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Abstract: China's resource-based cities have made tremendous contributions to national and local 
economic growth and urban development over the last seven decades. Recently, such cities have 
been in transition from resource-centered development towards human-oriented urbanization to 
meet the requirements of long-term sustainability for the natural environment and human society. 
A good understanding of urban expansion and evolution as a consequence of urbanization has im-
portant implications for future urban and regional planning. Using a series of remote sensing (RS) 
images and geographical information system (GIS)-based spatial analyses, this research explores 
how a typical resource-based mining city, Datong, has expanded and evolved over the last two 
decades (2000–2018), with a reflection on the role of urban planning and development policies in 
driving the spatial transformation of Datong. The RS images were provided and processed by the 
Google Earth Engine (GEE) platform. Spatial cluster analysis approaches were employed to exam-
ine the spatial patterns of urban expansion. The results indicate that the area of urban construction 
land increased by 132.6% during the study period, mainly along with the Chengqu District, the 
Mining Area, and in the southeast of the Nanjiao District, where most new towns are located. Re-
flection on the factors that influence urban expansion shows that terrain, urban planning policies, 
and social economy are driving Datong’s urban development. 

Keywords: urban expansion; GEE; spatial data analysis; urban transformation; resource-based city; 
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1. Introduction 
Since its reform and opening-up policy in 1978, China has experienced rapid urban-

ization leading to a remarkable urban population growth and urban land expansion. By 
the end of 2019, 60.6% of Chinese people lived in urban areas—tripling the proportion in 
1979—and 162 (out of a total 297) cities at prefectural level and above had a population 
larger than one million [1]. Meanwhile, China’s overall built-up urban area expanded to 
60312.5 km2 by 2019, about 2.8 times that of 1999 [1,2]. Many Chinese cities have trans-
formed from socialist planned industrial production bases to global cities through decen-
tralization, marketization, and globalization [3–5]. However, growth also means that they 
are challenged by traffic congestion, environmental degradation, and increased demands 
for services such as education, housing, and healthcare. Sustainable urban planning is 
central to addressing the dilemma between urban growth and environmental protection, 
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where land use is critical [6]. Therefore, an understanding of how urbanization is trans-
forming urban spatial structure, particularly urban land layout in Chinese cities, is the key 
to efficient urban management and planning towards sustainable urban development. 

Given the inherent spatial nature of urban expansion, remote sensing (RS) images 
(e.g., Landsat, DMSP/OLS, NPP/VIIRS, etc.) and geographical information system (GIS)-
based spatial analyses (e.g., expansion speed and direction, spatial autocorrelation analy-
sis, compactness index, fractal dimension, the migration process of the centroid, etc.) have 
been widely applied in the research of urbanization, particularly urban land changes, 
worldwide [7,8]. Most of China's urban studies using RS and GIS technology focus on 
typical large cities and urban agglomerations, such as Nanjing [9], Hangzhou [10], the 
Jing-Jin-Ji Metropolitan Region (Beijing, Tianjin and Hebei/Shijiazhuang) [11], the Yangtze 
River Delta (YRD) [12], the Pearl River Delta (PRD) [13], and the Yellow River Basin [14], 
while studies on small and medium-sized cities, particularly those which are resource-
based, are under-researched. 

China has many cities that are rich in a variety of natural resources, such as coal (e.g., 
Datong, Huainan, Yulin, etc.), forestry (e.g., Yichun, etc.), and oil and gas (e.g., Daqing, 
Puyang, Karamay, etc.). After several decades of resource-dependent economic growth, 
many resource-based cities face the dilemma of resource exhaustion and seek a transition 
to new modes of development. As a traditional coal mining city, Datong has been attempt-
ing to loosen its dependence on coal and introduce more environmentally friendly indus-
tries such as tourism and logistics services. Hence, of interest in this research is an under-
standing of how the urban spatial structure of Datong has changed and evolved during 
this transition over the last two decades. 

