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Abstract: Convolutional neural networks have been highly successful in hyperspectral image classifi-
cation owing to their unique feature expression ability. However, the traditional data partitioning
strategy in tandem with patch-wise classification may lead to information leakage and result in
overoptimistic experimental insights. In this paper, we propose a novel data partitioning scheme and
a triple-attention parallel network (TAP-Net) to enhance the performance of HSI classification without
information leakage. The dataset partitioning strategy is simple yet effective to avoid overfitting, and
allows fair comparison of various algorithms, particularly in the case of limited annotated data. In
contrast to classical encoder–decoder models, the proposed TAP-Net utilizes parallel subnetworks
with the same spatial resolution and repeatedly reuses high-level feature maps of preceding subnet-
works to refine the segmentation map. In addition, a channel–spectral–spatial-attention module is
proposed to optimize the information transmission between different subnetworks. Experiments
were conducted on three benchmark hyperspectral datasets, and the results demonstrate that the
proposed method outperforms state-of-the-art methods with the overall accuracy of 90.31%, 91.64%,
and 81.35% and the average accuracy of 93.18%, 87.45%, and 78.85% over Salinas Valley, Pavia
University and Indian Pines dataset, respectively. It illustrates that the proposed TAP-Net is able to
effectively exploit the spatial–spectral information to ensure high performance.

Keywords: hyperspectral image classification; parallel network; channel–spectral–spatial attention;
feature reuse

1. Introduction

With the rapid development of hyperspectral imaging technologies, it is feasible to
collect hundreds of contiguous narrow spectral bands for each pixel in a scene [1,2]. This
abundant spectral and spatial information in hyperspectral remote sensing data has been
widely used in a broad range of applications with unprecedented accuracy [3]. Among these
applications, hyperspectral image (HSI) classification (or semantic segmentation), which
aims at assigning a unique label to each pixel of HSI, is a critical enabling step for land-cover
monitoring, ecological science, environmental science, and precision agriculture [4,5]. Even
though it has attracted considerable attention, it remains a challenging problem because of
the limited number of training samples and the spatial variability of spectral signatures [6].

Both spectral and spatial information should be considered in HSI classification,
whereas early HSI classification methods primarily focused on the study of a continuous
spectrum in an effort to classify pixels using distinguishable spectral features [7,8]. Typ-
ical classifiers include support vector machines (SVMs), dictionary learning, and neural
networks [9,10]. However, the classification performance of these methods is usually
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unsatisfactory for small sample sizes and high-dimensional datasets. It has been demon-
strated that spatial information is complementary to spectral features and contributes to
the improvement of classification performance [11]. Spatial contextual information can be
incorporated through feature combination and decision fusion [4]. For instance, Chen et
al. explored spectral–spatial information by flattening a neighbor region as a vector and
feeding this vector into classifiers [12]. Fauvel et al. combined morphological information
with the original hyperspectral data and concatenated these two attribute vectors into
one feature vector [13]. In addition, classification methods based on Markov random
fields (MRF), SVMs, ensemble decision trees, and deep belief networks were recently
proposed for decision fusion [13,14]. An MRF or conditional random field was used to
enhance spatial smoothing and further refine the classification results [15,16]. However,
poor generalization is usually observed when the classification is based on handcrafted
features. The representation power is limited and may not fully represent the abundancy
of spectral–spatial information.

Recently, deep convolutional neural networks (CNNs) have achieved tremendous
successes in a broad range of applications, such as speech recognition, gesture recognition,
and natural language processing [17–20]. Their considerable feature extracting power also
contributes to their success in HSI classification. For instance, the authors of [1,21] proposed
a two-branch network to extract the spectral and spatial features separately, and then used
the fused features for classification. However, since the spectral and spatial features are
extracted independently, the mutual excitation is generally ignored. Three-dimensional
CNNs have allowed the extraction of deep spectral–spatial features by using a 3D convolu-
tion kernel [22–24]. In [24], a 3D CNN and the Jeffries-Matusita distance were introduced
to select effective bands and reduce the redundancy of spectral information. In [22], 3D
convolution was combined with a traditional self-encoder and wavelet technology to maxi-
mize the extraction of spectral–spatial structure information. Despite the robustness of 3D
CNNs has been demonstrated in some previous works [22,25], the significant increasing
of learnable parameters introduced by the 3D convolution kernels often excluded their
application in cases with limited training samples [26].

In addition to feature extraction, the optimization of classification algorithms has
attracted considerable attention. Inspired by the human visual attention process, a large
number of attention-based models have achieved remarkable performance in semantic
segmentation, pattern recognition, target detection, and other fields [27–29]. As shown in
Figure 1, three categories of attention mechanisms are used in HSI: channel-wise, spectral-
wise, and spatial-wise. For a C × H ×W × B-sized HSI feature map, the channel-wise
attention determines the importance of feature channels (with the size of C) and adjust their
weights in network propagation. The spectral-wise attention recalibrates the importance
of different spectral bands (with the size of B). Different from these two attention mech-
anisms, probability maps are generated for each pixel in the H ×W region to constrain
the pixels in neighboring region by using spatial-wise attention. Various CNNs have been
proposed to handle the correlation of channel, spectral, and spatial features from HSI.
For instance, in [8,30], spectral-wise attention was introduced to select important bands
and enhance the distinguish ability of spectral features, thus improving the classification
performance of the trained models. In [21], the authors proposed a 3DCNN-based double-
branch network to extract spectral as well as spatial information separately, and utilized
the channel-wise attention as well as spatial-wise attention to focus on the most informa-
tive features. In [31], a recurrent neural network with an attention module was designed
to learn inner spectral correlations within a continuous spectrum, and a CNN with an
attention module was proposed to focus on saliency features and spatial dependency in
neighboring regions.Although CNN-based models have exhibited promising performance
in HSI classification, certain issues should be addressed.

