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Abstract: Estimating above-ground biomass in the context of fertilization management requires the
monitoring of crops at early stages. Conventional remote sensing techniques make use of vegetation
indices such as the normalized difference vegetation index (NDVI), but they do not exploit the
high spatial resolution (ground sampling distance < 5 mm) now achievable with the introduction
of unmanned aerial vehicles (UAVs) in agriculture. The aim of this study was to compare image
mosaics to single images for the estimation of corn biomass and the influence of viewing angles
in this estimation. Nadir imagery was captured by a high spatial resolution camera mounted on a
UAV to generate orthomosaics of corn plots at different growth stages (from V2 to V7). Nadir and
oblique images (30◦ and 45◦ with respect to the vertical) were also acquired from a zip line platform
and processed as single images. Image segmentation was performed using the difference color
index Excess Green-Excess Red, allowing for the discrimination between vegetation and background
pixels. The apparent surface area of plants was then extracted and compared to biomass measured in
situ. An asymptotic total least squares regression was performed and showed a strong relationship
between the apparent surface area of plants and both dry and fresh biomass. Mosaics tended to
underestimate the apparent surface area in comparison to single images because of radiometric
degradation. It is therefore conceivable to process only single images instead of investing time
and effort in acquiring and processing data for orthomosaic generation. When comparing oblique
photography, an angle of 30◦ yielded the best results in estimating corn biomass, with a low residual
standard error of orthogonal distance (RSEOD = 0.031 for fresh biomass, RSEOD = 0.034 for dry
biomass). Since oblique imagery provides more flexibility in data acquisition with fewer constraints
on logistics, this approach might be an efficient way to monitor crop biomass at early stages.

Keywords: Zea mays L.; corn; biomass; oblique imagery; precision agriculture; low-altitude remote
sensing; UAV; drone

1. Introduction

Since the 1950s, field crops (corn, soybeans, canola, and wheat) have expanded to
occupy a greater part of the agricultural landscape in North America. For example, corn
(Zea Mays L.) represented 21% of cropland in Quebec in 2016, the most recent numbers
according to Statistics Canada [1,2]. This intensified agriculture results in soil degradation
and excessive nitrogen use, leading to environmental contamination [3,4] and ultimately,
to economic losses [5,6].

To answer those challenges, precision agriculture has emerged as a management
strategy that takes into account temporal and spatial variability in order to improve the
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sustainability of agricultural production [7]. This discipline uses different information and
communication technologies in order to collect, process, and analyze multi-source data. In
the case of fertilizer management for corn production, the information collected could be
used to drive a decision support system in order to act at the right place, at the right time,
and with the right quantity [8]. Above-ground biomass, along with chlorophyll content
and leaf area index (LAI), is one of the key biophysical parameters for crop monitoring [9].
Therefore, the ability to assess plant-level biomass variations at the field scale is essential
for the implementation of novel precision agriculture approaches such as variable nitrogen
rate applications [10].

Among the technologies used in precision agriculture, remote sensing platforms are
useful for observing, monitoring, and mapping corn growth variability [11]. So-called
conventional remote sensing (mostly satellite-borne) operates by modelling the signal
from a field crop. Physical or statistical models relate reflectance measures in one or more
spectral bands to a given biophysical parameter that expresses the productivity of the
crop in some way [11,12]. Estimating vegetation biomass early in the season is critical
because many crop management decisions are made when the plant is still at an early
growth stage and it is still possible to access the field with machinery without damaging the
crop. However, because of their coarse spatial resolutions, satellite-based images present
mixels [13], which are defined as pixels containing heterogeneous information from several
objects such as the canopy and the underlying soil. Noise attributable to soil effects, the
presence of weeds, or cover crops make it difficult to use vegetation indices to adequately
estimate crop biomass [14]. Proximal active sensors [15] embedded on heavy agricultural
machinery face the same problems [16,17].

The advent of unmanned aerial vehicles (UAVs) has provided an alternative to over-
come these problems. Compared to conventional platforms, they offer greater deployment
flexibility, shorter revisit times, and better spatial resolution with low atmospheric interfer-
ence. Compared to proximal sensors, they enable much more flexible logistics and do not
impinge on the crop [18,19]. In the context of crop biomass assessment, a UAV equipped
with a very high spatial resolution camera is a suitable tool for monitoring biomass at the
plant scale, which is still not possible with other remote sensing platforms [20,21]. However,
information extraction is still focused on spectral-based approaches relying on vegetation
indices [16,22], mostly NDVI (Normalized Difference Vegetation Index) [23]. Although
vegetation indices are well-correlated with some biophysical characteristics such as LAI
or fresh biomass, their use in the context of high spatial resolution images acquired by
UAV-based platforms is not always optimal [24] and requires sophisticated multispectral
cameras, presenting challenges in geometric and radiometric corrections [25–27].