Further, traditional RS image analyses are constrained by the computing capacity of 
the software (e.g., ENVI, eCognition, and ERDAS) and the hosting computers. In a typical 
RS images analysis workflow, the image files must be downloaded first from the data 
provider to a local computer before any further work can be carried out, which can be 
very time-consuming for large-scale and multi-period studies including hundreds of 
frames of images. With recent advances in computing technology, the adoption of cloud 
computing in RS image analysis is increasing [15–17]. In the field of RS, the Google Earth 
Engine (GEE) (https://earthengine.google.com) has become a popular cloud computing 
platform for satellite image processing and analysis [18]. Jointly developed by Google, the 
United States Geological Survey (USGS), and Carnegie Mellon University, the GEE offers 
instant free access to a vast amount of the Earth’s observation data including images from 
Landsat, MODIS, and Sentinel, as well as several data products on topics like climate and 
soil, which simplifies the process of image acquisition, processing, and analysis [19,20]. 

Currently, the GEE has been applied in many RS based studies, including vegetation 
change monitoring [21,22], water surface area change and lake dynamics [23,24], planting 
area change for rice and other crops [25,26], ecological environment quality monitoring 
[16], land use/cover change monitoring [27,28], among many others. The GEE has also 
been increasingly adopted in the studies of urban expansion. For example, utilizing the 
GEE and Landsat data, Zhang et al. [29] studied the spatiotemporal characteristics of ur-
ban expansion in the Guangdong-Hong Kong-Macao Greater Bay Area during 1986–2017, 
and found that the urban area in 2017 was about 13 times that of 1986. Also using Landsat 
data, Shatnawi et al. [30] studied the spatiotemporal changes of land use/cover and the 
expansion of construction land in northern Jordan from 2010 to 2015. Applying the ran-
dom forest classifier and time-series change detection methods to the Landsat data, Cao 
et al. [31] monitored the urban expansion of China's largest archipelago (Zhoushan Archi-
pelago) from 1986 to 2017. 

To this end, this research aims to explore how Datong, a typical resource-based min-
ing city, has expanded and evolved over the last two decades (2000–2018) utilizing the 
GEE platform and spatial analysis approaches, with a reflection on the role of urban plan-
ning and development policies in driving its spatial transformation. The next section in-
troduces the study area, data and the research methods. Then, the results are presented in 
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Section 3. This is followed by a discussion of the potential factors that have driven the 
identified urban land use changes. The paper concludes with major findings. 

2. Materials and Methods 
2.1. Study Area 

Datong is a city, located in the northernmost part of Shanxi Province, China. It is a 
typical coal resource-based city. The location of the study area is shown in Figure 1. Before 
adjusting administrative divisions in 2018, Datong City had jurisdiction over four districts 
and seven counties, with a total population of 3.4 million, among which urban population 
has a share of 62.9% [32]. Since the city and population of Datong are concentrated in the 
urban area, and the development of Chengqu and the Mining Area has typical urban char-
acteristics, this research considers four urban districts of Datong: Chengqu, the Mining 
Area, Nanjiao, and Xinrong, which had a total population of 1.8 million (71.5% urban pop-
ulation) in 2017 [32]. The four districts account for 14.7% of the total area of Datong 
(14112km2 is the total area), but account for 52.1% of the total GDP of the city in 2017 [32]. 

 
Figure 1. Study area: (a) Location of Shanxi Province; (b) Location of Datong and the study area; 
(c) The four urban districts within the study. Data source: DEM: http://www.gscloud.cn. Base 
map: http://bzdt.ch.mnr.gov.cn. 

2.2. Data Source and Processing 
The data used in this research included images from Landsat-5 TOA and Landsat-8 

TOA, which were obtained from the GEE platform (https://code.earthengine.google.com, 
accessed on 22 September 2020) that selected the images with the lowest cloud cover for 
every year between 2000 and 2018. Because no data of Datong from Landsat-5 and Land-
sat-8 were available for the year 2012, and the Landsat-7 image from 2012 showed severely 
slanted stripes, the land cover information is missing for that year. Based on the current 
situation of land use in Datong, the research results of peer experts, and the emphasis of 
this study on urban expansion, the classification system of land use was determined as 
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construction land, forest, cultivated land, water and bareland [33]. The framework of the 
study is shown in Figure 2. 

