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Abstract: A large number of studies have been published addressing sugarcane management and 
monitoring to increase productivity and production as well as to better understand landscape dy-
namics and environmental threats. Building on existing reviews which mainly focused on the crop’s 
spectral behavior, a comprehensive review is provided which considers the progress made using 
novel data analysis techniques and improved data sources. To complement the available reviews, 
and to make the large body of research more easily accessible for both researchers and practitioners, 
in this review (i) we summarized remote sensing applications from 1981 to 2020, (ii) discussed key 
strengths and weaknesses of remote sensing approaches in the sugarcane context, and (iii) described 
the challenges and opportunities for future earth observation (EO)-based sugarcane monitoring and 
management. More than one hundred scientific studies were assessed regarding sugarcane map-
ping (52 papers), crop growth anomaly detection (11 papers), health monitoring (14 papers), and 
yield estimation (30 papers). The articles demonstrate that decametric satellite sensors such as Land-
sat and Sentinel-2 enable a reliable, cost-efficient, and timely mapping and monitoring of sugarcane 
by overcoming the ground sampling distance (GSD)-related limitations of coarser hectometric res-
olution data, while offering rich spectral information in the frequently recorded data. The Sentinel-
2 constellation in particular provides fine spatial resolution at 10 m and high revisit frequency to 
support sugarcane management and other applications over large areas. For very small areas, and 
in particular for up-scaling and calibration purposes, unmanned aerial vehicles (UAV) are also use-
ful. Multi-temporal and multi-source data, together with powerful machine learning approaches 
such as the random forest (RF) algorithm, are key to providing efficient monitoring and mapping 
of sugarcane growth, health, and yield. A number of difficulties for sugarcane monitoring and map-
ping were identified that are also well known for other crops. Those difficulties relate mainly to the 
often (i) time consuming pre-processing of optical time series to cope with atmospheric perturba-
tions and cloud coverage, (ii) the still important lack of analysis-ready-data (ARD), (iii) the diversity 
of environmental and growth conditions—even for a given country—under which sugarcane is 
grown, superimposing non-crop related radiometric information on the observed sugarcane crop, 
and (iv) the general ill-posedness of retrieval and classification approaches which adds ambiguity 
to the derived information.  

Keywords: earth observation; sugarcane; mapping; monitoring; crop management; yield; crop 
health; vegetation anomalies; production 
 

1. Introduction 
Sugarcane is a tall perennial grass in the genus Saccharum, used for sugar produc-

tion. The plants are usually 2–6 m tall with stout, jointed, fibrous stalks that are rich in 
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sucrose, which accumulates in the stalk internodes. Sugarcane is native to the warm tem-
perate to tropical regions of Southeast Asia and New Guinea and is currently mainly pro-
duced in tropical and subtropical regions. Economically, sugarcane is one of the most im-
portant crops contributing to food production for half the world’s population [1–3]. Alt-
hough sugarcane contains nutritional elements, overconsumption leads to health prob-
lems such as obesity, dental cavities, metabolic syndrome, and diet quality [4,5]. Sugar-
cane bagasse can also be milled and transformed into bio-ethanol for energy production 
[1,6–8]. The sugarcane reeds can also be used to make pens, mats, screens, and thatch. In 
some countries, the young, unexpanded flower head is eaten [9,10]. 

Global sugarcane production rapidly increased from 1994 to 2018 due to the increas-
ing demand for sugar consumption [11,12]. In 2018, Brazil reported the highest contribu-
tion to the global sugar production at 37.04%, followed by India (18.69%), China (5.39%), 
and Thailand (5.36%) [11,13]. In Thailand as well as other countries, the production has 
strongly increased over the past 20 years due to favorable growing conditions and signif-
icant expansion efforts by related agencies [3,13–15]. 

In favorable regions, sugarcane production is economically profitable [1,16]. How-
ever, sugarcane management is labor-intensive and requires an adequate water supply. 
Productivity is highly weather-dependent [17]. Recent climate change has increased the 
frequency and severity of droughts and floods, negatively affecting growing conditions 
[1,18–20]. Although government policies, related agencies, and sugarcane mills have tried 
to address these problems [17], sugarcane crop production has suffered in recent years. 

Earth observation (EO) can provide sugarcane as well as other crops related infor-
mation over large areas in a timely and cost-efficient manner and thereby address at least 
a part of the information requirements of the global sugar industry [21–23]. Since the 
1980s, satellite remote sensing has become a relevant data source to detect, map, and mon-
itor crop growth, and to support health management and crop productivity. The benefits 
of EO are related to its ability to capture spectro-temporal image data from an ever in-
creasing number of sensors and satellites [23–26]. In parallel to sensor development, re-
cent years also saw a huge progress in the field of machine learning [27–29] as well as an 
increasing accessibility of necessary IT infrastructure [30,31]. Several research groups 
have successfully demonstrated the potential of novel machine learning algorithms with 
fine-resolution image data to map crops and forests at different scales and in different 
environments [26,28,32–35]. Their results proved that highly satisfactory techniques and 
data are available for rapid and accurate vegetation monitoring and progresses in irriga-
tion and nutrition managements. 

A large variety of sensors with various spectral, spatial, and temporal properties are 
now proving effective for sugarcane related applications (e.g., near-real time mapping, 
growth monitoring, ultra-resolution for yield prediction, and disaster managements) 
[36,37]. In the past couple of years, new sensors have been deployed such as Sentinel-1 
(S1) C-band synthetic aperture radar (SAR), and Sentinel-2 multispectral instrument (S2 
MSI), light detection and ranging (LiDAR), and hyperspectral sensors [32,38–42]. In addi-
tion, unmanned aerial vehicle (UAV) images have been used to monitor sugarcane crops 
[3,43–47]. By providing cost-effective fine resolution data in near real-time, remote sensing 
has now become an important tool to improve sugarcane mapping and its management 
[32,40,44,48]. 

The free European S1 SAR and S2 MSI constellations, together with the rich archive 
of Landsat images, are most popular for monitoring sugarcane areas [35,43,44,49,50]. Due 
to progress in data access and ongoing advances in providing analysis-ready-data (ARD), 
the rich information content provided by multi-temporal satellite imagery can now be 
better leveraged [51,52]. Moreover, innovative machine learning methods are currently 
widely available and have been applied successfully for rapid field management, sugar-
cane mapping, and monitoring [34,35,44,50]. Techniques such as a random forest (RF), 
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classification and regression trees (CART), support vector machine (SVM), and an artifi-
cial neural network (ANN) have been applied to assist in decision-making 
[7,34,35,43,49,53]. 

With our review, we describe and summarize the current state-of-the-art in sugar-
cane mapping and monitoring using EO techniques. Applications of remote sensing for 
sugarcane crops are presented from 1981 to the present. The review builds on an earlier 
review by Abdel–Rahman and Ahmed [22] who described important applications of re-
mote sensing techniques in the sugarcane sector. Many of the papers reviewed by these 
authors have focused on the spectral behavior of sugarcane crops for extracting sugar-
cane-related information. This wealth of information remains valid. Herein, we focus on 
innovative approaches to monitor sugarcane crops and recommend future applications 
for the use of remote sensing information in the sugarcane sector. With the present work 
we: 
1. Provided a comprehensive bibliographic analysis to reveal current trends and pat-

terns; 
2. Reviewed EO techniques from 1981 to 2020 using different satellite sensors; 
3. Summarized the main strengths and weaknesses of EO techniques for sugarcane 

mapping, growth monitoring, health management, and yield estimation; 
4. Described the remaining challenges for sugarcane monitoring using EO data; 
5. Identified main research gaps and tried to provide guidelines for a successful sugar-

cane monitoring. 
While we focused on the sugarcane crop, the findings and recommendations of our 

review are possibly also useful for other (perennial) crops. 

2. Sugarcane 
2.1. Sugarcane Crop Cycle and Growth Limiting Factors 

Sugarcane is a semi-perennial crop and the growth cycle is usually 12 to 18 months 
before harvesting. The growth cycle varies in each country depending on the variety, local 
culture conditions, and geographical parameters [14,54–56]. 

The four main growth and development stages of sugarcane include germination and 
establishment, tillering, grand growth, and ripening. The four phenological phases are 
shown in Figure 1. Besides favorable weather conditions, each phase requires specific crop 
management activities and a supply of different nutrients and water, for optimum 
productivity [18,34,56–59]. 
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Figure 1. Sugarcane crop cycle and main phenological phases. The illustration has been adapted 
from Molijn et al. [44] and NaanDanJain Irrigation Ltd. [60]. Additionally included are RGB aerial 
views from drone-mounted camera (source: UAV DJI phantom 3 professional captured in 2018) as 
well as an indication regarding the major risk factors per phenological phase. 

Figure 1 permits us to better understand the major threats and growth limiting fac-
tors during the four sugarcane crop stages. Many different critical sugarcane health prob-
lems arise, mainly due to geographical factors (i.e., rainfall, temperature, and light) that 
are outside human control [61]. In the first phase, weeds are a critical threat as they com-
pete for nutrients with the new sugarcane roots [62]. Lower or higher temperatures and 
rainfall volumes contribute to drier or humid soil that impact sprouting shoots and result 
in reduced growth. Roots and primary shoot growth are highly vulnerable to diseases and 
pests [17,60–63]. During the second phase, water deficit stress is a major problem that 
causes lower shoot growth and reduced yield, while weeds and pests remain as threats in 
this cycle. In addition, the nutrient stress also plays a significant role in the growth of 
sugarcane [3,60,62,64,65]. In the third phase, increased frequency and intensity of extreme 
weather events such as drought, flooding, and storms impact productivity with lower 
stalk height (1.2–1.5 m) and reduced diameter, while air temperature and sunlight are also 
important for biomass growth [64,66]. During the final phase, sugarcane growth is 
strongly affected by meteorological variables such as air temperature, precipitation, soil 
moisture, and solar radiation. Climate variability causes damage such as reduced sucrose 
accumulation in the stalks and lower juice quality [11,67,68]. 

2.2. Regional Peculiarities of the Sugarcane Crop Cycle 
The sugarcane growth cycles for the four main sugar producing countries Brazil, In-

dia, China, and Thailand are described below [13] and further summarized in Figure 2: 
• In Brazil, new crops are planted from September through to March. Sugarcane has 

high growth between April and December. After the first harvest, sugarcane grows 
from the same root systems for five to seven years, leading to subsequent yield losses 
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due to a decrease in stalk population. Sugarcane areas are generally rotated with 
summer crops such as soybean and peanut, with new shoots planted for each new 
cycle [34,44,49,56,58]; 

• In India, sowing generally proceeds from January to March. The highest growth oc-
curs during the first week of December with harvest from December to March the 
following year. After the first harvest, ratoon crops are cultivated as regrowth in a 
cycle of five to six years [69–71]. For short duration plantations, shoots are removed 
and rotated to other crops such as rice, potato, wheat, maize, and cotton. New shoots 
are planted for each crop cycle [54]; 

• The new sugarcane planting in China occurs from March to early June and the har-
vest begins at the end of December until March of the following year [72–74]. Harvest 
cycles are usually two to three ratoon crops. However, serious damage can be caused 
by geographical factors. The subsequent ratoon ability is often poor and cane yield 
decreases by 50% or more in second ratoon cycles. Some farms remove the ratoons 
and plant new shoots each year for optimal cane productivity [66,75]; 

• In Thailand, the first planting occurs in January to March and the second from Sep-
tember to November (rainy season). Maximal growth occurs from November to 
April. After two to three harvests, the root systems are generally removed [14,55]. 
Successive annual harvests are affected by yield loss, ratoon stunting disease, and 
mosaic viruses. Sugarcane plantations are often alternated with other crops such as 
upland rice, cassava, sunn hemp, peanut, and pasture land as nitrogen fixers for sug-
arcane growth in the next season. Different varieties are also planted in the same 
plantations to reduce disease susceptibility [14,76–78]. 