First, most CNN-based HSI classification methods often have potential training-test
information leakage, leading to overly optimistic results. For example, in the traditional
data partitioning method, in a single class, S× S neighborhoods of the center pixel are
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divided into partitioned patches by the sliding window strategy [32]. Since most of the
patches exist more or less overlap, the information leakage will occur when the partitioned
patches are assigned to the training or test set. Several strategies have been proposed
to avoid information leakage [33,34]. However, owing to their patch-wise classification
strategy, they cannot achieve satisfactory performance without using spatial information.
Zou et al. developed a training/test partitioning method using a patch-based algorithm
from the input images [32], whereby the original image is divided into blocks that do not
overlap, and subsequently multi-class blocks (i.e., blocks with more than one pixel type) are
selected as the training set. However, this patch-wise method has the defect that some class
may be missed in the training, validation, and test sets. The construction of an impeccable
training/test partition require further investigation.

Figure 1. Various attention modules, including (a) channel-wise attention, (b) spectral-wise attention
and (c) spatial-wise attention. C, W, H and B represent the number of channels, width, height and
number of bands respectively. For easier understanding, weighted channels, weighted bands, and
weighted pixels are represented by different colors. GAP denotes the global average pooling and FC
denotes the fully connected layer. Conv represents the convolutional layer.

Second, the number of training patches is not sufficiently large to train the deep
learning framework when the dataset is divided without overlap by the traditional data
partitioning method [32]. Although some 1D CNN frameworks can obtain a fair result by
using a spectral vector without information leakage [35,36], they cannot achieve satisfactory
performance without using spatial information. Compared with the traditional classifica-
tion framework, fully convolutional networks (FCNs) classify each pixel in the entire patch.
Under the premise of the same number of training patches as in the traditional framework,
FCNs can utilize more annotated information without overlap and assign all labels to the
patches. However, FCNs have not been extensively used for pixel classification in HSI, and
therefore there is room for considerable improvement in the design of this framework.

Third, although some attention-based frameworks have achieved remarkable perfor-
mance in HSI classification, most studies have been concerned with the internal architecture
of the attention module. They tend to put attention weights in one or two dimensions, and



Remote Sens. 2021, 13, 324 4 of 24

ignore the fact that the HSI is a 3D cube. For instance, in [8], a single-attention module
was designed for the spectral dimension. In [21], a double-attention module was proposed
to reduce the interference between channel and spatial information. The spectral and
spatial dimensions are weighted by the spectral and spatial attention module, respectively,
in [31]. The combination of attention mechanisms in one or two dimensions may improve
performance. However, it is necessary to integrate all dimensional attention mechanisms
for better classification.

To address these issues, we introduce a novel routine for data partitioning and a
triple-attention parallel network for HSI classification. The main contributions of this study
are as follows:

• We propose a FCN-based parallel network as our baseline. It is composed of four
parallel subnetworks with the same spatial resolution, and the high-level feature maps
of any subnetwork are reused by anti-cross-layer connectivity to refine the low-level
feature maps of the succeeding subnetwork.

• We apply a triple-attention mechanism, consisting of channel-wise, spectral-wise,
and spatial-wise attention, between different subnetworks in a parallel network. The
attention mechanism filters the feature maps of any subnetwork to obtain stronger
spectral–spatial information and more important feature channels as input for the
succeeding subnetwork.

• We introduce a novel partitioning method, which can be the gold standard for HSI
classification. It not only allows designing a framework without information leakage,
but also suits actual application scenarios.

2. Proposed Methods

Herein, we introduce a parallel fully convolutional network based on a triple-attention
mechanism. The proposed framework has three key components: (1) A parallel network
is used to replace the mainstream serial CNN structure, and it is verified that this can
develop deeper aggregation structures to enhance the feature extracting ability in [37,38].
We set four parallel subnetworks, which are distributed horizontally and represented in
different colors in Figure 2. (2) A variable spectral residual block (VSRB) is proposed to
refine the feature maps and adjust the map dimensions at different convolution stages [39].
In each subnetwork, the feature maps from low to high level should be refined by the VSRB.
(3) Inspired by the success of multiple-attention mechanisms in computer vision [28,40],
a channel–spectral–spatial-attention module (CSSA) is applied to adjust the weights of
different dimensions when feature maps are transmitted to the same convolution stage of
an adjacent subnetwork.

Figure 2. Channel–spectral–spatial-attention parallel network. Each row and column represents the same subnetwork
and the same convolution stage, respectively; VSRB represents the variable spectral residual block; CSSA represents the
channel–spatial–spectral-attention module.
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2.1. The Parallel Network and Anti-Cross-Layer Connectivity

Recent research has demonstrated that cross-layer connectivity and multi-scale context
fusion achieve promising performance. Gao et al. (and several other researchers) used
densely connected convolutional networks to encourage feature reuse [41]. This is a widely
used strategy and achieves satisfactory performance in serial networks. The framework is
shown in Figure 3a. U-net series frameworks have achieved considerable success in medical
imaging by using multi-scale resolution strategies and cross-layer connectivity [42], as
shown in Figure 3b. In HSI classification, the strategy of cross-layer connectivity and multi-
scale context fusion is also highly successful [8,21]. In addition, Ma et al. proposed a double
branch network in which one branch is used for spectral information exploration, and the
other for spatial feature extraction [21]. An overview of this double-branch framework is
shown in Figure 3c. In this paper, we propose a novel parallel CNN framework, which is
different from those in existing approaches, as shown in Figure 3d.