 
Figure 2. Framework of the study: (a) Datasets; (b) Construction land extraction on the 
GEE platform; (c) Spatio-temporal analysis; (d) Driving factors analysis. 

The classification method adopted the Classification and Regression Tree (CART) 
proposed by Breiman [34], which is fast in operation, high in accuracy, simple in model 
structure, and has been proved to be effective in land use classification and information 
extraction by a large number of empirical studies [35–37]. The CART algorithm was per-
formed directly on the GEE platform, and used the default parameters to train the classi-
fier. In addition to the inherent spectral bands of Landsat, considering that the research 
was mainly aimed at urban expansion, the Normalized Difference Build Index (NDBI) 
was used to perform the extraction of construction land [38]. With reference to the Google 
Earth images, about 170–300 training samples were selected for classification in each im-
age through manual visual interpretation. Specifically, 70% of the training samples of each 
year were used for land use classification, and 30% were used for the confusion matrix 
verification. The classification accuracy is shown in Table 1, which meets the requirement 
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of the USGS and, thus, can be considered satisfactory in practice. According to the corre-
spondence between the Kappa statistical value range and the classification accuracy pro-
posed by Landis et al. [39] (i.e., 0.6–0.8 is good and 0.8–1.0 is very good), the Kappa statis-
tical value in the study area was limited by the sample quality for some years by less than 
0.8, but met research needs. 

Table 1. Data source and classification accuracy. 

Year Data Type Data ID 
Overall Accu-

racy (%) Kappa 

2000 Landsat 5 TOA LT05_125032_20000506 95.49% 0.89 
2001 Landsat 5 TOA LT05_125032_20011101 94.29% 0.70 
2002 Landsat 5 TOA LT05_125032_20020901 97.62% 0.89 
2003 Landsat 5 TOA LT05_125032_20030819 97.30% 0.86 
2004 Landsat 5 TOA LT05_125032_20040805 95.62% 0.79 
2005 Landsat 5 TOA LT05_125032_20050925 93.36% 0.68 
2006 Landsat 5 TOA LT05_125032_20060827 96.31% 0.78 
2007 Landsat 5 TOA LT05_125032_20070915 96.67% 0.81 
2008 Landsat 5 TOA LT05_125032_20080901 96.68% 0.80 
2009 Landsat 5 TOA LT05_125032_20090920 96.51% 0.77 
2010 Landsat 5 TOA LT05_125032_20100705 96.57% 0.79 
2011 Landsat 5 TOA LT05_125032_20110521 97.37% 0.81 
2013 Landsat 8 TOA LC08_125032_20130627 96.48% 0.74 
2014 Landsat 8 TOA LC08_125032_20140918 97.00% 0.82 
2015 Landsat 8 TOA LC08_125032_20150804 96.07% 0.77 
2016 Landsat 8 TOA LC08_125032_20161025 97.33% 0.82 
2017 Landsat 8 TOA LC08_125032_20170825 96.66% 0.83 
2018 Landsat 8 TOA LC08_125032_20181031 95.96% 0.79 

2.3. Data Analysis 
2.3.1. Statistical Analysis 

Three descriptive statistics are adopted here to measure the changes of construction 
land over the study period: the Urban Growth Index (UGI) [40], the Urbanization Devel-
opment Index (UDI) [41], and the rose diagram. UGI quantifies the speed of urban expan-
sion; UDI quantifies the size of urban development and the rose diagram depicts the di-
rection of urban expansion. 

The UGI is defined as the annual growth rate of construction land, which can be cal-
culated with equation (1) as follows: 𝑈𝐺𝐼௧,௧ା∆௧ = 𝑈௧ା∆௧ − 𝑈௧∆𝑡  (1)

where t is the beginning year of a period and ∆t is the number of years in that period; 𝑈௧ା∆௧ 
and 𝑈௧ are the areas of construction land in years 𝑡 + ∆𝑡 and t, respectively. 

The UDI refers to the share of the construction land in a district in a particular year, 
which can be computed with equation (2) as follows: 𝑈𝐷𝐼௞௧ = 𝑈௞௧𝐴௞௧ × 100% (2)

where 𝑈௞௧  is the area of the construction land area of the kth district in year t; and 𝐴௞௧  is 
the total land area of the kth district in the same year. 