 
Figure 2. Sugarcane crop cycle of four main sugar producing countries. 

2.3. Sugarcane Planting Patterns and Characteristics 
To maximize agronomic output, optimal row planting is important for both produc-

tion and productivity by nitrogen uptake, rapid canopy closure, and increasing intercep-
tion earlier in the cropping system [79–81]. Row planting patterns are commonly designed 
based on different genetics and influencing factors including climate, solar radiation, irri-
gation source, treatment systems, and soil properties [80,82]. The four main global sugar-
cane producers (Brazil, India, China, and Thailand) use similar planting patterns as shown 
in Figure 3. 
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Figure 3. Characteristics of main sugarcane planting patterns: (A) single row planting; (B) double 
row planting (source: adapted from Wang et al. [83] and Sanches et al. [84]). 

The optimal row space arrangement is very important for rapid biomass growth. The 
top four sugarcane producing countries have each developed and determined the most 
suitable row spacing sizes (width and height) for their respective regions (shown the lists 
in Table 1). 

Table 1. Sugarcane planting information on producing countries. 

Country 
Sugarcane Planting Information 

References Inter-Row Spacing (m) Row Spacing (m) Seeding Density (Setts ha−1) 
Single Double Single Double Single Double 

Brazil 0.20–0.30 0.40–0.60 1.20–1.40 1.50–1.80 90,000–150,000 170,000–200,000 [85–89] 
India 0.10–0.20 0.20–0.40 0.90–1.00 1.20–1.50 37,500–50,000 50,000–75,000 [88,90–93] 
China 0.25–0.40 0.45–0.80 1.00–1.20 1.20–1.50 50,000–80,000 100,000–150,000 [81,82] 

Thailand 0.10–0.30 0.30–0.40 1.20–1.30 1.40–1.50 60,000–75,000 80,000–95,000 [62,94] 

2.4. Optimum Growing Conditions for the Different Development Phases of Sugarcane 
Weather conditions present the most important challenge for sugarcane yield. Both 

production and productivity are significantly affected by climate factors including rain-
fall, temperature, solar radiation, and relative humidity [17,34]. Sustained sugarcane 
growth during the different phases requires specific climatic conditions [60,67,72,95]. 

2.4.1. Required GDD for Different Development Phases 
Thermal time controls the phenological development of sugarcane [96,97]. The gen-

erally accepted model of thermal time is based on the accumulation of daily (starting from 
the first day of planting) average temperature (simplified as the average of maximum and 
minimum temperature values), from which the baseline temperature for growth is sub-
tracted [98]. This calculation is expressed by growing degree days (GDD) as in Equations 
(1) and (2) [98,99]. 

When 𝑇𝑚𝑖𝑛 > 𝑇𝑏 𝐺𝐷𝐷 = 𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛2 − 𝑇𝑏 (1) 
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When 𝑇𝑚𝑖𝑛 ≤ 𝑇𝑏 𝐺𝐷𝐷 = (𝑇𝑚𝑎𝑥 − 𝑇𝑏)2(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) (2) 

Here, 𝐺𝐷𝐷 is growing degree days, 𝑇𝑚𝑎𝑥  is maximum daily air temperature, 𝑇𝑚𝑖𝑛 is minimum daily air temperature, and 𝑇𝑏 is the basal temperature (for sugarcane 
roughly 9°-18°C). 

GDD allows the usual rates of crop development required for sugarcane growth in 
the different phases to be predicted. The required GDD for dynamic crop growth are 
shown in Figure 4. GDD are usually 0–250 °C during the first period of planting and affect 
sprouting of the stem [98,100]. In the second phase, tiller appearance requires 250 to 600 
°C cumulative GDD. At roughly 500 °C cumulative GDD high stalk density appears [97]. 
The third grand growth stage requires cumulative GDD of 600 to 900 °C strongly influ-
encing tillering production, stem elongation, biomass accumulation, and leaf production 
for rapid growth and high-quality productivity [97,101,102]. The last phase of maturing 
requires cumulative GDD of 900 to 1400 °C for sucrose accumulation before harvest 
[98,103]. 

2.4.2. Optimum Climatic Conditions for Growth 
Within the four main development stages of sugarcane, the required optimal climatic 

conditions are as follows [18,56,60,67,72,95,98,104,105]: 
1. The germination stage requires rainfall from 1100 to 1500 mm, 32 to 38 °C average 

temperature, solar energy 18–36 MJ/m2, and high relative humidity (80 to 85%). The 
optimal temperature is a mandatory requirement for sprouting of the stem cuttings; 

2. For the tillering stage, the climatic conditions required are similar to the first phase; 
however, water supply must be controlled to maximize growth; 

3. The grand growth stage needs rainfall between 750 to 1100 mm, 28 to 32 °C average 
temperature, sunlight at 10–18 MJ/m2, and high relative humidity of 80 to 87%. This 
stage requires high humidity for rapid cane elongation, while temperature above 38 
°C and high light intensity are critical to increase the rate of photosynthesis and res-
piration; 

4. Moderate relative humidity values (40 to 65%) and deficiency of water supply are 
desirable. Solar radiation as the day length (photoperiod) (10–14 h) is important for 
sucrose accumulation enough solar radiation (31–36 MJ/m2) is necessary, while low 
temperatures of 18 to 30 °C lead to ripening. 
Further details of the sugarcane crop dynamics (i.e., leaf area index (LAI)) in different 

phases are shown in Figure 4. For the first growth phase of sugarcane, new ratoons sprout 
stems, while biomass and LAI are slightly apparent. Weeding and pest application must 
be implemented to increase the number of ratoons [62,106]. The tillering phase requires 
strict control of sufficient water and nutrients to grow the new stalks. During this phase 
leaves sprout and LAI can be measured. Insects and diseases (white leaf and viruses) can 
have severe negative impacts [7,66]. Water deficit stress can occur in this phase due to 
drought [17,23,66], with death of young stalks and decrease in stalk population [107]. The 
grand growth stage involves rapid stem elongation, increase in biomass, vigorous devel-
opment of a large green canopy, and maximum LAI [75,97,98,101]. In addition, natural 
disasters such as drought and flood events can disrupt sugarcane farming [17,66,67]. Dur-
ing the last phase, LAI and chlorophyll content decrease because leaf water is used to 
accumulate sucrose in the stalks, while stalk biomass growth is almost completely stopped 
as the maturation stage size is similar to the grand growth stage [67,103]. Sugarcane flow-
ering intensity reduces sucrose production by lowering the quality of juice [108] and de-
creases sugarcane yield. Flowering depends on photoperiod, weather conditions, nutri-
tional status, soil moisture, and variety; therefore, selection of the optimal cultivar is nec-
essary for proper crop management [67,109]. 
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Figure 4. LAI at first ratoon of sugarcane crop compared to cumulative growing degree days (GDD) 
in different sugarcane growth phases (modified from Teruel et al. [98]). Green dots represent LAI 
values from observations, while the red line is cumulative GDD in units of degrees Celsius (°C). 

3. Spectral Signature of Sugarcane Canopy 
3.1. The Spectral Signature of Sugarcane 

The spectral signature of sugarcane—or more precisely its bidirectional reflectance 
distribution function (BRDF)—is driven by the same set of bio-physical variables that also 
determine the optical properties of other vegetation types [110–113], i.e.,: 
1. Structural/morphological variables (e.g., LAI, the average leaf angle inclination 

(ALA), canopy height, fractional vegetation coverage, density and clumping of the 
plants and plant components, row spacing, and orientation); 

2. Leaf absorption, scattering, and transmission coefficients (a function of leaf pigmen-
tation, water content and leaf anatomy), and; 

3. Soil background reflectance (a function of parent material, organic matter content, 
surface wetness, and roughness). 
As all variables vary over time—and important variables moreover vary as a function 

of the development stage of the plant—important spectral clues and traits are found in 
the temporal dynamics of sugarcane crops, useful for the correct identification and map-
ping of different crop plantations as well as for the retrieval of biomass and productivity 
[73,114,115]. Obviously, however, the fact that sometimes strong regional differences in 
cropping pattern etc. exist (as reviewed in Section 2), also hints to natural limits to a per-
fect mapping and monitoring as spectro-temporal patterns show a wide variability and 
hence strong overlap with other classes. 

The spectro-temporal signature derived from satellite images of sugarcane crops pro-
vides valuable information to analyze sugarcane health, diseases, crop stress, develop-
ment of biomass, leaf pigments, chlorophyll content, and crop management [45,116]. 
Everingham et al. [117] and Hamzeh et al. [45] successfully assembled spectral signature 
profiles of sugarcane fields by comparing data from two different EO satellites: Landsat-
7 Enhanced Thematic Mapper Plus (L7 ETM+) (multispectral) and Hyperion (hyperspec-
tral). Both sensors have a similar spatial resolution of 30 m. In Figure 5, the same pixels of 
both sensors were extracted and displayed. The resulting spectral profile is typical for 
green vegetation with the highest reflectance (%) in the near infrared (NIR) shoulder at 
772 to 898 nm and lower values in the shortwave infrared (SWIR) at 2064 to 2345 nm as 
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well as in the visible (<740 nm). These trends were similar to other sugarcane spectroscopy 
measurements in previous studies [118,119]. 

 
Figure 5. Spectral signatures of a representative sugarcane crop (provided by Hamzeh et al. [45]). 
The red triangles represent Landsat-7 ETM+ bands 1–5 and 7 (the red line is only drawn to enhance 
visibility), while the black line shows the 198 continuous spectral signatures based on hyperspectral 
bands from Hyperion (note that the straight segments of the black line are linear interpolations 
within the water vapor absorption bands). 

Sugarcane has a distinct growth pattern and phenology as compared to many other 
crop types; therefore, the spectral and temporal characteristics of satellite data can be an-
alyzed using statistical and machine learning approaches to better discriminate sugarcane 
fields from other crops. Knowledge of spectral signatures of sugarcane can increase effi-
ciency for crop monitoring and yield prediction [120,121]. Everingham et al. [117] selected 
the optimal spectral bands of Hyperion satellite data and developed a spectral signature 
in space and time to classify sugarcane varieties and crop cycles. A discriminant function 
model was applied to select the best set of spectral indices by correlation. 

Studies such as Apan et al. [122], Apan et al. [123], and Bégué et al. [124] used discri-
minant analysis to identify sugarcane farms affected by orange rust disease. The affected 
areas showed lower red and NIR reflectance compared to healthy sugarcane in other 
growth areas. Thus, the spectral signature information can be used to indicate abnormal 
conditions. Salinity stress in sugarcane fields has been well detected based on modified 
reflectance spectra resulting from high salt concentrations in soils, negatively impacting 
crop growth [45,125]. Abdel–Rahman et al. [119], Amaral et al. [126], Lofton et al. [97], and 
Miphokasap and Wannasiri [127] successfully estimated the development of biomass and 
nitrogen status by analyzing spectral reflectance trends. With the increasing availability 
of satellite data with high revisit frequency and high spatial and spectral resolution, more 
accurate spectral and spatial information is available [44] and provides the necessary data 
for tools suggesting modified crop management procedures to improve production and 
productivity. 

3.2. The Bi-Directional Reflectance Distribution Function (BRDF) of Sugarcane 
A detailed knowledge of the spectral signature of a sugarcane canopy is important 

for accurate analysis and deployment of remote sensing data [128,129]. However, similar 
to other crops, the BRDF characteristics of sugarcane crops are non-Lambertian. Hence, 
the angles of illumination and observation, together with row orientation and spacing, 
have a profound effect on the remotely measured spectral signature. The BRDF effects are 
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moreover subject to the phenological developments of the crop (e.g., canopy components, 
height, leaf angle, and inter-row spacing) that affect spectral radiation properties [97,130–
132]. 