Figure 3. Various CNN frameworks: (a) Serial network with cross-layer connectivity, (b) network
with cross-layer connectivity and multi-scale context fusion, (c) common two-branch fusion network
in HSI classification, and (d) example of the proposed parallel network with two subnetworks
(SN1, SN2).

In most cases, cross-layer connectivity is designed to encourage feature reuse by
incorporating the feature maps of low layers into higher layers, as shown in Figure 3a,b.
Although cross-layer connectivity can often improve performance, semantic gaps and
performance deterioration may result from the fusion of incompatible feature maps [43].
In combination with recent research [37,38], we designed anti-cross-layer connectivity
and a basic parallel network. Compared with traditional cross-layer connectivity, anti-
cross-layer connectivity fuses refined feature with rough maps in a subnetwork, and the
fusion maps are re-refined through the succeeding subnetwork. In addition, we enable the
reuse of feature maps between different subnetworks. The connections between adjacent
sub-networks are shown in Figure 3d. We first extract the multi-scale spectral information
between different stages in SN1. Then, we use the fusion of the high-level feature SN1-3
and lower-level features (SN1-1, SN1-2), which is called anti-cross-layer connectivity, as
the input of each stage in subnetwork SN2. In the parallel network, four subnetworks are
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utilized, and high-level feature maps of the preceding subnetworks are repeatedly reused
to refine the segmentation map.

2.2. Variable Spectral Residual Block

Residual blocks have been successfully used in various deep learning applications [44].
A residual connection can be expressed as:

Xl = F(Xl−1) + Xl−1 (1)

where Xl and Xl−1 are the lth and l − 1th feature maps, respectively, and the function F
is a nonlinear transformation. Through a residual connection, the learning goal of the
convolution kernel is converted to F(Xl−1) = Xl − Xl−1, and the residual mapping is
easier to optimize than the original function F [45]. In addition, a residual block was also
introduced in [45] to reduce computation and training time.

To better refine spectral–spatial features and achieve better performance, we designed
the VSRB to match the dimension of the feature maps. In the proposed framework, different
stages in the same subnetwork require VSRB refinement, and the VSRB architecture is
shown in Figure 4. We employ a 1× 1× 1 convolution layer and a batch normalization
layer as the first component of the VSRB, and the layers are used to unify the number of
channels, downsample spectral bands, and combine information. Then, a residual block
is applied to improve feature extraction. Finally, we set a band-correction layer to adjust
the band dimension and maintain dimensional consistency in the same stage of different
subnetworks. It should be noted that, as the spatial dimension information is limited, we
only reduce the number of spectral bands in VSRB.

Figure 4. The variable spectral residual block used for replacing the convolution operation in each
subnetwork. BN represents the batch normalization, and Conv denotes the convolutional layer.

2.3. Triplet Attention Mechanism

For better HSI classification performance, we propose a novel triple-attention mod-
ule(CSSA) that consists of channel-wise, spectral-wise, and spatial-wise attention. The
module is introduced in detail in the following.

2.3.1. Channel-Wise Attention Module

Different feature map channels in each convolution stage can be regarded as differ-
ent feature representations [46,47]. A large number of channels are applied to represent
different feature maps, but this results in several meaningless feature channels. Therefore,
we introduce a channel-wise attention module to increase the weights of useful feature
channels and weaken meaningless channels.

The proposed channel-wise attention module is shown in Figure 1a. We assume that
the dimension of the input feature maps is C×W × H × B, where C, W, H, and B are the
channels, width, height, and bands of feature maps in each convolution stage. The input
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feature maps are first sent into a global average pooling (GAP) layer to aggregate spectral–
spatial information into a C× 1× 1× 1 feature vector. Then, this vector passes through a
fully connected (FC) and a relu activation layer to introduce more feature representation
nodes. Subsequently, another FC layer is employed to adjust the dimension of the vector
back to C × 1 × 1 × 1, and a sigmoid activation function maps the feature vector to a
probability vector. Finally, this probability vector is treated as a channel weight multiplied
by the original feature maps. The channel weighting function can be expressed as:

Fchannel(x) = σsigmoid(Ff c2(σrelu(Ff c1(FGAP(x))))) (2)

where x is the C×W×H× B input feature and FGAP is the global average pooling function.
Ff c1 and Ff c2 are the first and second FC layers, respectively. σrelu is the relu function, and
σsigmoid is the sigmoid activation layer.

2.3.2. Spectral-Wise Attention Module

Spectral bands can be represented as a continuous spectral curve that contains the
value of each spectrum. For spectral classification, hundreds of spectral bands are directly
used as inputs to different convolution stages. This inevitably involves some noise bands,
resulting in poor classification performance. Accordingly, we propose a spectral-wise
attention module to enable the network to recalibrate the importance of different spectral
bands and strengthen useful spectral features.

The proposed spectral-wise attention module is shown in Figure 1b. The C×W ×
H × B input feature is sent into the convolution and relu layer with only one filter to fuse
information in different channels. Then, the dimension of the feature is 1×W × H× B. We
set the size of the convolution kernel to W×H× 1, and the strategy of kernel padding to be
invalid. This operation merges the spatial information and produces a 1× 1× 1× B feature
vector with the same number of channels as that of the spectral bands. Subsequently, this
vector is sent to a sigmoid function layer to obtain the probability vector. For convenience,
the probability vector is upsampled to the size of the input feature. The spectral weighted
feature maps by multiplying the input feature and the probability map. The spectral-wise
attention module can be computed as:

Fspectral(x) = σsigmoid(Fresize(σrelu(Fconv(x)))) (3)

where x is the C×W×H× B input feature, Fconv is the convolution function, Fresize denotes
upsampling, σrelu is the relu function, and σsigmoid is the sigmoid activation layer.