2.3.2. Expansion Direction Analysis 
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The direction of urban expansion can be represented by the changes of the centers of 
a mass transfer model over a time period [42]. The coordinates of the center can be defined 
by equations (3) and (4):  𝑋௧ = ∑ 𝑥௞௧ 𝐴௞௧௞∑ 𝐴௞௧௞  (3)

𝑌௧ = ∑ 𝑦௞௧ 𝐴௞௧௞∑ 𝐴௞௧௞  (4)

where (𝑋௧, 𝑌௧) represents the geographic location of the center of the construction land in 
year t; 𝐴௞௧  represents the area of the kth construction land patch in year t; and (𝑥௞, 𝑦௞) are 
the coordinates of the center of the kth construction land patch in year t. 

2.3.3. Spatial Cluster Analyses 
Spatial cluster analyses are employed here to explore whether there is a clustering 

trend in the spatial distribution of construction land, as well as to identify the locations of 
clusters of construction land if such a trend exists. Specifically, two spatial autocorrelation 
indicators are used in this research: one is a global measure (the Moran’s I) and the other 
is a local measure (the local Moran’s I), both of which are common approaches for spatial 
cluster analysis. While the former can detect the global spatial clustering pattern, the latter 
can identify the locations of local clusters [43,44]. The mathematical formulations of the 
two statistics are expressed as in (5)–(7). 𝐼 = ∑ (𝑥௜ − 𝑥̅) ∑ 𝑤௜௝(𝑥௝ − 𝑥)௡௝ୀଵ௡௜ୀଵ 𝑆ଶ ∑ ∑ 𝑤௜௝௡௝ୀଵ௡௜ୀଵ  (5)

𝐼௜ = (𝑥௜ − 𝑥̅)𝑆ଶ ෍ 𝑤௜௝(𝑥௝ − 𝑥̅)௡
௝ୀଵ  (6)

𝑆ଶ = 1𝑛 ෍(𝑥௜ − 𝑥̅)௡
௜ୀଵ  (7)

where I is the Moran’s I and 𝐼௜ is the local Moran’s I; n is the total number of land units; 𝑥௜ and 𝑥௝ are the proportions of construction land in land units i and j, respectively; 𝑥̅ 
represents the average proportion of construction land in each land unit; and 𝑤௜௝ is the 
spatial weight matrix indicating the spatial relationship between land units i and j.  

The value of I varies from −1 to 1, with values closer to −1 indicating more disperse 
patterns, and values closer to 1 indicating more clustering patterns. The land unit i is in a 
high-high value local cluster if the values of local Moran’s of i and its neighboring land 
units are high. That is, both i and its surrounding land units have high percentages of 
construction land. Accordingly, we can have high-high, high-low, low-high and low-low 
value clusters [45]. 

3. Results 
3.1. Changes of Urban Construction Land 

The spatial distribution of extracted construction land for each year in the study pe-
riod (except year 2012) is depicted by Figure 3. During 2000–2018, construction land was 
concentrated in Chengqu, the Mining Area, and Nanjiao, and expanded to the southeast 
of Nanjiao. From 2000 to 2005, the construction land was relatively slow and the expansion 
was not apparent, which was concentrated in Chengqu and the Mining Area. From 2006 
to 2009, Nanjiao, adjacent to the east of Chengqu, gradually developed, and the rudiment 
of the new district east of the Yuhe River was revealed in 2009. From 2010 to 2018, the 
construction land expanded significantly to Nanjiao, which had a certain scale in 2016. 
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From the perspective of the distribution and development in each district, construction 
land developed earlier in Chengqu and the Mining Area, and Chengqu has always been 
the core area with the most concentrated distribution of construction land. After 2002, 
construction land in Nanjiao began to expand gradually. However, in the past two dec-
ades, the construction land in Xinrong was the lowest and also scattered, with little overall 
change. 