Many researchers have developed measurement techniques to assess the bidirec-
tional effects resulting from the above listed factors affecting the surface reflectance 
[97,133]. Schaepman–Strub et al. [134] and Nicodemus et al. [135] measured the radiation 
properties of constantly illuminated crops, while Moriya et al. [136] analyzed the effect of 
BRDF on sugarcane crops using spectroradiometric observations at ten viewing angles. 
The authors successfully developed the BRDF model of Walthall et al. [137] for analysis 
of spectral reflectance profiles at different viewing angles of sugarcane crops, compared 
to the nadir view (Figure 6). 

 
Figure 6. The different viewing angles of sugarcane crops (contributed by Moriya et al. [136]). (a) 
Comparison between spectral signature profile at nadir viewing and the BRDF model curve modi-
fied from Walthall’s study. (b) Spectral reflectance at ten viewing angles calculated from Walthall’s 
BRDF correction model. 

The original (nadir) curve was compared with the corrected BRDF signature, as 
shown in Figure 6a. The shapes of both spectral signature lines were maintained and re-
sulted in similar patterns. Figure 6b shows ten different spectral reflectance curves by ap-
plying Walthall’s BRDF correction model as well as the nadir curve (black dashed line). 
The shapes and forms of spectral signatures 25°, 20°, 15°, and 5° off-nadir curves were 
quite similar pattern to the nadir, with a minimized BRDF effect. Moriya et al. [136] sug-
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gested avoiding distortion of image data observed in sugarcane fields when using hyper-
spectral sensors on an UAV. They suggested applying Walthall’s BRDF model to correct 
the spectral reflectance curves from UAV images captured from sugarcane fields and 
other crops as well. Walthall’s BRDF correction model may help treatment of spectral in-
formation of hyperspectral images for sugarcane. It has to be noted that the BRDF of sug-
arcane crops presents not only a challenge but also an opportunity for an improved as-
sessment and characterization (see work by Koukal and Atzberger [138] and Koukal et al. 
[139]) on UAV-derived BRDF for species identification. 

3.3. Sugarcane Leaf Transmittance and Reflectance 
Solar EMR interacts with sugarcane canopies in a similar way to other land surfaces 

and is either reflected, transmitted, and/or absorbed. Reflectance characteristics of crops 
are based on a non-linear combination of the spectral reflectance of the plant material and 
the underlying soil [113,140]. The observed spectral reflectance of sugarcane crops is 
mainly determined by four parameters: the quality of the optical remote sensing data (i.e., 
atmospheric conditions and the geometry of data acquisition), agronomic parameters, 
canopy structures, and foliar chemistry [22,119]. 

The geometrical structure of the optical sensor characteristics is the most important 
factor when assessing reflectance characteristics. In particular in the NIR, sugarcane can-
opies generate higher reflectance for medium erect foliage (approximately 0.8 to 1.2 m) 
than erect foliage (less than 0.8 m) as the different length of leaves [130,141]. Higher or 
lower light intensity depend on the phenological properties of sugarcane (i.e., leaf density, 
number of stalks, row structure, and canopy) [142]. Different pigments in the leaves (e.g., 
chlorophyll a and b, carotene, xanthophyll, and anthocyanin) also affect the spectral re-
flectance [113,140]. Some foliar nutrients affect spectral behavior by light absorption and 
relate to the photosynthetic process as crop vigour development [113,130,143]. Visible 
spectral regions (400–700 nm) and red edge (670–780 nm) are well-known features react-
ing to the absorption of pigments in sugarcane leaves [144]. The red edge spectral region 
is very sensitive to temporal variations of sugarcane growth, crop stress and nitrogen and 
chlorophyll status [118,119]. Moreover, spectral sugarcane behavior is also influenced by 
water content of the leaves, with high absorption at specific spectral regions (wavelengths 
980 nm and 1250 nm) [22,113]. The LAI also impacts the recorded spectral signatures, in 
particular in the NIR. Simões et al. [120] and Fortes and Demattê [141], for example, indi-
cated that a canopy with high LAI reflects light more than canopies with medium or low 
LAI. However, a higher LAI of sugarcane canopy in ripening stage always decreases light 
radiation through the leaves to the stalk [142]. Any growth anomaly is thus also mirrored 
in the optical remote sensing data. Therefore, canopy structure, agronomic parameters 
and foliar chemistry should be considered for assessing and monitoring the dynamics of 
sugarcane crop growth. Moreover, environmental parameters such as temperature, pre-
cipitation, topography and solar radiation should be included as external factors when 
analyzing distortions of spectral sugarcane behavior. 

3.4. Temporal Evolution Profile 
The phenological evolution of sugarcane is echoed in the temporal profile of its spec-

tral reflectance. Spectro-temporal signature profiles are also valuable information to as-
sess the vigour of crop types [43,145,146]. Detailed spectral signature and temporal dy-
namics of sugarcane crops provide guidelines to analyze sugarcane mapping, health, dis-
eases, crop stress, development of biomass, leaf pigments, chlorophyll content, and crop 
management [45,116]. 

To illustrate the temporal dynamics of sugarcane crops, Figure 7 displays the average 
spectro-temporal evolution of 25 sugarcane fields in Udon Thani province, Thailand, 
based on Landsat-8 Operational Land Imager (L8 OLI) time series data 2019/2020. The 25 
sampling points were selected from fields planted in March to April. Displayed are the 
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bands 2, 3, 4, 5, 6, and 7 (blue, green, red, NIR, SWIR 1, and SWIR 2) with a spatial resolu-
tion of 30 m. The image dataset is corrected for atmospheric conditions and produced by 
the U.S. Geological Survey [147]. Between March 2019 and February 2020, 13 images with 
less than 40% cloud cover were identified and spectral values were extracted and plotted 
as shown in Figure 7. 

 
Figure 7. Spectral signature profiles of sugarcane crop in 2019/2020 from 25 field sampling points in Udon Thani province, 
Thailand. Average spectral reflectance values were extracted from Landsat-8 OLI images time series with blue (blue line), 
green (green line), red (red line), near-infrared (NIR) (gray line), shortwave infrared (SWIR 1) (yellow line), and SWIR 2 
(orange line). 

The temporal profile in the NIR (gray line) shows an increased spectral reflectance 
from July to September during grand growth due to higher biomass, while there was a 
slight decrease from October to February during the ripening phase. Spectral profiles of 
SWIR 1 (yellow line) and SWIR 2 (orange line) reduced from April to May due to crop 
development and increasing water content and then rose steadily from October until Feb-
ruary. The three visible wavelengths (blue, green, and red) gave patterns similar to the 
SWIR indicating a build-up and decrease of chlorophyll during the four sugarcane growth 
stages. Thus, the spectral characteristics of the temporal profiles related well to sugarcane 
crop growth stages during the year. 

The NDVI is very sensitive to changes in leaf surface/biomass as well as chlorophyll 
content and other leaf pigments and thus permits a monitoring of the phenological dy-
namics of sugarcane crops [120,145,148,149]. The NDVI values from 25 sampling points 
in Udon Thani, Thailand, are averaged in Figure 8 and show the evolution of sugarcane. 
Also indicated are minimum and maximum NDVI values. Clearly, different phases had 
varied NDVI values. The profile showed high value during the grand growth phase, while 
there was a decrease during the final phase. The shapes and patterns of this NDVI curve 
were similar to the studies of Fernandes et al. [146] and Chen et al. [145]. 
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Figure 8. Example of the smoothed mean normalized difference vegetation index (NDVI) prolife (green line) of sugarcane 
crop in 2019/2020, Udon Thani province, Thailand. The smoothed line of mean NDVI is presented in the dark area. The 
dot lines at vertical axis are separated in different sugarcane phases. 

4. Bibliographic Analysis 
In the last two decades, the sugarcane area expanded strongly in several countries 

such as Brazil [11,150]. At the same time, the availability of EO satellites for agricultural 
applications increased [23,49,151]. This led to an increasing number of publications in a 
wide range of remote sensing and/or agricultural journals. In this section, a bibliographic 
analysis is provided reviewing the literature of EO based sugarcane mapping and moni-
toring since 1981. 

In total, 107 manuscripts were reviewed from 69 peer-reviewed journals in English 
and Portuguese language. Publications available from 1981 to 2020 in Google Scholar, 
Elsevier, MDPI, Springer, Taylor & Francis Online, and PLOS One were used for the anal-
ysis. In the case of Scopus database and Clarivate Analytics Web of Science different key-
words such as ‘sugarcane’, ‘crop mapping’, ‘sugarcane yield estimation’, ‘sugarcane 
growth’, ‘sugarcane drought’, and ‘diseases’ were used to identify relevant literature. The 
frequency distribution of articles within the different journals is depicted in Figure 9. In 
total, 17 journals published at least two articles relevant to our review topic. Interestingly, 
besides the suspected EO journals, the Brazilian journal Engenharia Agricola figures under 
the top 3 periodicals, highlighting the strong importance of the sugarcane crop for the 
Brazilian agricultural sector (with two additional Brazilian journals under the top 10). 
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Figure 9. Distribution of sugarcane related publications across journals in Scopus database and Web 
of Science. The data assessed cover the period 1981 to 2020. The frequency distribution of papers 
within the different journals is shown. 

4.1. Temporal and Regional Distribution of the Publications 
Until 2000, only few remote sensing studies on sugarcane were published as seen in 

the temporal distribution of journal publications from 1981 to 2020 (Figure 10). In term of 
the publications in EO journals (e.g., earth observation and remote sensing), we also or-
ganized these into a group as expressed in Figure 11. Afterwards, the number of publica-
tions increased significantly and in particular after 2008 when the United States Geological 
Survey (USGS) changed its Landsat data policy to free and open [152]. In addition, during 
that period, advances in remote sensing technologies increased the capabilities of EO, 
providing high potential to rapidly monitor crop performance and management [26,153]. 

The regional distribution of the author’s working place is shown in Figure 12 with 18 
countries contributing to the main bulk of published material. Brazil is the most promi-
nent country with the highest number of publications (47). From the remaining countries, 
none exceeded ten publications: India (9), China (9), France (8), Australia (7), USA (6), 
Thailand (5), South Africa (4), and Kenya (3). 

 
Figure 10. Temporal distribution of the analyzed remote sensing and earth observation (EO) publi-
cations in all journals from 1981 to 2020. 
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Figure 11. Temporal distribution of the analyzed publication of remote sensing and earth observa-
tion (EO) journals from 1981 to 2020. 

 
Figure 12. Regional distribution of the analyzed all publications by country in the period 1981 to 2020 based on affiliation 
of the first author. 

The regional distribution of journal publications is closely related to the importance 
of the crop for the respective country. According to FAO [13], out of 108 tabulated coun-
tries, the four countries with the highest sugar production were Brazil, India, China, and 
Thailand. These four countries (together with US, Australia, and France), also generated 
the bulk of publications (Figure 12). The publications probably reflect the research strate-
gies and funding opportunities of the respective governments aiming to increase the up-
take of new EO technologies by farmers and other stakeholders of the value chain. This 
seems justified as remote sensing offers highly needed real-time observation capacity that 
permits for example an increased production by planting expansion [1,14,15,154]. The lit-
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erature also demonstrates that the use of remote sensing techniques can increase the effi-
ciency of sugarcane cultivation using different spatial, spectral, and temporal resolution 
data [49,132,155]. 