Other studies have instead relied on object-based approaches exploiting image spatial
resolution to extract biophysical parameters through structural features. For example,
canopy height can be estimated by photogrammetry and validated with field measure-
ments [28–30]. Fractional vegetation cover (FVC) [31,32], plant counting [33,34], or weed
detection at early post-emergence [35] are building on the high spatial resolution. Biomass
assessment could also benefit from this approach, but this does not seem to be the case yet.

In remote sensing, information is generally extracted from images with the nadir
view, i.e., directly above the vertical. This angle of observation is inherent to most optical
sensors onboard satellites and is mainly adopted for aerial and UAV platforms. The
different biophysical parameters of the plant are thus estimated according to the physical
or spectral features of the canopy projected onto the horizontal plane. Furthermore, there
is a propensity to generate orthomosaics from UAV imagery for crop monitoring, which
imposes image acquisition using the nadir view [36].

Because they can see hidden parts of buildings, oblique (i.e., off-nadir) images have
been used to improve 3D reconstruction [37], urban planning, or damage estimation [38].
In agriculture, stereo oblique imagery has been used to generate crop-surface models of
barley [39,40]. The ability to measure plant height and LAI from 3D point clouds that were
derived from UAV nadir and oblique imagery has also been investigated [36]. Those few
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studies required the use of photogrammetry and the generation of a spatially continuous
model of the canopy. However, single images are rarely used to assess crop parameters,
whether in nadir or oblique mode [41]. Our study therefore aims to bridge this gap.

The objective of this research was to assess corn biomass in space and time at early
growth stages using images at high spatial resolution. Imagery was acquired with a simple
consumer-grade RGB camera mounted on a UAV and on a zip line. We evaluated the
impact of using mosaics and single images as well as different viewing angles to estimate
corn biomass.

2. Materials and Methods
2.1. Study Site

The experiment was conducted at the L’Acadie farm (45◦17′40′′N, 73◦20′45′′W), an
experimental farm of Agriculture and Agri-Food Canada, located in St-Jean-sur-Richelieu,
Quebec. A field of approximately 0.5 ha (100 m × 50 m) was selected for the experiment
in the 2017 summer season. Field corn (Zea mays L., cultivar Pioneer P9623, 2850 CHU)
was planted (seeding rate fixed at 82,000 seeds ha−1) using an inter-row spacing of 0.75 m.
Fertilizer level at seeding was set according to the needs and the soil tests previously carried
out. Since we never exceeded the V10 stage, no N fertilizer was applied at mid-season.
Weed control was performed mechanically. The field was further divided laterally into
four-row plots, with a 3 m buffer zone between each plot (Figure 1). A total of 15 plots were
used with different sowing dates such that a diversity of stages (from V2 to V7, 10–40 days
after sowing) was present for each data acquisition campaign. Vegetative stages were
determined using the V-stages method, based on the number of visible collars [42].
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Figure 1. Example showing two of the experimental plot layouts.

During the experiment, a weekly ground truth campaign was conducted at the same
time as the image acquisition. Each ground reference was randomly selected and consisted
of two row sections with ten consecutive corn plants each. Only the two middle rows of
each plot were used to avoid border effects. The first and the tenth plants of each row-
section were identified with a golf tee positioned next to them. After image acquisition, the
ten (10) sampled plants of each row were clipped at ground level and weighed individually
using a high-precision balance to determine the fresh biomass. The samples were then
dried at 70 ◦C for a minimum of 5 days, and weighed again to get the dry biomass.

Since the purpose of this experiment was to assess the ability of remote sensing to
estimate corn biomass, it was important to obtain a diversity of biomass values from our
samples. The boxplots in Figure 2 shows the range of biomass values for our ground
references and how they increase according to the growth stages.
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Figure 2. Boxplots of dry and fresh corn biomass values measured for each growth stage. Each point
represents a ground reference with its biomass and V stage averaged among all sampled plants
within that ground reference.

