from a
macro perspective.

Figure 13. Sankey diagram of the water quality assessment results obtained based on the GB
2002-3838 standard versus the UWQLs obtained in this research, which were all based on in situ
measurements of water quality parameters and Rrs data.
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4.4.2. Limitations and Prospects

The relative water quality evaluation results of urban water obtained using the pro-
posed method strongly depend on the OWTs of the Rrs spectral library. To improve the
method, it is necessary to continuously increase the amount of Rrs data containing mul-
tiple OWTs. For example, increasing the sampling spectrum of cities in northern China
could improve the water quality evaluation ability of regions with a long history of heavy
industry development [73], and increasing the sampling spectrum in mining areas could
enhance the assessment ability of water polluted by the mining industry [74,75]. Therefore,
with the improvement in the spectra database, the proposed method will be continuously
developed and promoted in more regions in the future.

Considering the spectral and spatial resolutions, Sentinel-2 MSI images with a spatial
resolution of 10 m were used in this study. To evaluate the water quality of some small
waterbodies, especially narrow rivers, images with higher spatial resolution are required.
However, sensors that integrate high-resolution spectra and spatial data are still lacking.
Fortunately, in recent years, images collected using unmanned aerial vehicles (UAVs)
have become prevalent [76,77]. Such satisfactory images can be obtained by loading
multispectral or hyperspectral cameras and adjusting the flying height of the drone [78],
and continuous images can be obtained through regular flight. Therefore, the development
of UAV images will provide greater impetus for the promotion and application of this
water quality evaluation method in the future.

5. Conclusion

With the current rapid urbanization, real-time monitoring and evaluation of water
quality are prerequisites for the effective management and protection of urban water
systems. This study proposed a simple, fast, and effective urban water quality assessment
method based on remote sensing reflectance optical classification. The method was applied
to the Sentinel-2 MSI images to explore the spatial distribution of water quality in built-
up urban areas. Our findings regarding the urban OWTs, UWQLs, and water quality
distribution characteristics of the built-up area in Nanjing are as follows.

First, eight OWTs (OWT1–OWT8) were obtained based on the FCMm clustering
method. In particular, the spectra of OWT8 increased abnormally in the near-infrared band,
which was caused by the influence of duckweed and/or surrounding vegetation.

Second, according to the water quality scoring rules, six UWQLs (UWQL1–UWQL6)
were obtained. UWQL1 corresponded to relatively clear waterbodies, while UWQL2
corresponded to turbid waters that contained large amounts of suspended sediments.
The water quality of UWQL3 was common, with no outstanding features. Waterbodies
associated with UWQL4 had a high algae content, while those of UWQL5 and UWQL6 had
the features of eutrophication and were accompanied by the black-odorous phenomenon
in some cases.

Finally, the water quality levels retrieved from the MSI images displayed the spatial
distribution situation in the built-up area of Nanjing on 19 July 2017. UWQL1 was dis-
tributed in ornamental ponds cleaned regularly by workers, and in some clean lakes and
rivers. Tributaries connected to the Yangtze River mainly belonged to UWQL2. A large
number of lakes and wide river reaches in built-up areas corresponded to UWQL3. Open
ponds in agricultural districts and some river sections belonged to UWQL4. Narrow or
slow-flowing waterbodies distributed near polluting factories and dense residential areas
generally corresponded to UWQL5 or UWQL6.

Based on the comprehensive influence of various water quality parameters on the re-
mote sensing information of the water surface, a grading evaluation method was proposed.
Compared with the single-factor method of the GB 2002-3838 standards, the proposed
method can further finely classify water quality levels. This method can be applied to
satellite images to evaluate the relative quality of urban water at the macro level, thus
providing an efficient reference for urban ecological environment management and urban
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planning. Moreover, by further expanding the spectral database, the proposed method
could be applied to more urban water environment scenarios.
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