 
Figure 3. Distribution of construction land during 2000–2018: (a) 2000; (b) 2001; (c) 2002; (d) 2003; (e) 2004; (f) 2005; (g) 
2006; (h) 2007; (i) 2008; (j) 2009; (k) 2010; (l) 2011; (m) 2013; (n) 2014; (o) 2015; (p) 2016; (q) 2017; (r) 2018. 
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Figure 4 shows the temporal changes of construction land area during 2000–2018. 
The overall construction land area reached 214.25km2 in 2018, with an increase of 132.6% 
compared with 92.12 km2 in 2000. Among the four districts, only Nanjiao had a steady 
trend in the growth of construction land, from 42.30km2 in 2000 to 137.51km2 in 2018. For 
Chengqu, there was a slight decrease (i.e., from 35.39km2 to 34.18km2) of construction land 
from 2006 to 2010. Except for a slight decrease in 2006 (i.e., from 18.60 km2 to 17.18 km2), 
the construction land in the Mining Area kept increasing, with an increase of 11.77 km2. 
Xinrong had the lowest distribution of construction land, which was only 3.90 km2 in 2000. 
There was also a small decrease (i.e., from 5.83 km2 to 5.09 km2) in 2006. However, after 
four years of development, the construction land in Xinrong increased rapidly and 
reached 10.65 km2 in 2018. 

 
Figure 4. Changes in the area of construction land from 2000 to 2018. 

The values of UGI are given in Table 2. It can be observed that for the entire study 
area, the expansion of construction land during 2000–2003 and 2014–2018 was much faster 
than the years between those two periods. The speed of urban expansion kept decreasing 
during the first three periods (i.e., 2000–2003, 2003–2006, and 2006–2010)—from 9.66 
km2/year to 4.71 km2/year—but started increasing during the fourth period (2010–2014)—
from 4.71 km2/year to 8.00 km2/year. Regarding the urban expansion in the four districts, 
each district presented different characteristics. 

Chengqu expanded at the fastest rate during 2000–2003, reaching 1.00 km2/year. 
However, the speed gradually decreased in the following two periods (i.e., 2003–2006 and 
2006–2010), and showed negative growth from 0.47 km2/year to 0.40 km2/year during 
2006–2010. In the two periods after 2010 (i.e. 2010–2014 and 2014–2018), it gradually re-
covered to a faster growth rate, from 0.78 km2/year to 0.62 km2/year. 

The speed of urban expansion in the Mining Area showed a state of obvious fluctua-
tion. The rapid expansion of the city was 1.35 km2/year at first, followed by a negative 
growth during 2003–2006, but reached the highest growth rate of 1.65 km2/year during 
2006–2010, and then the development rate sharply dropped to 0.02 km2/year, and recov-
ered to 0.61 km2/year during 2014–2018. 

Nanjiao was the fastest growing of the four districts. In the first three periods (i.e., 
2000–2003, 2003–2006, and 2006–2010), the growth rate showed a gradual downward 
trend from 6.66 km2/year to 2.13 km2/year, and in the next two periods (i.e., 2010–2014 and 
2014–2018), the growth rate gradually increased from 5.01 km2/year to 7.69 km2/year. 

The development speed of Xinrong was similar to that of the Mining Area, showing 
a state of fluctuation. The first two periods (i.e., 2003–2006 and 2006–2010) witnessed rapid 
growth and then negative growth, from 0.64 km2/year to −0.25 km2/year. However, it 
reached the maximum growth rate of 1.33 km2/year during 2006–2010, then slowed down, 
and showed a negative growth rate of −0.05 km2/year during 2014–2018. 
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Table 2. Values of UGI (km2/year). 

 2000–2003 2003–2006 2006–2010 2010–2014 2014–2018 
Chengqu 1.00 0.47 −0.40 0.78 0.62 

Mining Area 1.35 −0.47 1.65 0.02 0.61 
Nanjiao 6.66 5.30 2.13 5.01 7.69 
Xinrong 0.64 −0.25 1.33 0.11 −0.05 

Study Area 9.66 5.05 4.71 5.92 8.88 

The values of UDI are given in Table 3. It can be observed that for the entire study 
area, the share of construction land grew steadily from 4.45% to 10.35%. From 2014 to 
2018, the construction land area proportion increased greatly from 8.63% to 10.35%. From 
the perspective of the four districts, the share of construction land area in the different 
districts is obviously different. 