2.3.3. Spatial-Wise Attention Module

Environmental factors such as light, temperature, and humidity have a great influence
on hyperspectral imaging. Pixels with similar spectra may belong to different classes, and
pixels with different spectra may have the same label. Intra-class inconsistency and inter-
class homogeneity greatly affect classification performance, and using spatial information
to constrain neighboring region pixels is the key to addressing this [47]. Herein, a spatial-
wise attention module is introduced to strengthen the associativity between adjacent pixels.

The proposed spatial-wise attention module is shown in Figure 1c. In contrast to the
channel-wise and spectral-wise attention modules, the spatial-wise attention module is
designed by using a double-branch strategy. In the two branches, we use different feature
maps of different sizes as the input. Branch 1 uses the original feature maps to generate
weights for each pixel of the input image. The spatial dimension of the feature maps
is downsampled twice, and then the downsampled feature maps are sent to Branch 2
to obtain the probability maps. In both branches, we first use convolution with only
one filter to aggregate the channel information, as in the design of the spectral-wise
attention module. The feature dimensions of the two branches are 1×W × H × B and
1× (W/2) × (H/2) × B. Then, the sigmoid activation function is applied to generate
probability maps. The probability result of Branch 1 directly weights the original feature
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maps. The probability maps of Branch 2 first upsample to 1×W×H× B, and then multiply
the weighted feature maps of Branch 1. Thus, the pixels in the 2× 2-region share the same
weights, thereby increasing the probability that adjacent pixels belong to the same class.
The spatial-wise attention module can be expressed as:

Fspatial(x) = σsigmoid(σrelu(Fconv(x)))× σsigmoid(Fresize(σrelu(Fconv(xds)))) (4)

where x is the C ×W × H × B input feature, and xds represents the feature maps after
downsampling. Fconv is the convolution function, Fresize denotes upsampling, σrelu is the
relu function, and σsigmoid is the sigmoid activation layer.

2.3.4. Aggregation of Attention Modules

To take full advantage of the information in each dimension, we design the triple-
attention block to aggregate channel, spectral, and spatial information.

As shown in Figure 5, when the attention channel is fed into the CSSA module, it
first passes through the channel-wise attention module. Then, the generated channel-wise
attention probability vector is multiplied by the low-level feature, and the result is sent
to the spectral-wise and the double-branch spatial-wise attention module. Thereafter, the
channel-wise, spectral-wise, and spatial-wise attention maps are sampled to the same size
and averaged. Finally, the low-level feature is multiplied by the average weight, and the
result is added to the low-level feature as the output of the CSSA module. The strategy of
aggregating three weights into one is equivalent to generating a weight of the same size
as that of the low-level feature, and then weighting each value of the 3D feature maps.
Compared with the result of previous single or double attention mechanisms, the triple-
attention mechanism comprehensively considers each dimension in the feature extraction
process and adjusts the weight of the corresponding dimension.

Figure 5. The triple-attention module, involving in channel-, spectral- and spatial- attention (CSSA).
GAP, FC, K, S represents global average pooling, the fully connected layer, the kernel size and the
stride, respectively. The triple-attention module(CSSA) has two inputs: (1) the feature maps at the
highest level of the preceding subnetwork, and (2) the corresponding low-level feature maps of the
same stage. The total weight is generated by aggregating the three types of attention modules.
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3. Experiment Setup and Results
3.1. Data Partition

Traditional patch-based partitioning methods have been verified to have potential
test information leakage in [33]. The training/test set division greatly affects the fairness
of model comparison, the evaluation of framework performance, and the feasibility of
practical application. Accordingly, there is an urgent need for a data-partitioning approach
that allows the fair comparison of various models. To this end, some researchers have
explored data-partitioning methods that do not lead to data leakage [32]. However, in [32],
two potential issues should be addressed. First, some classes are missing in the training
or test set of several experiments, such as C7 and C9 in the Indian Pines dataset. Second,
the partitioning results of the training set indicate that the labeled pixels are clustered in
each training patch. In practical applications, it is difficult to accurately mark all pixels in
a neighborhood.

To address these issues, we propose a novel data partitioning standard for future
studies in HSI classification. The proposed method first partitions the original image into
nonoverlapping training and test blocks, and then randomly selects pixels as training
pixels from the training blocks. Thereby, there is no information leakage because of the
lack of overlap between the training and test blocks. The details are as follows. Before data
partitioning, we determine the ratio ωt of training pixels in the original image, and the
number Np of labeled training pixels in each pre-partitioned training block. Therefore, the
number of training blocks in each class can be expressed as:

Nblocks(1), Nblocks(2), ...Nblocks(c) =
Npixels(1), Npixels(2), ...Npixels(c)×ωt

Np
(5)

where Nblocks(1), Nblocks(2), ...Nblocks(c) are the numbers of training blocks in each class
(Nblocks is set to be at least 1 in each class), and Npixels(1), Npixels(2), ...Npixels(c) refer to the
number of pixels of each class in the original image. The data partitioning process is shown
in Figure 6. We first divide the original image into random partitioning blocks and the
remaining image, as shown in Figure 6a,d. Subsequently, we randomly reserve Np labeled
pixels in the random partitioning blocks and save the reserved blocks as training blocks, as
shown in Figure 6b. The remaining labeled pixels in the random partitioning blocks are
set as leaked images, as shown in Figure 6c. Then, as shown in Figure 6e,f, we divide the
remaining image into validation blocks and the remaining test image randomly. Finally, we
partition the leaked image and the test image into leaked patches and test patches, respec-
tively. In addition, we apply the same sliding window strategy as in [32] to the training
and validation blocks for more training and validation patches. Furthermore, traditional
data augmentation methods (i.e., flip up/down, flip right/left and rotate right/left with an
angel of π/2 or π) were applied on the training and validation patches. In order to ensure
the randomness in the expanded dataset, each patch will be augmented with only two of
the three methods.