4.2. Main Sensors Used for the Research 
The type of sensor used for the sugarcane research is large and Table 2.. shows the 

percentage (%) of publications using data with different spatial resolution. According to 
Table 2., roughly half of all publications use decametric sensor data with resolutions be-
tween 10 and 30 m (such as Landsat and S2 MSI), while the remaining part is more or less 
evenly split into very high-resolution (VHR) and UAV sensors with centimetric resolu-
tions and coarse resolution sensors with hectormetric pixel sizes such as the moderate-
resolution imaging spectroradiometer (MODIS). 

Table 2. Sensors used for the sugarcane research and different spatial resolution (m). 

Spatial Resolution 
of Sensor (m) 

Sensors Used Number of 
Studies 

Percentage of 
Studies (%) 

<1 * Spectrometry and imaging spectrometer, UAV and LiDAR 21 14 

<10 
WorldView-2, GeoEye-1, TerraSAR-X, RADARSAT-2, Formosat, 
IKONOS, Quickbird, Orbview, IRS-P6 LISS-IV, ALOS/PALSAR,
and SPOT-VHR 

17 11 

10 to 30 
S1 SAR, S2 MSI, SPOT-5, SPOT-4, CBERS-2, THEOS, IRS-P6 LISS-
III, Hyperion, L5 TM, L7 ETM+, L8 OLI, ASTER, ENVISAT
ASAR, HJ-1 A/B, and HJ-1 CCD 

86 58 

31 to 250 IRS-P6 AWiFS and MODIS 17 12 
251 to 1000 SPOT-VGT and NOAA 7 5 

* Including ground surveys. 

The use of sensors such as Landsat, S2 MSI, and MODIS probably reflects the excel-
lent availability of such data for research, while the commercial data policies and high 
costs attached to VHR imagery result in a lower uptake. In particular, S2 MSI and Landsat 
seem to provide appropriate pixel sizes to also enable the mapping of smaller farms. 

UAV data are mainly used for very localized studies and have become more popular 
in the last decade (Table 2). Sensors onboard UAVs sometimes overcome the weakness of 
satellite remote sensing images in terms of spatial resolution and ad hoc availability for 
mapping sugarcane plantations. UAV sensors have centimetric spatial resolution and 
high temporal flexibility [41,156,157]. Moreover, the use of UAV technology now offers a 
cost-effective method for monitoring sugarcane in near real-time if areas are very small 
[3,7]. 

The type of sensor used for analysis is shown in Figure 13 in intervals of five years. 
Almost 20 different type of sensors have been used in the last three 5-year intervals 
whereas only up to five sensor types were used in the previous intervals. The highest 
value is found during 2016–2020 with 38% of the total of publications, followed by 2011–
2015 (28%), 2006–2010 (27%), and 1996–2000 (4%). 

The most widely used sensor for sugarcane is Landsat-5 Thematic Mapper (L5 TM) 
with 12.84% of the publications, whereas L7 ETM + is used almost one third less (10.14%) 
and L8 OLI is used less than half of L5 TM (7.43%). These percentages are correlated with 
the corresponding life time of the three sensors [158]. In spite of its coarse spatial resolu-
tion, the MODIS sensor was also widely used (10.14%). UAV and imaging spectrometer 
are used within roughly 5.41 and 6.76% of the reviewed articles (Table 3). 
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Figure 13. Number of sensors used vs. temporal ranges in five years. 

Table 3. The detail of sensors used in intervals of five years and frequency studies in percentage. 

Time Intervals 
(Years) Sensor Names and Intensive Percentage 

1981–1985 Spectrometry/spectroscopy (1)  1 
1986–1990 Spectrometry/spectroscopy (1)  1 
1991–1995 - 0 
1996–2000 SPOT-VHR (1), L5 TM (2), MODIS (1), CBERS-2 (1), and NOAA (1)  4 
2001–2005 Hyperion (1) and L7 ETM+ (1)  1 

2006–2010 

Spectrometer/spectroscopy (1), TerraSAR-X (1), SPOT-4 (4), SPOT-5 (6), IRS-P6 LISS-III 
(1), Hyperion (3), L5 TM (3), L7 ETM+ (6), ENVISAT ASAR (2), MODIS (3), CBERS-2 
(2), ASTER (2), NOAA (1), Formosat (1), IKONOS (1), Quickbird (1), Orbview (1), and 
IRS-P6 AWiFS (1)  

27 

2011–2015 

Spectrometry/spectroscopy (4), WorldView-2 (1), TerraSAR-X (1), ALOS/PALSAR (2), 
SPOT-4 (2), SPOT-VHR (1), IRS-P6 LISS-III (1), Hyperion (1), L5 TM (10), L7 ETM+ (4), 
L8 OLI (3), HJ-1 A/B (1), MODIS (4), SPOT-VGT (4), NOAA (1), IRS-P6 AWiFS (1), and 
THEOS (1)  

28 

2016–2020 
Spectrometry/spectroscopy (8), UAV (10), LiDAR (2), WorldView-2 (1), GeoEye-1 (1), 
RADARSAT-2 (1), IRS-P6 LISS-IV (2), S1 SAR (4), S2 MSI (6), Hyperion (2), L5 TM (4), 
L7 ETM+ (4), L8 OLI (7), HJ-1 CCD (1), MODIS (7), and Hyperspectral sensor (1)  

38 

The relation between the size of the study area and the spatial resolution is shown in 
Figure 14. Data are shown as scatter plot of the two variables together with a linear fit. 
The results show a noticeable—albeit weak—correlation between the area size and the 
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spatial resolution. The relation is deteriorated by the fact that Landsat data is used in 
highly variable area sizes. 

 
Figure 14. Scatter plot of study area and sensor spatial resolution of the data. 

5. EO-Base Sugarcane Monitoring Approaches 
The following scopes of sugarcane research were distinguished in this review (in pa-

renthesis the number of analyzed papers): mapping (52), growth anomaly monitoring 
(11), health detection (14), and yield estimation (30). Accordingly, the list of publications 
was filtered according to the following parameters: 
• Which classification techniques were applied for the research and with which remote 

sensing data (i.e., satellite images and aerial photographs)? The supervised tech-
niques were centered on the sugarcane variety identification using two-class (sugar-
cane/non-sugarcane, [43]) or multi-class classification [35]. Additionally, early-sea-
son mapping was included in the search [43]; 

• How was the sugarcane yield prediction performed including the use of ground in-
formation and phenology? As Mutanga et al. [159] showed, it is possible to predict 
the yield before the sugarcane harvest based on vegetation indices and basic statisti-
cal models; 

• Relating to health detection, parameters such as nutritional status, disease disper-
sion, water stress and damage caused by droughts/floods were included in the search 
to monitor sugarcane [118,125]. In addition, a part of a previously review paper by 
Abdel–Rahman and Ahmed [22] was included in this review; 

• Research on the statistical analysis between the spectral behavior of sugarcane phe-
nological dynamics and field data was included. Satellite remote sensing images 
were used to calculate vegetation indices such as NDVI, the normalized difference 
water index (NDWI), and enhanced vegetation index (EVI). Suitable indices were tai-
lored to increase the correlation using ground information. Regression statistical 
models were used to calculate efficiency [149,160–162]. These methodologies were 
addressed in the literature review; 
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• Data synergy (i.e., integration of satellite images, ancillary data and landscape met-
rics as examples) were added in the list of parameters to assess different monitoring 
approaches. The synergy was focused on analyzing land use changes, primarily on 
sugarcane-related land use change. As Lacerda Silva et al. [163] showed by means of 
ancillary data (e.g., census data) the changes in the area and productivity of the sug-
arcane plantations were evaluated; 

• The usage of image time series for monitoring sugarcane anomalies was assessed. 
The remote sensing time series permit to extract sugarcane relevant information such 
as crop growth or anomaly detection. It was also assessed if data fusion was applied 
such as the combination of SAR and optical satellite time series [44]. 

5.1. Mapping 
EO satellites cover large areas at high spatial detail and provide valuable information 

crop-related information as the reflectance behavior of sugarcane (and other land cover 
classes) changes with crop type, crop status, and development stage [25,164]. The spectral 
measurements can be related to crop-specific growth pattern and phenological dynamics 
as well as leaf/canopy structure and biochemical composition. Several recent studies used 
remote sensing data to identify and map sugarcane plantations. Results can be used by 
various stakeholders (e.g., government bodies, traders, input companies, sugarcane mills, 
tractor industries, insurance companies, planter association, and farmers) to optimize the 
management and commercial exploitation of sugarcane [35,49,162,165]. The overall accu-
racy (OA) of the 52 papers addressing the classification topic is shown in Figure 15 for 
different classification methods. Almost all techniques permitted accuracies in excess of 
80%, sometimes 90%. Figure 16 shows the positive relation between the OA and the spatial 
resolution of the EO data, confirming that a higher spatial resolution often results in a 
higher classification accuracy, as pixels become more pure. 

 
Figure 15. Overall accuracy (OA) (%) achieved with different classification methods (abbreviations 
were referred in Table 4). 
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Figure 16. Relation between overall accuracy (OA) (%) and spatial resolution of the image data in 
meter (m). 

Moreover, this review summarized different classifier approaches with publications 
for sugarcane mapping as followed in Table 4. The 16 classifier approaches for sugarcane 
mapping in different years were provided more attention (Figure 17). 

Table 4. Summary of different classifier methods, sensors use, and pros and cons for sugarcane mapping. 

Classifier 
Approaches Sensors Use Pros Cons Publication 

CM 
HJ-1 CCD, Hyperion, 
MODIS, and NOAA 

• Fast and simple  
• Work well with single 

class 

• The accuracy result 
depends on the quality of 
image input 

• Dificult to separate several 
crop speceis  

[130,145,165–
168] 

RF 

S1 SAR, S2 MSI, L5 TM, 
L7 ETM+, L8 OLI, 
SPOT-VHR, and 

Hyperion  

• Fast processing  
• Flexibility to handle many 

variables 
• Identify the best variables  
• Highly accurate 

classfication for sugarcane 
mapping   

• Need much more training 
data than classic methods 

• The accuracy decreases 
when applying with single 
class  

[34,43,49,117,
169] 

OBIA 
UAV, LiDAR, HJ-1 A/B, 
L5 TM, L7 ETM+, and 

RADARSAT-2   

• Suitable for small 
sugarcane field scale 

• Very good performance 
with high spatial 
resolution   

• Complexity for 
classification 

• Require parameter setting 
for classifcation 

[3,58,73,74,10
6,170] 

LDA 
UAV, Hyperion, and L7 

ETM+   
• Use single image data 

• The accuracy vary on the 
number of spectral bands 
use  

[7,117,141] 
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• High efficiency when 
analyzing rich spectral 
bands  

• The statistical skills use  

MLC 
THEOS, L5 TM, L8 

OLI, LISS-IV, and IRS 
(AWiFS)   

• Fast and simple  
• Only single-date image 

data use  

• The map result depends 
on the quality of data 
input 

• Difficulties to identify 
suitable training area 

[162,163, 
171,172,173] 

PCM WorldView-2, LISS-III, 
and ALOS/PALSAR 

• Use single image data 
• High capability for 

identifying crop 
plantations 

• Need to apply with fuzzy 
approaches [174–176] 

SVM S2 MSI, Hyperion, L7 
ETM+, and L8 OLI 

• High accuarcy for single 
class of sugarcane 
classification  

• Good performance with 
high-dimensional data 

• Time-consuming for crop 
type classification  

[35,45,117,177
] 

DT 
S1 SAR, S2 MSI, L5 TM, 
L7 ETM+, L8 OLI, and 

LISS-IV  

• An appropriate method 
with analyzing multi-
sensor data 

• Effectively discriminate 
sugarcane fields from 
other crop  

• No identifying the best 
varibles 

• High risk of overfitting 
when comparing with RF 
classifier 

[155,178,172] 