2.2. RGB Imagery Acquisition

Two modes of acquisition were used for this experiment, using two different platforms:
a UAV and a zip line, each collecting different types of images and requiring different
preprocessing steps.

The first acquisition mode consisted in flying a Phantom 3 Professional UAV (DJI,
Shenzen, China) over the field at an altitude of 10 m above ground level (m AGL) following
an S-pattern, using the DJI GS GO app (installed on Apple OS, iPad Mini). This mode
allowed for the creation of orthomosaics with a ground sampling distance (GSD) of 4.4 mm.
The camera used was the UAV built-in camera whose technical characteristics are given
in Table 1. The autonomy of this UAV was sufficient to produce an image our small
experimental field in one flight. To increase the success of image stitching, flight paths
were planned with a minimum overlap of 70% (lateral and longitudinal overlaps). The
acquired images were imported into the Pix4Dmapper Pro software (Pix4D SA, Lausanne,
Switzerland) and an orthomosaic was generated using ground control points (GCPs)
located in the corner of each plot (4 per plot) and in the center of the field. Each GCP was
positioned with a Real-Time Kinematics (RTK) Global Navigation Satellite System (GNSS)
receiver (SXBlue III-L, Geneq Inc., Montreal, QC, Canada). Eight flyovers (5, 12, 18, 26,
31 July; 7, 18, 25 August) were carried out, but only seven were successful in generating an
orthomosaic. For the first flight (5 July), the target coverage rate of 70% was not achieved
due to missing images (the camera’s memory card was not capable of recording images
fast enough and was upgraded for the remaining flights).

The second acquisition mode consisted in capturing pictures at selected ground refer-
ences with different viewing angles. From preliminary works [43], we realized that our UAV
platform was not stable enough to acquire images in such a stationary mode, i.e., hovering
above the same point. A custom zip line was thus designed and constructed to provide a
stable and easy-to-use platform for acquiring RGB images in stationary mode (Figure 3). A
steel cable was stretched between two posts attached to utility task vehicles (UTV, Gator,
John Deere, Moline, IL). A Canon SX230 HS (Canon Inc., Tokyo, Japan) camera was sus-
pended from the cable at 2.9 m AGL (see camera characteristics in Table 1). To produce a
ground reference image, both UTVs were positioned on each side of a plot so that the cable
ran perpendicularly to the rows. The camera was remotely controlled and the viewing
angle was set to 0◦ (nadir), 30◦, or 45◦ with respect to the vertical for the oblique images.
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Geometric image distortions due to the camera lens were roughly corrected by the camera
internal software and no further image corrections were applied. This mode generated
single images, with GSD between 0.89 mm and 1.26 mm, varying according to the viewing
angle. The GSD was calculated for the pixel in the center of the image located on the plane
orthogonal to the camera’s optical axis and containing the stem of the corn plants. The
distance between the camera and the target had to be adjusted according to the viewing
angle since the height of the platform was constant.

Table 1. Technical specifications of the cameras used for image acquisition.

Platform UAV Zip Line

Camera sensor 1/2.3" CMOS 1/2.3" CMOS
Sensor width (mm) 6.30 6.16
Sensor height (mm) 4.73 4.62
Image size (pixels) 4000 × 3000 4000 × 3000
Focal length (mm) 3.6 5.0

Diagonal field of view 95◦ 75◦

Pixel dimension (µm) 1.58 1.54

Acquisition mode Flight path
(S-pattern) Stationary

Acquisition altitude
(m AGL) 10 2.9

Viewing angles Nadir (0◦) Nadir (0◦) and
oblique (30◦ and 45◦)

Generated products Orthomosaics Single images

GSD
(mm) 4.4

0.89 (viewing angle = 0◦)
1.03 (viewing angle = 30◦)
1.26 (viewing angle = 45◦)Remote Sens. 2021, 13, 4032 6 of 15 
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2.3. Information Retrieval from RGB Imagery

In order to compare the two acquisition modes and their results with the ground
truth, the ground references had to be located and delineated in the images (orthomosaics
and single images). This task was performed manually through a custom graphical user
interface (GUI) developed in Python using the graphical toolkit Tkinter [44]. The images
were then segmented to distinguish vegetation from the background. Finally, apparent
surface area was calculated and correlated with biomass measurements.