In the proposed partitioning method, there is no overlap between the training, vali-
dation, and test sets, and a comparison between the leaked and the test set can verify the
seriousness of the potential information leakage. Moreover, this method is suitable for
practical applications because it is easy to identify several pixel labels that are randomly
distributed in a training block area. Furthermore, labeled pixels in a patch can also enable
FCN models to extract spectral–spatial information for improved performance.
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Figure 6. Training-test set splits: (a) random partitioning blocks, (b) training blocks, (c) leaked image, (d) remaining image,
(e) validation blocks, (f) test image.

3.2. Evaluation Matrices

To evaluate the performance of the proposed TAP-Net, three popular evaluation matri-
ces, overall accuracy (OA), average accuracy (AA), and Kappa coefficient were employed
in this study. The OA metric is used to calculate the ratio of correct predictions over the
total test pixels [48]. The AA metric is designed to evaluate the average performance
across different classes [48]. The Kappa coefficient is calculated from a confusion matrix,
and it represents a statistical measurement of agreement between the predictions and the
ground-truth [48]. For all these three evaluation matrices, the higher values represent
the better classification performance. Taking M ∈ RN×N as the confusion matrix, Mi,j
represents the number of i-th class pixels that are predicted to be j-th class [49]. These three
matrices are defined as follows:

Overall accuracy(OA) =
∑N

i=1 Mii

∑N
i=1 ∑N

j=1 Mij
(6)

Average accuracy(AA) =
1
N

N

∑
i=1

Mii

∑N
j=1 Mij

(7)

Kappa coefficient =
OA−∑N

q=1(∑
N
i=1 Miq ×∑N

j=1 Mqj)/(∑N
i=1 ∑N

j=1 Mij)
2

1−∑N
q=1(∑

N
i=1 Miq ×∑N

j=1 Mqj)/(∑N
i=1 ∑N

j=1 Mij)2
(8)

3.3. Experimental Dataset

In the experiments, three well-known hyperspectral datasets were used for testing:
the Salinas Valley, Pavia University, and Indian Pines datasets. Five-fold cross validation
was carried out in the experiments. Moreover, each fold was repeated three times to reduce
the effect of randomness. To obtain a fair comparison, we also maintained almost the same
amount of data usage as in [32]. The details regarding the three dataset and the settings are
as follows:
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Salinas Valley: This dataset was obtained by the AVIRIS sensor (with a resolution of
3.7 m/pixel) in Salinas Valley, CA, USA. The spatial size of the dataset is 512× 217 pixels,
the number of spectral bands is 224, and the class of ground pixels is 16. The five
cross-validation folds were randomly partitioned, and the training pixels can be seen
in Figure 7a(1–5), whereas the ground truth is shown in Figure 7a(0).

Figure 7. Training pixels in (a) Salinas Valley dataset, (b) Pavia University dataset, (c) Indian Pines
dataset. Subfigure 0 in each dataset is the ground truth for the corresponding dataset. The other
subfigures represent the training pixels for different folds.

Pavia University: This dataset was captured by the ROSIS sensor in Pavia, northern
Italy. The sensor initially photographed 115 bands, and 12 noisy bands were removed.
It has 610× 340 pixels with a high resolution of 1.3 m/pixel and 9 land-cover classes.
Figure 7b(0–5) shows a visualization of the dataset. Specifically, Figure 7b(0) shows the
ground truth, and Figure 7b(1–5) shows the five random folds.

Indian Pines: This dataset was obtained by the AVIRIS sensor in Indian Pines, North-
western Indiana. The sensor can capture 220 spectral band images with a resolution of
3.7 m/pixel. In this dataset, 20 water absorption bands were removed, and 200 spec-
tral bands remained with a spatial size of 145× 145 pixels. The ground truth and the
distribution of the five folds are shown in Figure 7c(0–5).

To obtain a fair comparison with other methods, we used the same number of train-
ing pixels as in [32]. As shown in Tables 1–3, we divided the labeled pixels into train-
ing, validation, leaked, and test sets. Owing to the randomness of the data partitioning
method, the values in Tables 1–3 were obtained by taking the average of different folds.
In the Salinas Valley dataset, 2017.2, 2062.2, 16,071.4, and 33,978.2 labeled pixels were
divided into training, validation, leaked, and test sets, respectively. The division results
are 2721.4/2758.6/11,822/25,474 and 1187.8/1144.4/3318.4/4598.4 for Pavia University
and Indian Pines, respectively. In the experiment, the proportion of leaked pixels reached
47.30%, 46.41%, and 72.16% compared with test pixels. In fact, the number of leaked pixels
in the traditional centered partitioning method is significantly greater, and therefore the
resulting information leakage may yield more overoptimistic results.
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Table 1. Average number of training/validation/leaked/test pixels in Salinas Valley.