The share of construction land in Chengqu was much higher than that of the other 
three districts. In 2000, the construction land accounted for 65.36% of the total area. Alt-
hough the construction land has increased or decreased since then, it has always been 
above 70%. In 2018, it reached 82.84%, and the growth rate reached 17.48% in the last two 
decades. 

The share of construction land in the Mining Area is second only to Chengqu. During 
2000–2003, construction land developed rapidly, with the area proportion growing from 
32.30% to 41.33%. However, there was a slight decline to 38.17% in 2006, and then it stead-
ily increased to 58.46% from 2010 to 2018, with an overall increase of 26.16%. 

The share of construction land in Nanjiao was lower than that in Chengqu and the 
Mining Area, but it grew steadily. In 2014, construction land accounted for more than 
10%—from 4.33% to 10.93%. Furthermore, in 2018, it reached 14.07%, with an overall in-
crease of 9.74%. 

Xinrong had the lowest share of construction land and the slowest development. In 
2000, construction land accounted for only 0.39%, and after nearly two decades of devel-
opment, the area accounted for only 1.06%. 

Table 3. Values of UDI (%). 

 2000 2003 2006 2010 2014 2018 
Chengqu 65.36 71.62 74.55 71.18 77.66 82.84 

Mining Area 32.30 41.33 38.17 52.83 53.01 58.46 
Nanjiao 4.33 6.37 8.00 8.87 10.93 14.07 
Xinrong 0.39 0.58 0.51 1.04 1.08 1.06 

Study Area 4.45 5.85 6.58 7.49 8.63 10.35 

3.2. Directions of Urban Expansion 
The directions of urban expansion are shown in Figure 5. The centroid of the study 

area is used as the center of the rose diagram. The study area is divided into 16 even sec-
tors around the centroid. The values on the axis represent the UDI of each year. Figure 4 
indicates urban expansion towards the southeast during the study period, with slight in-
creases in the construction land in the southwest. There was no significant urban expan-
sion in the northern part of the study area at all. In general, the study area mainly ex-
panded within Chengqu and towards the southeast of Nanjiao. This is consistent with the 
temporal variations of the spatial distribution of construction land in Figure 2. 

In the SEE direction, construction land developed rapidly (from 7.24% to 19.37%). In 
this direction, most of the new areas were distributed east of the Yuhe River . According 
to the spatial distribution of construction land in Figure 2, the construction land in this 
area showed an embryonic form in 2009 and developed to a certain scale in 2014. 

In the SE direction, the share of construction land was always the highest in the same 
period (from 10.48% to 22.49%), but there was a slight decrease in 2010 (from 13.37% to 
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13.20%). In 2000, the construction land was mainly distributed in Chengqu and the Mining 
Area in the southeast of the study area, and the initial proportion of Chengqu had reached 
65.36%. Moreover, the construction land in some areas of Nanjiao adjacent to the east and 
south of Chengqu had been continuously expanded since 2006, resulting in the share of 
construction land in the whole southeast always being the highest. 

In the SSE direction, the distribution of construction land was relatively small during 
2000–2010, accounting for only 3.63% in 2000. However, with the continuous development 
of Nanjiao, the share of construction land reached 17.77% in 2018. 

In the S direction, the share of construction land ranged from 5.35% to 15.96%. Dif-
ferent from the previous three directions (i.e., SEE, SE, and SEE), the center of this area 
was a part of the Mining Area, and there was a slight decline in construction land in the 
Mining Area from 2003 to 2006. Although Nanjiao was in a state of expansion, the share 
of construction land in this direction eventually decreased slightly (from 10.13% to 9.70%). 

In the SSW direction, there was a belt-shaped distribution of the Mining Area and 
parts of Nanjiao, and the urban size was relatively small. Only a small amount of con-
struction land was distributed in the Mining Area and south of Nanjiao, and the expansion 
is not notable—from 4.56% to 6.62%. 

 
Figure 5. Directions of construction land expansion during 2000–2018. 