For the UAV mode, the orthomosaics generated from the images were first cut into
thumbnails of approximately 800 × 800 pixels (about 3.5 m × 3.5 m), each centered on a
ground reference. Within each thumbnail, the 2 sampled row sections were located. Then,
each row was manually delineated by drawing a rectangle around the 10 sampled plants
to define a quadrat (Figure 4a). For the zip line mode, each single image was processed
sequentially. The 10 plants whose weight was measured were identified through visual
inspection. A virtual quadrat measuring 1 m in length was subsequently positioned on
the sampled row and only the plants contained in this rectangle were used as ground
truth reference, with their biomass computed and apparent surface extracted. The number
of plants in each quadrat varied between 5 and 8, depending on the density of the row.
Because of the short distance between the camera and the target, the 10 sampled plants
were not always visible in the same image, and pixels near the image borders were distorted
because of the central perspective. Hence, the quadrat was set to be 1-m long and was
positioned close to the center of the image. The width of the quadrat was manually chosen
to enclose most vegetation surfaces belonging to the sampled plants while minimizing the
surfaces from the adjacent rows. In the nadir images, the width corresponded roughly
to the inter-row spacing, i.e., 0.75 m (Figure 4c). For the oblique images, the quadrat
was wider to encompass the full height of the corn plants (Figure 5a,b), and no attempt
was made to exclude overlapping leaves from adjacent rows. That processing would
have needed to be performed manually or would have required a more complex image
segmentation algorithm.

The image segmentation was entirely executed with a custom Python script using the
OpenCV v3.4.0.12 [45] and NumPy v1.14.0 [46] modules. Each RGB image (orthomosaic
thumbnail or single image) was converted to an ExG-ExR image using Equation (2) [47].
This proved to be particularly effective and more accurate than the other color indices
that were tested. To compute the indices, the RGB images needed to be converted to RGB
chromaticities:

r = R
R+G+B

g = G
R+G+B

b = B
R+G+B

(1)

Then, ExG-ExR was computed:

ExG− ExR = (2g− r− b)− (1.4r− g) = 3g− 2.4r− b (2)

Thresholding the ExG-ExR image is simple since the index is positive for vegetation
pixels and negative for background pixels [47].

2.4. Statistical Analysis

The information extracted from the images was the apparent surface area of the
plants. In order to confirm that the apparent surface could be a good proxy for biomass, a
regression analysis was performed to define the relationship between the two.

For each RGB image, the segmentation step generated a binary image (Figure 4b,d),
where pixels corresponding to vegetation had a value of 1 and background pixels were 0.
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Summing up the value of all pixels in a quadrat Q, the number Nv of vegetation pixels in
that quadrat was thus:

Nv(α) = ∑
i∈Q

pi (3)

where
Nv: number of vegetation pixels in quadrat Q;
α: the viewing angle;
pi: 1 if pixel i belongs to the vegetation class, 0 otherwise. The apparent surface area

of the plant Sap in square meters was calculated as follows:

Sap(α) = Nv(α)·ρ(α)2 (4)

where ρ(α) is the GSD in meters, a function of the viewing angle α. To simplify notation,
the angular dependence will be omitted in the following text.
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Figure 4. Screenshots extracted from the user interface showing a quadrat (red rectangle) and the
sampled plants (identified with white square markers) in a nadir image: (a) clipped orthomosaic
from the UAV mode; (b) its segmented images superimposed onto the original photo; (c) RGB single
image from the zip line mode; and (d) its segmented image superimposed on the original photo.
Quadrat length L = 1.7 m for (a,b); L= 1 m for (c,d).

The pixel count included both leaves and plant stems, especially when viewed at
an oblique angle (α > 0◦). In addition, the calculated area was called apparent because
only the vegetation pixels visible in the image were considered. The size of the objects
represented by those pixels was considered constant and equal to the GSD, regardless of
their actual distance from the camera, with the 3D position of each pixel being unknown.



Remote Sens. 2021, 13, 4032 8 of 15

Remote Sens. 2021, 13, 4032 7 of 15 
 

 

 

Figure 4. Screenshots extracted from the user interface showing a quadrat (red rectangle) and the 

sampled plants (identified with white square markers) in a nadir image: (a) clipped orthomosaic 

from the UAV mode; (b) its segmented images superimposed onto the original photo; (c) RGB 

single image from the zip line mode; and (d) its segmented image superimposed on the original 

photo. Quadrat length L = 1.7 m for (a,b); L= 1 m for (c,d). 