Class Total Train Val Leaked Test Train-Ratio (%)

C1 2009 77.6 128.4 605.6 1197.4 3.86
C2 3726 137.6 90.4 1118.8 2379.2 3.69
C3 1976 77.6 119 588.8 1190.6 3.93
C4 1394 52.8 49 333.8 958.4 3.79
C5 2678 102 118.6 737 1720.4 3.81
C6 3959 156.4 147.8 1181.4 2473.4 3.95
C7 3579 142.8 122.8 1089.6 2223.8 3.99
C8 11,271 407.8 346 3509.6 7007.6 3.62
C9 6203 225.8 275 1858.2 3844 3.64
C10 3278 116.6 129 946 2086.4 3.56
C11 1068 43.4 43.6 274.6 706.4 4.06
C12 1927 75.2 116 575.6 1160.2 3.90
C13 916 36.2 40.8 208.2 630.8 3.95
C14 1070 44.2 47 290 688.8 4.13
C15 7268 252.4 247.2 2183.2 4585.2 3.47
C16 1807 68.8 41.6 571 1125.6 3.81

Total 54,129 2017.2 2062.2 16,071.4 33,978.2 3.73

Table 2. Average number of training/validation/leaked/test pixels in Pavia University.

Class Total Train Val Leaked Test Train-Ratio (%)

C1 6631 457 381.6 1371.2 4421.2 6.89
C2 18,649 1116.8 1332.4 6648.6 9551.2 5.99
C3 2099 139.8 133.4 421.8 1404 6.66
C4 3064 195 99.2 254.6 2515.2 6.36
C5 1345 91.4 97.6 270.6 885.4 6.89
C6 5029 299 366.4 1922 2441.6 5.95
C7 1330 86.2 121.2 386.8 735.8 6.48
C8 3682 272.6 164.2 455.2 2790 7.4
C9 947 63.6 62.6 91.2 729.6 6.72

Total 42,776 2721.4 2758.6 11,822 25,474 6.36

Table 3. Average number of training/validation/leaked/test pixels in Indian Pines.

Class Total Train Val Leaked Test Train-Ratio (%)

C1 46 7.6 7.8 16.6 14 16.52
C2 1428 159.6 164 441.4 663 11.18
C3 830 97.6 91 262.2 379.2 11.76
C4 237 29.4 24.8 72.2 110.6 12.41
C5 483 56.2 52.2 161.4 213.2 11.64
C6 730 87 74 220.8 348.2 11.93
C7 28 7.2 8.6 8.4 3.8 25.71
C8 478 56.8 55.2 163.8 202.2 11.88
C9 20 4.6 3.4 6.6 5.4 23
C10 972 122.8 123.8 330.6 394.8 12.63
C11 2455 259.2 245.6 810.8 1139.4 10.56
C12 593 76.4 63.6 192.4 260.6 12.88
C13 205 26.6 31.4 62 85 12.98
C14 1265 146 134.6 427.2 557.2 11.54
C15 386 39.6 51 108.6 186.8 10.26
C16 93 11.2 13.4 33.4 35 12.04

Total 10,249 1187.8 1144.4 3318.4 4598.4 11.59
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3.4. Parameter Setting and Network Configuration

In data partitioning, considering the different spatial sizes and the limited pixels in
each dataset, we set different block and patch sizes when dividing different datasets. In
Salinas Valley, we selected the block size as 12× 12, and the patch size as 10× 10 to ensure
the extraction of spatial information. This selection can also provide sufficiently many
training patches by using the traditional sliding window strategy. The number of labeled
pixels in each training block (Np) was set to 10 in the experiment. Similarly, the block-patch
size was 12–10 and 6–4, and the parameter Np was set to 15 and 8 for Pavia University and
Indian Pines, respectively. Wt in the three datasets is a free variable that is used to control
the proportions of the training, validation, and test sets.

In the framework design, we used nearly the same parameter settings for the three
datasets. As shown in Table 4, with the Salinas Valley as an example, the triple-attention
parallel network consists of four subnetworks, and each subnetwork is divided into four
stages. In each subnetwork, two neighbor stages are connected by VSRB for efficient feature
extraction. The kernel size of the VSRB and the output size of the feature maps in each
stage are shown in Table 4. In adjacent subnetworks, the feature maps in the preceding
subnetwork are filtered by the triple-attention module and are fused with the maps in
the corresponding stage in the succeeding subnetwork. For example, stage 1, 2 and 3 of
subnetwork 0 is fused with stage 1, 2 and 3 of subnetwork 2, respectively. In the kernel size
settings, the first stage of each subnetwork is an aggregation layer. A convolution kernel
with a size of 3× 3× 3 is used to aggregate the channel–spectral–spatial information. In
the remaining stages, a 1× 1× 3 convolution kernel is used to enhance the extraction of
spectral information.

The TAP-Net was implemented in Python 3.6 and Keras 2.2.4. The Adam (beta_1 = 0.9,
beta_2 = 0.999, epsilon = 1× 10−8) was employed as the optimizer. The learning rate was
initially set as 0.01, and shrunk to 1/10 of the previous value after every 20 epochs. The
batch size was set to 32. We utilized focal loss as the loss function, which is designed to
reduce the impact of easy samples [50]. All the experiments were performed with the same
configuration on the platform with Intel i7-8700K, 32 GB RAM, and NVIDIA GeForce GTX
1080 GPU.

Table 4. Network framework details.