Vis.Int. MODIS, L5 TM, and L7 
ETM+ 

• Easy interpretation  
• Basic skills use 
• General reseacher can use 
• Use few image channels   

• Require very high spatial 
resolution  

• The accuracy based on an 
experienced and sensitive 
interpreter  

[56,179,180] 
 

ANN S2 MSI • Can input multi-features 
data 

• Low efficiency for 
sugarcane mapping when 
comparing with other 
machine learning methods 

[35] 

CNN S2 MSI • Very good agreement for 
sugarcane mapping  

• Complexity method for 
crop classification 

• Require advance skills 
[181] 

ISODATA LISS-IV • Fast and simple 
• No label data use 

• Low accurate result for 
sugracane mapping  [172] 

PDA Hyperion 
• Use single image data 
• Overcome the problems 

with high dimetional data 

• The statistical skills require 
• Low accuracy when 

analyzing few spectral 
information 

[117] 

XGBoost S1 SAR and S2 MSI 
• Similar behavior with RF 

classifier 
• Fast process than RF 

• More robust to overfitting 
than RF [43] 

MDC Hyperion • Fast and simple • Low accurate result 
• Need suitable training area [45] 

SAM Hyperion • Fast and simple 
• No label data need • Very low accurate result  [45] 

CM = crop masking, RF = random forest, OBIA = object-based image analysis, LDA = linear discriminant analysis, MLC = 
maximum likelihood classification, PCM = possibilistic c-mean, SVM = support vector machine, DT = decision tree, Vis.Int. 
= visual interpretation, ANN = artificial neural network, CNN = convolutional neural network, PDA = penalized discrimi-
nant analysis, MDC = minimum distance classification, SAM = spectral angle mapper. 
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Figure 17. Bare plot of different classifier methods with the year of publication. 

5.1.1. Visual Interpretation (Vis.Int.) Analysis 
For visual classifications, spectral differences are used to separate sugarcane planta-

tions from other land uses [56]. The validity of this approach has been confirmed by com-
parison between ground observations and land information derived from interpretative 
analysis [130,182]. Aguiar et al. [183], Mendonca et al. [180], and Rudorff et al. [56] inter-
preted sugarcane cropping practice and land use change in the Kibos–Miwani sugar zone 
(Kenya) and São Paulo State (Brazil) using L5 TM, L7 ETM+, and L8 OLI imagery. An 
experienced and sensitive interpreter is required to guarantee uniformity and acceptable 
efficiency for sugarcane cultivation dynamics [180,184–186]. 

5.1.2. Use of Different Active and Passive Sensors 
França et al. [187] and Arraes et al. [188] identified harvesting areas by L5 TM and 

images from the China–Brazil Earth Resources Satellite program (CBERS-2). Sugarcane 
strew burning areas were detected using spectral indices and thermal emission reactive 
to fire and burn scars from the advanced very high-resolution radiometer (AVHRR) and 
MODIS sensors. 

Rao [166] tested hyperspectral data to classify several varieties of rice, chilli, sugar-
cane, and cotton crops. Results showed that spectral features of rice and sugarcane varie-
ties were quite similar and it was difficult to separate crop species if the crop phenology 
was not taken into account. Data from the Thailand Earth Observation System (THEOS) 
and L5 TM were used by Phongaksorn et al. [171] to describe the spectral features of crops 
using vegetation characteristics. According to the results, the spectra of THEOS were 
slightly more discriminating between cassava and sugarcane than L5 TM due to high spa-
tial resolution. L5 TM and L7 ETM+ were also analyzed using spectral indices comprising 
NDVI, ratio of vegetation index [165] and NDWI [162] to identify sugarcane plantations 
using crop masking (CM) as a threshold approach [162,173,189]. In addition to large scale 
field studies working on individual field level, satellite images from MODIS at 250 m spa-
tial resolution with multi-temporal vegetation indices (i.e., NDVI and EVI) were analyzed 
using the CM method to identify sugarcane plantations [165,190–192]. Multi-temporal re-
mote sensing data of MODIS and Huan Jing-1 CCD (HJ-1 CCD) imagery at different spa-
tial resolutions were also analyzed through image fusion and the CM method. Results 
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demonstrated that the use of accumulated NDVI index during the grand growth and mat-
uration stages provided good classification results (average 75–80% of OA) due to high 
amounts of vigorous green leaves and high leaf density in grand growth to ripening 
phases. Other sugarcane stages were difficult to identify using MODIS imagery [145], 
while similar problems were encountered in distinguishing sugarcane from vigorous pas-
ture fields with similar spectral behavior (Figure 18). Obviously, coarse spatial resolution 
limits classification conditions for plantation due to mixed pixel problematic for areas 
with small fields. Similar to high-resolution data, the coarse spatial resolution is also af-
fected by atmospheric conditions (e.g., high cloud cover, fog, and rain), leading to image 
degradations and distortions of spectral reflectance [56]. Contrary to high-resolution EO 
data, smaller clouds cannot be well detected, while the revisit frequency improves the 
chances of cloud-free observations. 

 
Figure 18. Example of sugarcane canopy, water body, and pasture field displayed in a UAV image 
observed on 16 May 2018. The UAV image shows sugarcane phenology in grand growth stages. 

To better illustrate the mentioned crop classification problems using EO data, we 
provide below an example using the NDVI spectral index from S2 MSI (Level-2A) at 10 m 
spatial resolution acquired between November and December 2019 [40,193]. Displayed 
are a single image from November as well as mean and maximum composites over the 2-
month period over a small site in Udon Thani province, Thailand. The crop plantations of 
sugarcane were compared against rice and cassava fields showing different NDVI values 
range (Figure 19). It can be seen that the mean and max NDVI composite maps permit to 
distinguish between sugarcane and other crop plantations, but not the single NDVI (ob-
served on 28 November 2019). In the latter case some sugarcane fields had similar NDVI 
spectral features compared to cassava and rice fields (as expressed in red dot line as cy-
cles). 
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Figure 19. Comparison of single (a), mean (b), and max. NDVI (c) pixel values of Sentinel-2 (S2) image data (November–
December 2019) with 10 m of spatial resolution. These data (cloud cover < 40%) were acquired for the Udon Thani prov-
ince, Thailand. 

As an active microwave remote sensing technique, SAR offers day and night obser-
vation with very high to moderate spatial resolution (approximately 1 m to 1 km) 
[194,195]. SAR sensors also obtain data under all weather conditions (e.g., clouds, fog, and 
rain) resulting in highly revisit frequencies, potentially useful for agriculture monitoring 
[194–197]. Many studies applied multi-temporal SAR data from ASAR/ENVISAT, Ter-
raSAR-X and PALSAR sensors to investigate sugarcane fields based on the behavior of 
the radar signal using the threshold method. The recorded backscatter is impacted by sev-
eral parameters such as wavelength or range of the used radar frequencies, incidence an-
gles and polarization [18]. Several studies achieved useful classification results using 
cross-polarization channels (HV and VH) from Terra SAR-X data (X-band), leveraging the 
different phenological stages of sugarcane fields compared to other vegetation 
[18,176,198,199]. Jiang et al. [43] and Molijn et al. [44] explored the use of S1 SAR data (C-
band) together with optical image (S2 MSI) data to map sugarcane plantations and 
productivity. The C-band SAR data showed high potential for sugarcane mapping. There-
fore, multiple sensor approaches using, i.e., S1 SAR, S2 MSI, and L8 OLI, generally in-
creased the mapping accuracy [35,155] and should therefore be considered particularly 
useful for sugarcane mapping. The multi-temporal datasets also minimize to some extent 
the problems related to the noise in SAR images. 

5.1.3. Use of Different Classification Techniques 
In terms of classification technique, most sugarcane classifications were done using 

common remote sensing techniques, including supervised classification techniques (e.g., 
maximum likelihood classification (MLC), minimum distance classification (MDC), and 
spectral angle mapper classification (SAM)) [45,56,162,172,200,201], together with unsu-
pervised classification algorithms (e.g., ISODATA classifier) [172,202,203]. In most cases, 
the spectral information of individual pixels is considered as predictive feature vectors 
within a n-dimensional space to identify cropping fields [56,123,172,174,175,202,204]. 

A large number of studies compared ISODATA, MLC, and decision trees (DT) 
[38,45,162,172,201,203] using the Indian Remote Sensing Satellite-6 (ResourceSat-1) (IRS-
P6), a high-resolution linear imaging self-scanner (LISS-IV), Hyperion, and L5 TM data 
(with spatial resolution of 5 to 30 m) to classify sugarcane/non sugarcane areas 
[172,175,202,205]. The DT method demonstrated the best performance for separating sug-
arcane from other crops [206]. Li et al. [207] and Nonato and De Oliveira [178] mentioned 
that specific indices (e.g., NDVI and EVI) used with DT can effectively discriminate sug-
arcane fields from other crop types with OA at about 90%. Multi-spectral imagery from 
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IRS-P6, a medium-resolution linear imaging self-scanner (LISS-III) and WorldView-2 sat-
ellite sensors, had effective crop classification utilizing applied possibilistic C-Mean 
(PCM) with fuzzy approaches. The spectral bands of Worldview-2 (yellow, red, red-edge, 
NIR1, and NIR2) resulted in high capability for identifying crop plantations and achieved 
an OA accuracy about 90–93% for the sugarcane classification [174,175]. Recently, sugar-
cane, including related land cover change in the State of São Paulo, was analyzed using 
two Landsat multi-temporal (L5 TM and L8 OLI) datasets with the MLC algorithm. The 
OA value showed good accuracy (average 84%) [163]. 

Despite the success of the above studies, they also revealed serious drawbacks, lead-
ing to variations in classification accuracy. Major factors negatively impacting the classi-
fication accuracy were low quality of data acquisition, imperfect cloud masks, spectral 
overlap and confusion between different land use classes, difficulties to identify suitable 
training areas, and uncertainty with respect to the available training data. As a general 
problem, the transferability of the developed approaches to other geographies and/or sea-
sons remains an unsolved issue. 

5.1.4. Use of Different Machine Learning Techniques 
Machine learning algorithms such as RF, SVM, ANN, and DT have been used with 

remotely sensed data for sugarcane monitoring with excellent accuracy by Wang et al. 
[35]. They compared RF, Polynomial-SVM, RBF-SVM, ANN and CART-DT classifier 
methods with multi-temporal NDVI of S2 MSI imagery to map sugarcane plantations. 
Polynomial-SVM demonstrated very high potential for sugarcane mapping in complex 
landscapes at of China. Johnson et al. [177] conducted L8 OLI pansharpening and SVM 
approaches, while Convolutional Neural Network (CNN), Penalized Discriminant Anal-
ysis (PDA) and Linear Discriminant Analysis (LDA) were also developed as alternative 
techniques for the mapping. CNN obtained very good agreement (OA of 95%) against the 
reference data [7,117,123,181]. However, these authors analyzed only single-date image 
from a single sensor for sugarcane mapping. Currently, rich information of EO data are 
available, which provide improved classification results compared to single date data in-
put [35,155]. 

Wang et al. [35] successfully classified sugarcane plantations in complex landscapes 
using multi-temporal NDVI of Sentinel-2 images and several machine learning methods. 
The authors constructed a three-bands NDVI image based on different phenological 
stages (e.g., seedling, elongation, and harvest stages) yielding a 3-dimensional space (Fig-
ure 20). The 3-dimensional space allowed to better understand the sugarcane’s spectral 
behavior compared to other classes. This confirms the value of multi-temporal EO images 
for separating sugarcane fields from other crops and land cover classes. 
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Figure 20. 3-dimensional space for visualization generated by Wang et al. [35]. The 3-band NDVI 
shows clear clusters for different land use classes, representative for different phenological stages 
(germination, grand growth and ripening) of sugarcane. 