 

Figure 5. Oblique images of a sampling area photographed with the zip line camera at viewing 

angles of (a) 30° and (b) 45° from the vertical. The sampling quadrat (length L = 1 m) is shown as a 

red rectangle and the sampled plants are identified with white square markers. 

The image segmentation was entirely executed with a custom Python script using the 

OpenCV v3.4.0.12 [45] and NumPy v1.14.0 [46] modules. Each RGB image (orthomosaic 

thumbnail or single image) was converted to an ExG-ExR image using Equation (2) [47]. 

This proved to be particularly effective and more accurate than the other color indices that 

were tested. To compute the indices, the RGB images needed to be converted to RGB chro-

maticities: 

Figure 5. Oblique images of a sampling area photographed with the zip line camera at viewing
angles of (a) 30◦ and (b) 45◦ from the vertical. The sampling quadrat (length L = 1 m) is shown as a
red rectangle and the sampled plants are identified with white square markers.

Finally, the Sap values were divided by the length of the quadrat to obtain normalized
apparent surface area values ( ˆSap), independent of the length of the rectangle drawn. ˆSap
was calculated as follows:

ˆSap =
Sap

L
=

Nvρ
2

L
(5)

where L is the length of the quadrat in meters (1.2 m ≤ L ≤ 1.9 m for the UAV mode,
L = 1 m for the zip line mode). It is thus the surface area measured per unit length along a
row in m2·m−1.

Above-ground biomass B (in kg·m−2) inside each quadrat was calculated for each
row section using:

B =
∑N

i=1 Mi

L
(6)

where L is the length of the quadrat in meters, Mi is the fresh or dry weight of plant i in
kilograms, and N the number of plants inside the quadrat (N = 10 for the UAV mode,
5 ≤ N ≤ 8 for the zip line mode). Biomass was then rescaled to tons per hectare (t·ha−1).

A regression model was constructed from the training dataset to explain the behavior
of the dependent variable ˆSap as a function of the independent variable B representing
the corn biomass. Because of measurement errors in both independent and dependent
variables, the orthogonal (or total) least squares regression was preferred to the ordinary
least squares regression [48]. Details about the algorithm can be found in the vignette of
the onls R package [49] that was used in this paper. The goodness of fit of the model was
based on the Residual Standard Error of Orthogonal Distance (RSEOD) [48].

3. Results
3.1. Comparing UAV and Zip Line at Nadir View

At nadir view, both modes gave slightly different values for the normalized apparent
surface area ˆSap. The UAV mode tended to underestimate ˆSap for low and high biomass
values. Figure 6 shows that there is an asymptotic relationship (non-linear total least-
squares) between ˆSap(UAV) calculated from the UAV platform, and ˆSap(ZIP) calculated
from the zip line platform, with an RSEOD of 0.023. The regression curve was not forced
to pass through the origin due to the incertitude in image processing, as the algorithm
might detect crops when there is no vegetation or vice versa. A linear total least squares fit
yielded a RSEOD of 0.029 (data not shown).
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Figure 6. Orthogonal asymptotic model for the apparent surface area ˆSap(UAV) from UAV imagery
compared to the ˆSap(ZIP) from zip line imagery.

The regression models at nadir view show a good asymptotic relationship between ˆSap
and both dry (Figure 7a,c) and fresh (Figure 7b,d) biomass. Asymptotic coefficients for the
UAV mode (Figure 7a,b) have lower values than those for the zip line mode (Figure 7c,d),
suggesting a quicker saturation of ˆSap for the UAV at high biomass values. Still, RSEODs
are very similar between both modes, despite orthomosaics being fraught with geometric
and radiometric degradations.

3.2. The Effect of Viewing Angles

Figure 7c–h show the effects of the viewing angle in estimating the normalized ap-
parent surface area ˆSap extracted from the zip line mode using the measured biomass as
ground truth. There is an asymptotic relationship between ˆSap and corn biomass, with
RSEODs ranging from 0.031 to 0.040 for fresh biomass, and from 0.034 to 0.045 for dry
biomass. Clearly, dry biomass is strongly correlated with fresh biomass, and ˆSap is a good
indicator of both fresh and dry biomass for all three viewing angles.