Stage Stage0 Stage1 Stage2 Stage3

Sub-Network3:
Kernel Size / / / 3×3×3
Feature Size / / / 10 × 10 ×24 × 128

Sub-Network2: Kernel Size / / 3×3×3 1×1×3
Feature Size / / 10×10×50×64 10×10×24×128

Sub-Network1: Kernel Size / 3×3×3 1×1×3 1×1×3
Feature Size / 10×10×100×64 10×10×50×64 10×10×24×128

Sub-Network0: Kernel Size 3×3×3 (Input) 1×1×3 1×1×3 1×1×3
Feature Size 10×10×204×1 10×10×100×64 10×10×50×64 10×10×24×128

Stage Stage4 Stage5 Stage6

Sub-Network3:
Kernel Size 1×1×3 1×1×3 1×1×3 (Output)
Feature Size 10×10×12×128 10×10×6×256 10×10×3×256

Sub-Network2: Kernel Size 1×1×3 1×1×3 /
Feature Size 10×10×12×128 10×10×6×256 /

Sub-Network1: Kernel Size 1×1×3 / /
Feature Size 10×10×12×128 / /

Sub-Network0:
Kernel Size / / /
Feature Size / / /
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4. Classification Result

We compare the TAP network with other state-of-the-art CNN-based methods that do
not exhibit information leakage. Furthermore, to evaluate the contribution of each module
to the final performance, we conducted experiments with or without a parallel network
and the triple-attention module. In the comparison, we used the following networks:

VHIS was proposed in [33], where the information leakage problem in traditional
CNN-based methods was explained. The authors introduced a 1D CNN-based network to
extract spectral features and classify pixels without information leakage.

DA-VHIS was introduced in [34], where three data augmentation methods were
proposed to generate more training samples. We report the best performance of these three
data augmentation methods in the comparison.

Auto-CNN was proposed in [51], where a 1D Auto-CNN was applied to optimize the
classifier without test information leakage. The best framework is automatically selected
for HSI classification.

SS3FCN was introduced in [32], where a data partitioning strategy was designed to
avoid information leakage. This strategy also allows the exploration of spectral–spatial
information by the proposed 1D and 3D double-branch networks.

SerialNet was shown in Figure 8a. It is a serial network with the same number of
stages as in the proposed TAP-Net. Moreover, the VSRB module are used for feature
extraction, and the corresponding parameter setting and network configuration are the
same as TAP-Net.

ParallelNet was shown in Figure 8b. The ParallelNet, consists of VSRB module
and parallel module, is compared with serial net to validate the performance of parallel
module. The hyper parameter and network configuration are same as that in TAP-Net. The
main difference between the ParallelNet and TAP-Net is that there is no attention module
in ParallelNet.

Figure 8. SerialNet and ParallelNet. VSRB represents the variable spectral residual block.

4.1. Results on Salinas Valley

The average classification results and standard deviation on the Salinas Valley dataset
are listed in Table 5. It can be seen that the proposed method achieves the best performance
when as many training samples are used as in SS3FCN, and fewer samples than in VHIS,
GAN-VHIS, and AutoCNN. Compared with traditional spectral classification methods
(VHIS, GAN-VHIS, and AutoCNN), TAP-Net, by using spectral–spatial information, im-
proves accuracy by more than 10%. The OA&AA by TAP-Net increased from 81.32% &
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86.13% to 90.31% & 93.18%, compared with that by other 3DCNN-based methods (SS3FCN).
Regarding the proposed module, ParallelNet improves OA & AA & Kappa by 2.28% &
2.10% & 2.8% compared with SerialNet through multi-scale spectral information fusion
and the anti-cross-layer connection. The triple-attention-based TAP-Net also improves OA
& AA & Kappa by 1.37% & 0.45% & 3.5% compared with ParallelNet. Considering the ac-
curacy of the frameworks under comparison, the proposed framework is more robust even
with a small number of training samples. Figure 9 shows classification maps by certain
methods only, as the other methods are not described in sufficient detail to reproduce the
classification maps.

Table 5. Classification results for the Salinas Valley dataset, including per-class, overall (OA), and average (AA) accuracy
(in %), and the Kappa scores.

Class
Method

VHIS DA-VHIS AutoCNN SS3FCN SerialNet ParallelNet TAP-Net

C1 85.91 96.36 96.75 92.36 97.88 99.36 98.73± 1.03
C2 73.88 94.71 99.26 92.58 99.68 97.58 99.71± 0.34
C3 33.72 49.95 79.46 66.35 90.79 97.78 91.29± 7.74
C4 65.92 79.62 99.09 98.13 98.91 97.78 98.78± 0.58
C5 46.42 64.3 97.21 95.63 95.34 94.46 96.27± 2.22
C6 79.63 79.89 99.68 99.30 99.31 99.27 99.26± 0.59
C7 73.59 79.62 99.35 99.43 99.26 99.43 99.35± 0.32
C8 72.16 74.54 75.82 69.27 81.83 84.07 84.76± 3.62
C9 71.87 96.1 99.05 99.67 96.84 98.07 98.13± 1.23

C10 73.11 87.28 87.54 84.07 86.78 89.60 88.56± 4.41
C11 72.51 73.08 89.15 85.31 73.09 95.38 84.59± 8.04
C12 71.06 98.25 96.99 97.98 98.30 98.28 99.02± 1.48
C13 75.80 97.67 98.36 98.45 97.22 97.58 98.07± 1.93
C14 72.04 88.07 90.61 87.32 93.12 96.01 94.59± 5.59
C15 45.03 62.92 63.47 52.31 50.59 58.84 69.09± 8.00
C16 22.54 45.39 89.26 59.97 91.14 86.56 90.71± 6.87

OA 64.20 77.52 87.15 81.32 86.66 88.94 90.31 ± 1.27
AA 64.70 79.24 91.32 86.13 90.63 92.73 93.18 ± 1.27

Kappa / 0.749 0.857 / 0.818 0.846 0.881 ± 0.03

Figure 9. Classification maps by different models for Salinas Valley: (a) false color image, (b) ground truth, (c) SS3FCN,
(d) SerialNet, (e) ParallelNet, and (f) TAP-Net.
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4.2. Results on Pavia University