RF is an ensemble approach based on decision trees (DT) to conduct a prediction for 
classifications and regressions [208]. The approach uses bootstrapping to generate differ-
ent train and test data sets and for obtaining unbiased the results based on the so called 
out-of-bag (OOB) data. For the aggregation of the DT-specific predictions—for accuracy 
assessment and the application of the model—the majority vote is used [208]. Over the 
last decade, the RF classifier has been increasingly used by the remote sensing community 
because its simplicity and speed together with satisfying classification results [33,209–
211]. Several studies applied the RF classifier to identify sugarcane plantations and pro-
duced high classification accuracy for sugarcane mapping. Multi-spectral satellite image 
data including Hyperion, L5 TM, L7 ETM+, L8 OLI, S1 SAR, S2 MSI and RapidEye (VHR) 
have been used to classify sugarcane and other crops using RF [34,43,49,117,169,203]. 

Schultz et al. [169] used the RF method and OOB statistics to automatically evaluate 
several alternative segmentations in order to automatically infer the best segmentation 
parameters for mapping sugarcane. RF results showed high accurate classification (OA of 
80–98%). 

One advantage of the RF classifier is its flexibility to handle many different input 
variables (remote sensing and geo-data). Various studies have reported on the application 
of VIs to identify the most optimal variables and seasons for land use mapping 
[33,35,50,164,209]. Several authors encouraged the analysis of the rich archive of OE data, 
in particular using variable important methods and the RF classifier for mapping sugar-
cane areas [34,35,49,155]. 

5.1.5. Object-Based Image Analysis (OBIA) Approaches 
State-of-the-art sensors such as S2 MSI provide high-resolution information in terms 

of spatial, spectral, radiometric and temporal resolution with high potential for crop clas-
sification [32]. OBIA has been developed to leverage the variability of the pixels within 
objects as additional information (spectral, texture, and statistical metrics) for the classifi-
cation [25,212,213]. OBIA first groups pixels into homogeneous objects which are ideally 
related to objects in the nature such as fields [214–216]. Several articles employed the OBIA 
approach together with a Data Mining techniques (DM) setting for sugarcane mapping. 
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OBIA and DM were for example applied with DT using L5 TM, L7 ETM+, L8 OLI and HJ-
1 CCD data to identify sugarcane and other classes. Such combinations of algorithms have 
been found very efficient (OA as 94%) for sugarcane mapping [58,73]. In addition, polari-
metric features from RADARSAT-2 have been proven useful within an OBIA approaches 
[74], while analysis of mono-temporal data had only low potential to identify sugarcane 
[74]. De Souza et al. [106] and Som-ard et al. [3] tested data with ultra-high spatial resolu-
tion of 0.2–0.4 m obtained by UAVs flights in an OBIA approach for the identification of 
planting rows in sugarcane. Very high spatial resolution images (2 m) of RGB-ortho im-
ages, LiDAR, and hyperspectral data were used to generate sugarcane maps by Villareal 
and Tongco [170] and Miyoshi et al. [217]. The OBIA classifier demonstrated very good 
performance when analyzing very high-resolution images, not only for sugarcane map-
ping but also for other crops [218]. However, optimal parameter settings require a long 
set-up time to provide suitable segmentation results which may otherwise negatively af-
fect the accuracy of the final map [169]. 

5.2. Growth Anomaly Monitoring 
Sufficient nutrients are very necessary for sugarcane growth and enable a high 

productivity. Remote sensing technology can be helpful to monitor sugarcane growth 
based on phenological dynamics. Eleven articles dealing with the topic of sugarcane mon-
itoring were founded and are summarized below (Table 5). 

Table 5. Summary of the number of studies, different methods, data used, and pros and cons for growth anomaly monitoring. 

Number 
of 

Studies 
Methods Sensors Use Pros and Cons Publication 

4 

• Regression analysis 
• Crop growth model 
• Expert knowledge 
• Image filter 

Image time series 
• SPOT-5, S2 MSI, and S1 

SAR 

Multi-temporal images 
• ENVISAT ASAR 
• Soil characteristics 
• Climatic data 

• Improve the monitoring 
performance of crop 
management 

• Can describe the nutrient 
and water status 

• Very useful for yield 
estimation  

• Not able for single-date 
data input  

[72,219–221] 

3 • Correlation analysis 

• Spectrometry and imaging 
spectrometer 

A single image 
• L7 ETM+ and Hyperion 

• Simple/fast  
• Few variables use 
• Low accurate result for 

sugarcane growth 
monitoring  

[222–224] 

3 

• Crop surface model 
(CSM) 

• Structure from 
motion (SfM) 

• UAV image 
• LiDAR 

• Cost-effective for growth 
monitoing  

• Highly potential to capture 
sugarcane height 

• But can use it with only 
small field scale   

[42,89,225] 

1 

• Crop growth model 
• The fraction of 

absorbed 
photosynthetically 
active radiation 
(fAPAR) 

• Spectrometry and imaging 
spectrometer 

Image time series 
• L8 OLI 

• Highly effective for 
monitoring crop growth 

• Very good for monitoring 
sugarcane growth in 
different geographies 

• Require several data 
sources for the modeling  

• More complexity for 
processing 

[226] 
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Begue et al. [219] measured the spatial variability of a sugarcane crop on a seasonal 
and annual time scale based on spectral behavior. They used NDVI time series based on 
fifteen SPOT images (Satellite Pour l’Observation de la Terre). At the seasonal scale, the 
field growth pattern depended on the phenological stage and cropping operations. On an 
annual scale, NDVI maps demonstrated a stable pattern but inverse NDVI values were 
followed by different rainfall volume levels. This inversion was also linked to describe the 
topography and showing the water status. Moreover, climatic conditions led to yield 
productivity in each year, while single-date is not able to monitor crop growth. El Hajj et 
al. [220] also analyzed a SPOT-5 image time series together with crop growth modeling 
and expert knowledge to monitor sugarcane cropping practices. The time series of SPOT-
5 data that were analyzed with respect to thermal time. Fuzzy sets were used to design 
temporal NDVI profiles of different growth stages, based on expert knowledge about the 
phenological stages and sugarcane field status (Figure 21). The generated profiles were 
found to be useful within a decision support system for the automatic harvest and sugar-
cane growth detection. This approach improved the monitoring performance of crop man-
agement and was very useful for yield estimation. 

 
Figure 21. NDVI profile and thermal time described by El Hajj et al. [220]; Blue dots represent sev-
eral sugarcane fields in Reunion, Island. Red dot lines are well separating the different membership 
values. 

Lin et al. [72] integrated ENVISAT ASAR (SAR C-band) data to map sugarcane 
growth and for validation against LAI data [94]. HH polarization image was highly accu-
rate for the mapping. Ratio of HV to HH (dB) intensity data was closely related to LAI 
measured by a canopy analyzer LAI-2000 thanks to an empirical relationship. Multi-tem-
poral TerraSAR-X images have been used to investigate the dynamics of sugarcane height 
together with multi-date NDVI obtained by SPOT-4/5. An increase in the backscattering 
coefficient of the HH signal was strongly correlated with sugarcane height from the be-
ginning of growth [227], while two C-band SAR (S1 SAR and RADARSAT-2), one L-band 
SAR (ALOS-2), and two optical sensors (L8 OLI and WorldView-2) were used to analyze 
the levels of agreement for mapping sugarcane productivity. C-band images were work-
ing well during certain sugarcane growth stages but the image signals were slightly af-
fected by precipitation sensitivity. Optical sensors were preferred for early monitoring of 
biomass growth with cloud-free images. The authors also recommended that C-band and 
L-band sensors should be further explored for precipitation sensitivity [44]. Kavats et al. 
[221] developed methods for determining sugarcane harvest dates from field samples us-
ing NDVI of S2 MSI data together with S1 SAR time series. The median filter was used to 
smooth NDVI time series, and SAR images were processed similar to work by Filipponi 
[228] and Kavats et al. [229] for identifying harvest areas. After that, the optical, SAR, and 
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the combined time series were used to determine the harvest dates. The NDVI time series 
trend showed high consistency to detect sugarcane harvested areas correctly, compared 
to results from a visual interpretation. 

Muller et al. [226] studied relationships between multispectral L8 OLI imagery (i.e., 
NDVI and soil-adjusted vegetation index (SAVI), the normalized difference moisture in-
dex (NDMI), simple ratio (SR), green normalized difference vegetation index (GNDVI), 
EVI, and modified triangular vegetation index (MTVI2)) against in situ observations of 
the fraction of absorbed photosynthetically active radiation (fAPAR) in sugarcane fields. 
Results indicated that fAPAR modeling was highly effective for monitoring crop growth 
and the SWIR band gave the best performance for generating Landsat-based fAPAR mod-
els for application to monitor complex sugarcane areas under different agro-climate con-
ditions. This confirms the high potential of Landsat imagery for fAPAR estimation with 
high potential for monitoring sugarcane growth in different geographies. 

In the last decade, UAV instruments have gained importance in remote sensing and 
also for the monitoring of sugarcane growth. Several authors have discussed UAV sensors 
and structure from motion (SfM) photogrammetry for crop mapping [3,41,42,157]. De 
Souza et al. [89] studied the extraction of crop surface models (CSMs) by subtracting the 
digital surface model (DSM) and digital terrain model (DTM) from UAV data, and both 
of DSM and DTM were processed based on SfM as photogrammetry approach. According 
to Figure 22, we generated the 3-dimensional model of sugarcane height. The data were 
captured on 16 December 2020 by UAV DJI phantom 3 professional (developed by DJI, 
Shenzhen, Guangdong, China) which provided the images with 0.20 m spatial resolution. 
Sofonia et al. [42] deployed LiDAR and a Micasense RedEdge multi-spectral camera on a 
UAV to acquire image time series data covering different sugarcane stages. Canata et al. 
[225] integrated LiDAR point clouds to map the height of sugarcane. The Global Naviga-
tion Satellite System (GNSS) receiver was used together with a coupled laser sensor for 
mapping height. This detection method demonstrated capability for monitoring sugar-
cane plants and should be further explored. The authors also assessed the ability of SfM 
to accurately measure sugarcane height and examined the correlation between this meas-
urement and the number of stalks. Results showed highly accurate capabilities for meas-
uring sugarcane height with statistically significant coefficients. Sugarcane height was ac-
curately estimated using SFM and CSMs from UAV very high-resolution images. This 
approach may be helpful for related industries for crop management [89]. 

 
Figure 22. The 3-dimensional model of sugarcane height was generated using UAV DJI phantom 3 
professional observed on 16th December 2020 at field scale in Northeast of Thailand; crop surface 
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model (CSM) (top level) subtracted by the digital surface model (DSM) (middle level) and digital 
terrain model (DTM) (bottom level). 

5.3. Sugarcane Health Monitoring 
This section was flittered thought all 107 papers, and thus a total of 14 relevant arti-

cles were identified dealing with sugarcane health monitoring. 

5.3.1. Monitoring of Nutrient Availability 
Most studies detected nitrogen levels in sugarcane leaves using remotely sensed re-

flectance spectra and field spectroscopy [22,118,119,143,224,230]. Multi-date NDVI data 
from L5 TM and Hyperion were used together with in situ spectroscopy for the quantifi-
cation of leaf nitrogen concentration [126,223,231]. Simple linear (SL), stepwise multiple 
linear (SML), support vector regression (SVR), and random forest regression (RFR) were 
used to calibrate and validate leaf nitrogen models [28,118,126,127]. Results showed a 
strong relationship between NDVI and leaf nutrient content and indicated a high potential 
of RFR and SVR for predicting leaf nitrogen concentrations. 