Since horizontal surfaces appear smaller as viewing angles increase, areas from more
vertical surfaces and other hidden surfaces compensate in oblique imagery. The apparent
increase in the asymptotic coefficients with increasing viewing angles may be an indication
that this compensation is more efficient at larger viewing angles. However, when consider-
ing the RSEODs, it seems that a viewing angle of 30◦ results in the best fit (RSEOD ≈ 0.03)
among the three angles that were tested (RSEOD ≈ 0.04 for viewing angles of 0◦ and 45◦).



Remote Sens. 2021, 13, 4032 10 of 15

Remote Sens. 2021, 13, 4032 10 of 15 
 

 

for the UAV mode (Figure 7a,b) have lower values than those for the zip line mode (Figure 

7c,d), suggesting a quicker saturation of Sap̂ for the UAV at high biomass values. Still, 

RSEODs are very similar between both modes, despite orthomosaics being fraught with 

geometric and radiometric degradations. 

3.2. The Effect of Viewing Angles 

Figure 7c–h show the effects of the viewing angle in estimating the normalized ap-

parent surface area Sap̂ extracted from the zip line mode using the measured biomass as 

ground truth. There is an asymptotic relationship between Sap̂ and corn biomass, with 

RSEODs ranging from 0.031 to 0.040 for fresh biomass, and from 0.034 to 0.045 for dry 

biomass. Clearly, dry biomass is strongly correlated with fresh biomass, and Sap̂ is a good 

indicator of both fresh and dry biomass for all three viewing angles. 

 

Figure 7. Asymptotic regression models for the apparent surface area of plants as a function of dry 

(left) and fresh (right) biomass, at different viewing angles: nadir (0°) for UAV (a,b) and zip line 

(c,d); 30° (e,f) and 45° (g,h) for zip line. 

Since horizontal surfaces appear smaller as viewing angles increase, areas from more 

vertical surfaces and other hidden surfaces compensate in oblique imagery. The apparent 

increase in the asymptotic coefficients with increasing viewing angles may be an indica-

tion that this compensation is more efficient at larger viewing angles. However, when 

considering the RSEODs, it seems that a viewing angle of 30° results in the best fit (RSEOD 
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biomass, at different viewing angles: nadir (0◦) for UAV (a,b) and zip line (c,d); 30◦ (e,f) and 45◦ (g,h) for zip line.

4. Discussion

In this study, a novel parameter—the normalized apparent surface area ˆSap—has been
proposed to monitor corn biomass at the row level. The ˆSap appears to be a good proxy of
both fresh and dry corn biomass, with a good regression fit.

Even so, the application of this method requires vegetation to be clearly discriminated
from the background. In this study, image segmentation produced consistent results
because the spatial resolution was high enough. Rasmussen et al. [50] found that the
discrimination of crops from the background in the early stages of barley growth required
ultra-fine resolution images (GSD < 5 mm). In our experiment, the highest GSD (i.e., the
lowest spatial resolution) was 4.4 mm for the UAV mode and 1.26 mm for the zip line mode.
The ExG-ExR color index used for image segmentation resulted in a binarized image that
distinguished plants from the background. Thus, green pixels also included weeds if they
were present. However, the use of oblique images minimizes the importance of weeds
since they were shorter than the measured corn plants. If a plot is invaded by weeds, the

ˆSap estimate would be distorted if they were not excluded from the calculation. Detecting
weeds should then be a preliminary step, using techniques such as feature [51] or texture
recognition [52], hyperspectral imagery [53,54], or deep learning [55,56].

The lower spatial resolution for orthomosaics is expected to generate less accurate
segmentation (Figure 4b). Although there is an underestimation of the ˆSap from the
orthomosaics at low and high values (Figure 6), the regression curve is still close to the
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1:1 line. The underestimation of corn biomass with the UAV mode is likely attributable
to the degradation of geometric and radiometric quality resulting from mosaicking (gaps
in the mosaic, incorrect stitching, artifacts, blurs, etc.). The final vegetation mosaic is
not necessarily satisfactory and is highly dependent on acquisition conditions (camera
exposure, coverage rate, canopy architecture). Poor photogrammetric results at this level of
details produce approximate segmentation, as evidenced in Figure 4b. It would therefore
be advantageous in terms of processing time and effort to only use single images for crop
biomass estimation. With a precise location measured with RTK GNSS, each single image
can be processed to calculate the biomass of the plant at a specific point in the field.