By calculating the coordinates of the centroid of the urban construction land in each 
period, the migration process of the urban construction land in the study area can be de-
termined. It can be seen from Figure 6 that, despite the urban centroid moving 612.38 me-
ters to the east of the study area from 2003 to 2006, and 615.02 meters to the southwest of 
the study area from 2006 to 2010, the urban centroid moved 103.92 meters, 970.77 meters, 
and 878.43 meters to the southeast in the other three periods. On the whole, the centroid 
of urban construction in the study area moved 2498.22 meters to the southeast from 2000 
to 2018, and the urban area expanded to the southeast of Nanjiao. 
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Figure 6. The migration process of the centroid of construction land during 2000–2018. 

3.3. Spatial Patterns of Urban Expansion 
For the spatial cluster analysis, the study area was discretized into a lattice dataset 

consisting of a set of 1.5 km × 1.5 km grid cells, with each having the percentage of con-
struction land as its attribute. The values of the Moran’s I, as well as the associated statis-
tical significance, are presented in Table 4. It can be seen that all the Moran’s Is are very 
high—larger than 0.8—and statistically significant, indicating that the construction land 
had a clustering trend over the space during the study period. Among the six years under 
consideration, the construction land in the year 2000 had the strongest concentration 
trend, and the construction land in the year 2010 had the relatively weakest clustering 
trend. In other words, the clustering trend of construction land declined in general during 
2000–2010 and increased from 2014. 

Table 4. Values of Moran’s I of construction land during 2000–2018. 

 2000 2003 2006 2010 2014 2018 
Value of Moran’s I 0.9961 0.8220 0.8334 0.8139 0.8678 0.8656 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 

Further, the spatial cluster location of construction land growth is shown in Figure 7. 
In general, the hot spots of construction land growth are concentrated in Chengqu and the 
southeast of Nanjiao. During 2000–2003, the high-high value clusters of the growth of con-
struction land were concentrated in Chengqu, the Mining Area, and the central area of 
Nanjiao, while the low-low value clusters appeared in the north of the Mining Area. Dur-
ing 2003–2014, Chengqu and the Mining Area successively intersected with low-low value 
clusters (i.e., Chengqu during 2006–2010, and the Mining Area during 2003–2006 and 
2010–2014), indicating that when the city developed to a certain scale, the growth hotspot 
of construction land would shift over time. During this period (i.e., 2003–2014), new high-
high value clusters of construction land appeared in the eastern and southeastern areas of 
Nanjiao, indicating that the center of urban development was gradually shifting to new 
areas in Nanjiao. During 2014–2018, there was no significant change in Chengqu or the 
Mining Area, and the high-high value clusters continued to transfer to the eastern and 
southeastern areas of Nanjiao. However, during the research period, most areas of Xin-
rong hadn’t changed significantly, with the northern and central areas showing l low-low 
value cluster during 2003–2006 and 2014–2018, respectively. The overall growth of con-
struction land is consistent with the spatial distribution rule in Figure 2. 
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4. Discussion 
Urban expansion is an extremely complex process, which is a comprehensive result 

of the interaction of nature, society, and economy. Considering many factors, the factors 
of urban expansion in the four districts of Datong City may include terrain, urban plan-
ning policies, and social economy. 

Regarding terrain, as one of the important factors affecting the distribution of land-
use patterns in mountainous and hilly areas, it has a huge impact on human production 
and life [46]. According to the research results on the impact of terrain on urban develop-
ment patterns, construction land directly related to human activities is mainly concen-
trated in areas with relatively low elevation, slope, and topographic relief [47,48]. The ter-
rain in the study area was high in the northwest and low in the southeast, and mountain-
ous and hilly areas were mostly distributed in the west, north, and northeast. In the past 
two decades, the construction land distribution in Xinrong has been relatively small and 
scattered, and growth has not been apparent: the overall construction land has increased 
by 122.13 km2, but Xinrong has only increased by 6.75 km2. The relatively low-lying 
Chengqu and the southeast of Nanjiao have become the main directions of urban devel-
opment. 