Miphokasap and Wannasiri [127] demonstrated a high potential of the SVR for de-
riving canopy nitrogen concentration (CNC) in various sugarcane fields (Figure 23). The 
spatial distribution of nitrogen was estimated from Hyperion image together with an SVR 
model (Figure 24). They recommended that hyperspectral data should be analyzed under 
different environmental and climate conditions to assess its potential. Another study also 
found satellite-based methods practicable for predicting crop water and nutrient content 
in leaves [232]. 

 
Figure 23. Measured vs. estimated canopy nitrogen contents (%N) for different sugarcane varieties (adopted from 
Miphokasap and Wannasiri [127]). (a) First derivative spectrum (FDS), (b) continuum-removed derivative reflectance 
(CRDR), and (c) band depth (BD) were used to calibrate three prediction models using the SVR method. 
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Figure 24. Density of canopy nitrogen concentration (% nitrogen) in sugarcane fields; the spatial 
map was generated by Miphokasap and Wannasiri [127]; The different densities were produced 
using a SVR model and Hyperion satellite image. 

5.3.2. Disease Detection 
Apan et al. [122] used Hyperion data to measure the impact of ‘orange rust’ (Puccinia 

kuehnii) disease risk from spectral properties. They formulated the disease-water stress 
index (DWSI) to increase the sensitivity to monitor the disease. Although useful, some 
inefficiencies were noted as well as a confusion with certain plantations due to soil mois-
ture sensitivity [122]. Abdel–Rahman et al. [233] used field spectroradiometer data to de-
tect sugarcane thrips (Fulmekiola serrata Kobus) damage. Using one-way analysis of vari-
ance (ANOVA), they demonstrated that the red edge region provides the highest level of 
discrimination of the damage classes. Johansen et al. [234] used multi-temporal GeoEye-1 
imagery together with NDVI index for disease detection. OBIA was performed to monitor 
canegrub damage with high accuracy (OA around 87%). They found OBIA useful for im-
proving decision making for growers affected by this disease. 

5.3.3. Disaster Monitoring 
Picoli et al. [235] evaluated the capability of several vegetation indices from MODIS 

data for monitoring drought effects in sugarcane plantations. A correlation analysis was 
conducted to identify the best indices. The standardized precipitation-evapotranspiration 
index (SPEI) was used to evaluate the indices. The SPEI was highly correlated with global 
vegetation moisture index (GVMI), vegetation condition index (VCI), normalized differ-
ence infrared index (NDII), SWIR1, and NDWI. Based on those indices and MODIS data 
a high potential for sugarcane drought monitoring was found. 

Picoli et al. [236] detected the effect of sugarcane drought by using spectral indices 
from Landsat imagery (of L5 TM and L8 OLI) including NDVI, VCI, NDWI, GVMI, and 
NDII to monitor the affected areas. The climatological soil–water balance (CSWB) model 
was also applied to assess the indices following by the LDA approach. 
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5.4. Sugarcane Yield Estimation 
As outlined in Section 2, sugarcane biomass depends on plant canopy and the size of 

those stalks matters that together determine crop production and productivity [59,237]. In 
total, thirty papers were analyzed that studied the yield estimation based on remote sens-
ing techniques and ground data. Note that the most of papers in sugarcane yield predic-
tion have clearly demonstrated cane production (kg/t) per area (m2/ha). The various algo-
rithms and sensors are summarized in Table 6. 

Table 6. Conclusion of previous studies, the methods, sensor data used, mean RMSE accuracy, and pros and cons for 
sugarcane yield estimation. 

Number of 
Studies 

Methods Sensors Use Mean RMSE 
Accuracy (t/ha) 

Pros and Cons Publication 

12 

• Regression 
analysis 

• NDVI-based 
model  

• VCI-based 
model 

• MOSICAS 
crop growth 
model   

Spectrometry 
Image time series 
• SPOT-4, SPOT-5, 

MODIS, SPOT-
VGT, and NOAA 

• LISS-III, IRS 
(AWiFS), L8 OLI, 
L5 TM, and S2 
MSI 

7.36 

• Statistically 
significant for the 
predictive model at 
national scale 

• Time series gave a 
better performance 

• But require several 
parameters for 
modeling 

[115,124,132,146,
148,159–161,238–

241] 

7 • Regression 
analysis 

Spectrometry  
Multi-temporal images 
• S1 SAR, S2 MSI, 

WorldView-2, 
RADARSAT-2, 
ALOS, L8 OLI, 
SOPT-4, SPOT-5, 
and CBERS-4 

12.98 

• General estimation 
model for crop yield 
prediction 

• Suitable model for 
high spatial, spectral, 
and temporal 
resolutions  

• The high accurate 
result depends on the 
quality of multi-
temporal data 

• Single-date data are 
not sufficient  

[44,97,149,186,23
0,242,243] 

 

6 

• Regression 
analysis  

• Crop surface 
model (CSM) 

• Random forest 
regression 
(RFR) 

• A SWAP-PH 
model 

• Spectrometry 
• UAV 
• LiDAR  

1.29 

• Very high accuracy 
for yield estimation  

• UAV data obtained 
height parameter for 
prediction  

• Improve the model 
performance using 
advance predictive 
method 

• Easily collect the data, 
low cost and reducing 
time consumption  

• But can only employ 
with a local scale 

[3,46,47,84,244,24
5] 

4 
• Regression 

analysis 
• VI indices 

A single image data  NA 
• Classic method for 

yield estimation 
• Single-date image use 

 
[105,246–248] 
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• Principal 
component 
analysis (PCA) 

• L7 ETM+, ASTER, 
LISS-III, and LISS-
IV 

• Fast processing when 
comparing with other 
yield estimation 

• The combined several 
indices and PCA 
output provided 
better result 

• Some limitations 
regarding the details 
of the plantation 

• Unexpected the 
suitable time of data 
use for prediction   

1 
• Artificial neu-

ral networks 
(ANNs) 

Image time series 
• MODIS 

8.2 

• The best predictive 
method for regional 
and national scales  

• Feasible alternative to 
improve the crop 
yield prediction 
methods 

• Identify the optimal 
time window  

• The use of historical 
yield database should 
be enough  

[249] 

RMSE = root mean square error, VI = vegetation indices, NA = no appears mean accuracy of RMSE. 

Several studies used spectral values and indices such as NDVI, LAI, principal com-
ponent analysis (PCA) from various sensors (i.e., SPOT-HRV, the advanced spaceborne 
thermal emission and reflection radiometer (ASTER), Landsat, CBERS-4, IRS-P6 LISS-IV 
imagery, and spectroradiometer) together with historical yield data for yield estimation 
[94,149,230,246,248]. 

As an example, Almeida et al. [246] and Pinheiro et al. [149] collected actual yield 
data using sample plots, multi-date satellite data, and a field spectroradiometer. In addi-
tion, Simões et al. [105] analyzed sugarcane growth and yield using biophysical parame-
ters such as biomass total (BMT), yield, LAI, and number of plants per linear meter (NPM) 
of temporal Landsat data. These data were integrated via simple linear and stepwise mul-
tiple regressions to produce the models. The validation method used the root mean square 
error (RMSE) and other statistics (e.g., R2 and percent error) to evaluate the best variable 
and optimal model for yield estimation. Results showed good agreement using NDVI and 
LAI from satellite image data to present the variation in sugarcane yield for a large area. 
However, in smaller areas some limitations regarding the details of the plantation and 
other vegetation was noted. 

UAV image data has been analyzed for crop yield estimation in small farms. It is a 
low-cost tool and can quickly provide very high-resolution images that can identify can-
opy structure and non-crop area conditions (e.g., soil and grass) [41,157]. Sanches et al. 
[84], Chea et al. [244], and Souza et al. [165] evaluated several indices from UAV sensor 
data, which included green–red vegetation index (GRVI), ratio vegetation indices (RVI), 
NDVI, simple ratio pigment index (SRPI), chlorophyll indices green (CIgreen), chloro-
phyll indices red edge (CIrededge), and GNDVI together with LAI to determine the opti-
mal index for yield estimation. The regression models assessed these indices against the 
harvested yield. GRVI and CIrededge were able to accurately predict sugarcane yield. 
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OBIA using RGB bands from UAV images were analyzed to identify the structure of 
a sugarcane canopy based on excess green (ExG) to extract greenness spectral values. The 
number of green pixels in the sugarcane canopy were estimated together with stalks, us-
ing a plot size of 2 × 2 m from ground surveys. Results showed high overall accuracy of 
the estimation approach with more than 90% accuracy [3]. 

Several studies have used UAV-LiDAR to extract the sugarcane plant height and 
used this variable together with other predictors to estimate sugarcane yield. The models 
achieved an accuracy of more than 90%, and plant height from UAV had a high con-
sistency against field survey measurements at field scale. The use of LiDAR-derived 
height was good agreement for yield estimation compared to plant height observations in 
the field. Moreover, combined the RFR model with LiDAR-derived data worked better 
than general regression models and was the most appropriate approach for sugarcane 
yield estimation [46,47]. Yu et al. [245] compared observed heights and heights from CSM-
derived data for sugarcane yield estimation (Figure 25). They found that UAV data can be 
easily collected at a low cost, reducing the time consumption for crop management. Sim-
ilar to other studies, the authors recommended to use the RFR model and plant height as 
CSM data to predict water stress, pests, crop growth, nitrogen, and yield in sugarcane 
fields. They also concluded that UAV and LiDAR/CSM data are high suitable for fast crop 
yield estimation on a local scale. We noted that the yield is subjected to the dry matter. 

 
Figure 25. Sugarcane yield estimation model from Yu et al. [245]; plant height (PH) from LiDAR-
derived data was compared to observed height (cm) (a); sugarcane yield (t/ha) prediction was per-
formed from the model (b). 

The analysis of remotely sensed time series yields spectral signatures based on the 
phenological dynamics [160]. The vast majority of sugarcane yield estimation studies were 
performed with low resolution image time series of NDVI from the MODIS and SPOT-
VGT [22,23,146,161]. Fernandes et al. [249], Lofton et al. [97], Gonçalves et al. [115], and 
Mutanga et al. [159] identified the optimal time window of multi-temporal NDVI obser-
vations and applied this as an image compositing technique. The compositing scheme of 
the image time series gave a better performance for yield estimation and was also men-
tioned by Duveiller et al. [160]. An exemplary time series is shown in Figure 26. 

Timeframe analysis and yield estimation were performed by regression models and 
compared to the actual yield by Bégué et al. [124], Lofton et al. [97] and Mulianga et al. 
[161]. Fernandes et al. [249] used ANNs and image metrics derived from NDVI image 
time series. These were also explored at local, regional, and national scales in India 
through empirical models and a historical database (2003–2015). The models were found 
to be statistically significant for prediction [238,242]. 
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fAPAR time series derived by SPOT-VGT at 1 km spatial resolution were also used. 
This approach used radiative transfer modeling to relate vegetation spectral and biophys-
ical variables to estimate sugarcane yield using regression models with other parameters 
[160,240,241]. 

Morel et al. [148] analyzed three methods including fAPAR time series with an em-
pirical relationship, the Kumar–Monteith efficiency model and a sugarcane crop model 
(MOSICAS), to determine the best method. The empirical model of integrated NDVI 
demonstrated the best yield estimation performance. 

The optimal time for yield estimation using remote sensing data was found to be two 
months before the harvest (growth-ripening stages) [97,159]. 