With the stationary mode, a range of off-nadir viewing angles can also be chosen with
little effect on the estimation of the biomass (Figure 7). However, an angle of 30◦ could be
the most logical choice to estimate corn biomass as, while focusing less on horizontal leaves,
it reveals more of the vertical structure of the plants. At an angle of 45◦, the regression
yields a higher RSEOD, which suggests that the compensation effect of vertical surfaces
may subside with steeper viewing angles (angles > 45◦ were not tested because of their
impracticality in the context of a corn field). The effect of leaf angle, i.e., the proportion
of flat to upright surfaces inherent to each cultivar and each growth stage, should be
considered as that factor will influence the results.

For the nadir view, the normalized apparent surface area ˆSap can be retrieved from
the fractional vegetation cover (FVC), which is expressed as the ratio of the vegetation area
Sap to the sampling area Sz, as projected on the horizontal plane:

FVC =
Sap

Sz
=

Sap

Lw
=

ˆSap

w
(7)

where L and w are respectively the length and width of the sampling area. When dealing
with one row, w is equivalent to the inter-row spacing. FVC is only valid for images
acquired at nadir. In an oblique image, the vegetation surface taken into consideration is
no longer limited by the sampling area. Normalizing Sap by a cosine factor would imply
that all or most imaged surfaces are horizontal, which is clearly not the case for corn
plants. There is another way to normalize vegetation area for row crops such as corn that
was adopted here: the vegetation area per row length ˆSap as in Equation (5). With that
parameter, oblique imagery can only focus on a single row at a time because other rows are
partially hidden and pixels distant from the perspective center are too distorted.

Proximal active sensors and satellite images have a limitation for monitoring crops
at early growth stages [17,57] since the signal from the vegetation cover is not strong
enough to overcome the noise from bare soil. Moreover, they tend to rely on spectral-based
approaches that depend on geometric and radiometric acquisition conditions [41,58–61].
The method described here is interesting because it requires only the discrimination of
vegetation from soil, which is easily applicable at the growth stages considered. It makes
early crop monitoring possible at a time when crop management decisions matter the most.
Indeed, farmers applying spatially variable interventions to their crops need to react as
early as possible to maximize the benefits at harvest, which is currently hardly possible
due to the lack of sensitivity with the use of other remote sensing approaches. A simple
set-up using an RGB camera mounted on a tractor boom to capture oblique images could
be used for the crop biomass estimation of incoming plants prior to in-season fertilization.
This could be performed during mechanical or chemical weed control occurring prior to
in-season fertilization.

5. Conclusions

This study explored an alternative to vegetation indices for predicting corn biomass
from images with very high spatial resolution. By segmenting the images and calculating
the ˆSap, it was possible to estimate corn biomass with good accuracy. Although segmen-
tation was less accurate with orthomosaics than single images, both platforms (UAV and
zip line) yielded good estimations of corn biomass at nadir view. Our study demonstrated
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that using oblique imagery at 30◦ could improve biomass estimation, although differences
between the nadir and oblique viewing angles up to 45◦ are not that significant. Further
investigation should aim at a wider range of viewing angles.

The ˆSap can be quickly extracted from a single image or a mosaic. However, mosaick-
ing not only imposes a significant effort on the acquisition and processing of images, but
also generates artifacts because of the degradation of radiometric quality and the instabili-
ties of the UAV platform. The apparent surface calculated from an RGB camera is easy to
obtain (simple processing, no reflectance to calculate) and gives a good estimate of corn
biomass in space and time. Moreover, this method would allow for biomass estimation
at row scale. It is therefore feasible to perform crop management either by zone or by
row. Likewise, we believe that this method would benefit from being tested on other crops
(wheat, soybeans, or vegetables).

It is currently difficult to have a good estimation of biomass at the beginning of the
season. With this novel way of assessing crop biomass, it is possible to use robotic platforms
in agriculture such as autonomous robots [62] and drones. High spatial resolution images
are also possible with cell phones and other IoT (Internet of Things)-connected devices [63].
A better understanding of their pros and cons would necessitate further research. We
suggest that this novel ˆSap measure, at a relevant angle of acquisition, can be used for early
crop biomass estimations in combination with more traditional measurements such as
the NDVI value. Since oblique imagery can provide a good estimation of crop biomass,
those platforms do not need to be directly above a target point. In addition, oblique
camera viewing allows for wider coverage, reducing the number of images to be processed.
Future work will investigate the application of the ˆSap measure on single plants and other
crops. We will also evaluate potential applications in identifying crop deficiency at early
growth stages.
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