Urban development is greatly influenced by the government in China [49]. The gov-
ernment guides economic market growth and urban planning through real-time relevant 
policies. Datong has long been dependent on the development of coal resources. In the 
21st century, with the reduction of coal resources, urban transformation and development 
are imminent. The Datong City Master Plan (2006–2020) puts forward some suggestions on 
the reconstruction and development of Yudong and Kouquan, aiming to build Datong 
into a national historical and cultural city, and a clean energy city [50]. In 2008, the recon-
struction of the old city began, leading to the relocation of a large number of residents in 
Chengqu [51]. According to data published by Datong Daily in 2016, the renovation in 
Chengqu involves 74 old residential areas, with a total of 23,283 households [52]. During 
this period, the development speed of urban construction land slowed down (i.e., during 
2006–2010, UGI was −0.40 km2/year and UDI dropped from 74.55% to 71.18%), and the 
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urban area expanded to a new district (Yudong) in the eastern part of Chengqu, leading 
to an obvious urban cluster in Yudong in 2009. At the same time, there was an evident 
decline in the development of construction land in the Mining Area in 2006, and there was 
no significant change in growth except for a few hot spots during 2014–2018. In 2018, the 
State Council of China approved the adjustment of Datong's administrative divisions and 
abolished the Mining Area. To some extent, the clampdown on the Mining Area indicated 
the end of the era of Datong's sole reliance on coal resources [53]. 

According to the integrity of the Datong Statistical Yearbook and the comparison of 
image data years, the study area’s statistical data and each district’s statistical data were 
finally selected to analyze urban expansion from the social economy perspective. In this 
study, the construction land area was set as the dependent variable, and multiple potential 
driving factors were selected as independent variables (i.e., total population, employed 
persons in urban units, gross regional product, gross secondary industry product, gross 
tertiary industry product, gross industrial product, number of industrial enterprises, 
gross industrial output value, investment in fixed assets, local fiscal revenue, local fiscal 
expenditure). The stepwise regression analysis method was used to establish the model 
[54]; R2=0.970, adjusted R2=0.968, which passed the significance test of 0.05, and the fitting 
effect were good. It can be seen from the regression results that the main factors affecting 
the construction land area in the study area were the total population, gross industrial 
product, and number of industrial enterprises, and the standard coefficients were 0.370, 
0.418, and 0.335, respectively. From the results of the correlation analysis, the correlation 
coefficients between the construction land area and total population, gross industrial 
product, and number of industrial enterprises were 0.832, 0.774, and 0.682, respectively, 
and passed the significance test of 0.01. The total population of the study area increased 
by 453,300 people from 2001 to 2017, and the industrial GDP accounted for more than 
79.00% of the GDP of the secondary industry, especially 92.56% in 2007. The increase of 
population and the development and changes of industrial enterprises, to some extent, 
led to the increase of construction land needed by people for production and living, thus 
leading to urban expansion. 

5. Conclusions 
In recent years, urban expansion has been a hot topic. However, most scholars focus 

their research on metropolises, which leads to a lack of research on the development law 
of small and medium-sized cities, especially coal resource-based cities in a transition pe-
riod. Therefore, this study took four typical districts in Datong as examples, based on the 
GEE platform, using RS and GIS spatial analysis methods to explore the spatial-temporal 
evolution characteristics of construction land in the past two decades (2000–2018). 

The research shows that, construction land was concentrated in Chengqu and the 
Mining Area in 2000 and, on this basis, it continued to expand to the southeast of Nanjiao. 
Terrain, urban planning, and social economy (total population, gross industrial product 
and number of industrial enterprises) are the main factors influencing urban expansion. 
On the whole, the characteristics of the changes in the construction land in the study area 
are basically consistent with the urban development planning of Datong City to protect 
the ancient city wall and the transformation of mining enterprises. The law of urban de-
velopment obtained in this study can provide a more scientific decision-making basis for 
the subsequent urban development of Datong, conducive to the rational planning of new 
urban and urban transformation. At the same time, the works of this study can be applied 
to the extraction and analysis of historical remote sensing images of other similar cities. 
Moreover, based on a grasp of the law of urban development, decision makers can opti-
mize the future development patterns of cities more scientifically. 
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