Time series of S2 MSI and L8 OLI (GNDVI), together with a simple linear machine 
learning (ML) algorithm, were used by Rahman and Robson [132] to estimate sugarcane 
yield. The block levels within the sugarcane fields were determined to extract pixel infor-
mation and to predict the yield. At block level, good predictions were found. Maximum 
GNDVI was highly correlated with the actual yield. However, mixed pixels were still 
found at the edges of fields. Overall, several studies recommended the use of freely avail-
able high quality S2 MSI data to provide very high-resolution satellite images (10–20 m) 
at a frequency of at least 5 days [132]. 

 
Figure 26. Distribution of smoothed time series by Duveiller et al. [160]; the presentation demonstrated the 5th–95th, 25th–
75th, and 50th percentiles of pixel with a crop specific spatial purity above or equal to 75%. 

The use of agrometeorological data and spectral features for sugarcane yield estima-
tion of a sugarcane farm in São Paulo State, Brazil was analyzed by Rudorff and Batista 
[247]. The combined agrometeorological model and spectral index provided better results 
compared to the sole use of either the spectral index or the agrometeorological model. 
Picoli et al. [243] combined agrometeorological and ALOS/PALSAR data for yield estima-
tion using a multiple linear regression model. They found that SAR-based yield prediction 
models can assist farmers and sugarcane mills. 

Pagani et al. [239] also investigated a sugarcane forecasting system in São Paulo State. 
Agro-climatic indicators and the Canegro model were used for the yield estimation in the 
current season. This system was calibrated using multiple linear regression and historical 
yield data. The developed system proved satisfactory for yield management in Brazil. It 
was noted that fine-resolution data with high quality is required. 

6. Current Challenges and Future Trends 
The main challenges and trends for studying sugarcane from remote sensing are 

summarized hereafter. 

6.1. Availability of Dense Time Series of Satellite Observation with Adequate Spatial Resolution 
Satellite revisit time and persistent cloud cover conditions have been limiting the ac-

quisition of satellite data and the potential of applications such as sugarcane identification 
and area mapping, yield estimation or growth anomaly monitoring that surely benefit 
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from dense time series (e.g., weekly data) [35,155]. Due to the limited availability of cloud-
free observations, the mapping and monitoring of sugarcane has been traditionally based 
on single-date or on a limited amount of image data unevenly distributed during the 
growing cycle. Coarse spatial resolution images (e.g., MODIS and SPOT-VGT) have been 
exploited offering better acquisition frequency [22]. However, this type of image data pro-
vide low accuracy due to mixed pixels [161]. Different studies have demonstrated the 
value of multi-temporal information (acquired at high spatial resolution) for example for 
crop type identification [250–253]. 

New generation of high spatial resolution satellite sensors are now available, and 
they are setting new trends in EO capacities. In the optical domain, data from the Coper-
nicus S2 MSI constellation of two identical satellites provide very fine spatial resolution 
of 10–20 m pixel size and high visiting frequency of 3 to 5 days. This is a notable improve-
ment compared to Landsat revisit time (16 days) but it might still not be enough for areas 
particularly affected by persistent cloud cover. Therefore, gap-filling and image compo-
siting techniques can be necessary to produce dense time series. Many progresses have 
been made also in this respect [254]; however, different studies highlighted the need to 
prepare and use a coherent set of predictors based on high spatial and temporal resolution 
data in the optical domain [34,74,151] and in the radar domain [74]. 

In the radar domain, the C-band S1 SAR data provide fine spatial and high temporal 
resolution. Positive results were obtained for monitoring biomass during the grand 
growth and ripening stages. The C-band SAR signal is however also negatively affected 
by atmospheric and other external conditions. For example, Molijn et al. [44] found that 
rainfall undermines the capacity to monitor sugarcane during the germination to tillering 
phases, which are the most relevant phases to monitor plant moisture, fertility and bio-
mass. To reduce the impact of rainfall events, image composite methods should be applied 
using multi-temporal and multi-sensor SAR data to improve signal quality and, therefore, 
improve yield estimation and lodging mapping [74,160].  

The full integration and synergy of different satellite data types (optical and radar) 
offers the most promising results in monitoring sugarcane. The current level of integration 
varies widely. For example for sugarcane mapping, Jiang et al. [43] proposed a lose inte-
gration of S1 and S2 MSI data. First, they used S1 time series for early season sugarcane 
mapping and then integrated this information with S2 optical imagery for the selective 
removal of non-vegetated pixels achieving good results up to three months before sugar-
cane harvest. 

Wang et al. [155] recently published a study showing how L8 OLI, S2 MSI, and S1 
together provide adequate numbers of good observations for sugarcane mapping and for 
performing a phenology-based assessment of crop type or conditions. In addition, S1 VH 
backscatter data was used to detect surface water to indirectly map paddy rice plantations 
in a period affected by cloud cover and therefore not accessible with S2 MSI data. The 
authors highlight the potential of the mapping methodologies of being applicable in other 
years and to other regions. 

Rahman and Robson [132] demonstrated the combined use of L8 OLI and S2 MSI 
time series data to predict sugarcane crop yield at parcel level showing very encouraging 
results. However, due to the empirical nature of the relationships more work will be 
needed to transfer the yield model to other growing regions in Australia. 

The general trend shows an increase use of multi-temporal data to obtain denser time 
series of observations, often based on virtual constellation of satellites. Data acquired in 
multiple spectral domains (i.e., optical and microwave) are also of increased use and their 
synergy sees first positive results in the application to sugarcane mapping. 

6.2. Yield Estimation and Prediction 
Most approaches for sugarcane yield estimation utilize regression analysis between 

a predictor (e.g., NDVI) and actual yield measurements and they were mostly developed 
within research studies with no operational solution yet [22]. Beyond challenges related 
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to data availability (both from satellite observations and from actual yield measurements 
used for calibration and validation), the adoption of new algorithm has seen a trend to-
wards the application of machine learning approaches. Supervised machine learning al-
gorithms such as RFR have shown highly satisfactory results. However, the challenge re-
mains regarding the implementation of robust predictive models that can be calibrated 
and then transferred for application to different regions or cropping seasons [132]. 

In recent years, a better accessibility to crop biophysical parameters such as LAI has 
emerged thanks to the availability of high-quality satellite data, open source algorithms 
and automated processing chains [193]. The challenge remains to use these parameters in 
crop growth models that will potentially allow a generalization of the application to dif-
ferent management, plant, soil and climate conditions. The general approach for such a 
data assimilation is well known and for example described in the early work of Delécolle 
et al. [255]. 

For limited spatial extents (e.g., at paddock or farm scale) sensors mounted on UAVs 
could well complement or replace data from Earth orbiting satellites. The application of a 
simple RGB camera and photogrammetry techniques has for example been studied by De 
Souza et al. [106]. De Souza et al. [89] demonstrated the effectiveness to derive sugarcane 
plant height maps from UAV data. They highlighted the potential of these data for bio-
mass and yield estimation. UAV-based observations using RGB cameras and LiDAR data 
were further tested demonstrating the capability to observe significant differences in plant 
height, plant nitrogen treatment, water stress and yield, especially with LiDAR data 
thought-out the growing season [42]. Xu et al. [47] successfully demonstrated the use of a 
LiDAR system for estimating aboveground fresh weight using six different regression 
models, including RF. Yu et al. [245] used UAV-derived plant height observations (using 
a RGB camera and photogrammetry technique) to improve sugarcane yield estimation 
(with the assimilation in the SWAP-PH crop growth model). They found that UAV-de-
rived plant height can help to achieve better yield estimation when assimilating the data 
in a crop growth model. They also highlighted the need to develop a more realistic SWAP-
PH model to be use with data assimilation algorithms as also highlighted by Novelli et al. 
[256] for the assimilation of LAI in the EPIC model. 

Beyond the quantitative estimation of plant parameters, low cost, and easy to operate 
UAVs also open the possibility to improve field scouting activities. Traditional sugarcane 
growth monitoring and yield prediction rely on the farmer’s knowledge through visual 
inspection. However, this can only be observed at the edge of the field leading to less 
accurate and unreliable estimation. Conversely, UAV sensors provide ultra-high spatial 
and high temporal resolution [41,156,157]. Widespread use of UAV technology can ac-
quire image data as an easy and cost-effective method for crop monitoring in near real-
time [3,7]. Direct development work with farmers is recommended to meet the expecta-
tions of the users [42]. 

6.3. Optimization of Labor and Production Inputs 
Lack of human resources often leads to difficulties in managing sugarcane cultiva-

tions. During the last decade, the number of agricultural growers has decreased. House-
hold investigations show that young adults often prefer other work and this has impacted 
sugarcane productivity [35]. Hence, state-of-the-art remote sensing technology for rapid 
sugarcane mapping and growth monitoring can greatly improve sugarcane management, 
in combination with other precision farming techniques [257]. A number of management 
activities can be supported with the use of remote sensing. For example, one of the most 
demanding activity in sugarcane management is harvesting and this can be optimized by 
modeling the timing and priority management zones. For example, Rahimi Jamnani et al. 
[258] tested different empirical correlations between vegetation indices and sugar content 
showing high correlation (R2 = 0.885). 

Promising applications also include the use of very high spatial resolution satellite or 
UAVs data for identifying pest and weed coverage. The monitoring of temporal changes 
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of spectral indices can be used to detect diseases and crop stress, to study the impact of 
severe weather events and to monitor the efficiency of fertilization and irrigation prac-
tices. 

7. Conclusions 
This review summarized different applications of remote sensing technology in the 

sugarcane sector comprising 107 publications. These papers demonstrated a high poten-
tial of EO data with regard to sugarcane mapping (52 papers), crop growth anomaly de-
tection (11 papers), health monitoring (14 papers) and yield estimation (30 papers). From 
the literature review we synthesized the following key points and further suggestions: 
• Optimum results require the availability and analysis of (possibly) dense time series 

– ideally from multiple satellites and across measurement modalities (i.e. combining 
optical, thermal, microwaves and point cloud data). This seems well understood by 
the research community leading to the general trend of an increased use of multi-
temporal data and time series to obtain denser and more informative observations. 
In this respect, major obstacles are still insufficiently accurate cloud masks and anal-
ysis-ready-data (ARD). The research community, interested stakeholders and fund-
ing agencies should also put more emphasis on establishing well curated in-situ and 
“reference/ground-truth” data sets; 

• Machine learning algorithms such random forest regression (RFR) have shown 
highly satisfactory results, in particular if high quality imagery is available. The ma-
jor challenge seems not the identification and selection of suitable ML/AI tools, but 
to solve the scalability issue. Indeed, the implementation of robust predictive meth-
ods for a given spatio-temporal context seems relatively straightforward, but much 
less the model transfer across regions and seasons; 

• Possibly, self-supervised learning algorithms, which projects data on low-dimen-
sional latent spaces/manifolds, offer a suitable means to reduce the need for calibra-
tion data while improving model robustness. This active field of research in com-
puter vision should be applied and adapted to EO data; 

• For detailed information at field scale, unmanned aerial vehicle (UAV) data, together 
with crop growth models, provide locally effective solutions for sugarcane monitor-
ing and yield estimation. On the other hand, in a global monitoring system, UAVs 
are probably not suitable because of their extremely high costs per area compared to 
orbiting platforms. But UAVs may still play a role in such a global monitoring system 
by providing detailed “ground-truth” information. The same also applies to crowd-
sourced information;  

• In many sugarcane producing countries, the lack of human resources often leads to 
difficulties in sugarcane cultivation. The sugarcane industry – as well as the entire 
agricultural sector – would certainly benefit from the use of  state-of-the-art remote 
sensing technology, not only as a cost-efficient tool to monitor crops across space and 
time and to provide detailed information for sugarcane management and risk miti-
gation, but also to make the entire sector more attractive for talent. 
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