The OA, AA, and class-specific accuracy obtained by different methods on the Pavia
University dataset are shown in Table 6. As in the case of Salinas Valley, SerialNet, Par-
allelNet, and the proposed TAP-Net achieve significantly better OA & AA than VHIS,
GAN-VHIS, AutoCNN, and SS3FCN. In addition, the data partitioning method, paral-
lel framework, and triple-attention module are highly successful. In the comparison of
each sub-module, the accuracy of C6 increased from 23.59% to 56.58% by introducing the
proposed data partitioning method. The OA & AA & Kappa of the parallel framework
increased by 2.84% & 5.47% & 1.5% compared with that of the serial module. The OA
& AA & Kappa of the proposed TAP-Net increased from 86.30% & 82.01% & 86.6% to
91.64% & 87.45% & 89.2% after the addition of the triple-attention module to ParallelNet.
Finally, compared with the state-of-the-art spectral–spatial framework (SS3FCN), TAP-
Net achieved 11.75% & 10.85% better performance than SS3FCN in terms of OA and AA.
Figure 10 the classification maps obtained by some of the methods under comparison.

Table 6. Classification results for the Pavia University dataset, including per-class, overall (OA), and average (AA) accuracy
(in %), and the Kappa scores.

Class
Method

VHIS DA-VHIS AutoCNN SS3FCN SerialNet ParallelNet TAP-Net

C1 93.40 93.42 83.40 97.48 92.89 94.29 95.67± 1.43
C2 86.20 86.52 93.32 90.86 95.40 93.97 97.61± 1.39
C3 47.58 46.88 61.52 58.75 61.35 69.81 73.08± 11.00
C4 86.89 92.21 78.86 84.81 81.68 85.31 94.23± 1.38
C5 59.81 59.74 98.25 94.82 99.41 99.50 99.48± 0.35
C6 27.14 27.68 73.34 23.59 56.58 71.24 84.17± 10.26
C7 0 0 64.56 61.61 32.51 50.97 59.92± 12.74
C8 78.46 78.32 76.86 88.84 69.66 73.52 83.60± 7.42
C9 79.27 79.60 97.69 88.68 99.40 92.44 99.33± 0.44

OA 73.26 73.84 84.63 79.89 83.46 86.30 91.64 ± 1.08
AA 62.08 62.71 80.87 76.60 76.54 82.01 87.45 ± 3.09

Kappa / 0.631 0.800 / 0.851 0.866 0.892 ± 0.02

Figure 10. Classification maps of different models for Pavia University: (a) false color image, (b) ground truth, (c) SS3FCN,
(d) SerialNet, (e) ParallelNet, and (f) TAP-Net.

4.3. Results on Indian Pines

The overall classification results and accuracy of each class are shown in Table 7.
Regarding the Indian Pines dataset, the number of pixels in each class is quite imbalanced,
and this significantly affects the results of the experiment. For example, VHIS, GAN-VHIS,
AutoCNN, and SS3FCN only obtain an accuracy of 0 & 23.8% & 35.63% 20.14% & 21%
for the C7 class. The same occurs in the classification of C1 and C9. These classes of
samples are not sufficiently large to learn differentiable features in other frameworks. In
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the proposed method, TAP-Net achieves an accuracy of 70.98%, 80.40%, and 70.03% in
the classification of C1, C7, and C9, respectively. This demonstrates that TAP-Net can
better extract features in these limited classes and achieve higher classification accuracy
with almost the same number of training pixels. In addition, the proposed framework
achieves the best performance, with the OA & AA & Kappa of TAP-Net is 81.35% & 78.85%
& 0.787, which is significantly better than the performance of the other frameworks. The
classification maps of some frameworks are shown in Figure 11.

Table 7. Classification results for the Indian Pines dataset, including per-class, overall (OA), and average (AA) accuracy
(in %), and the Kappa scores.

Class
Method

VHIS DA-VHIS AutoCNN SS3FCN SerialNet ParallelNet TAP-Net

C1 17.68 15.89 19.58 40.4 38.23 13.30 70.98± 22.75
C2 56.89 70.41 60.16 77.89 57.8 70.86 76.54± 5.92
C3 51.55 61.44 44.12 60.74 45.02 60.08 75.62± 7.62
C4 36.27 42.28 25.35 11.8 44.1 53.67 46.83± 17.89
C5 69.02 73.02 77.80 67.5 69.39 64.97 69.78± 14.82
C6 92.35 92.13 90.99 91.95 92.16 89.06 94.77± 3.96
C7 0 0 35.63 20.14 21.00 93.33 80.40± 27.43
C8 86.95 86.44 95.87 81.71 96.77 98.49 98.95± 1.58
C9 19.55 21.28 5.31 31.67 16.67 86.17 70.03± 23.60

C10 60.05 67.47 55.93 78.15 64.26 81.34 84.59± 5.99
C11 74.05 65.24 68.73 69.32 73.12 75.90 80.39± 4.36
C12 43.71 49.56 36.96 40.81 46.97 71.70 76.84± 6.18
C13 94.15 96.01 87.33 93.43 94.28 98.15 97.13± 2.53
C14 91.18 92.68 84.90 91.77 91.72 90.04 94.83± 1.92
C15 43.39 52.79 39.02 37.93 45.17 38.52 51.70± 10.20
C16 45.04 44.78 48.02 75.19 80.79 80.54 92.27± 5.12

OA 67.11 69.49 65.35 71.47 69.47 76.59 81.35 ± 1.53
AA 55.11 58.15 54.73 60.65 61.09 73.51 78.85 ± 3.18

Kappa / 0.653 0.600 / 0.695 0.730 0.787 ± 0.02

Figure 11. Classification maps of different models for Indian Pines: (a) false color image, (b) ground truth, (c) SS3FCN,
(d) SerialNet, (e) ParallelNet, and (f) TAP-Net.

5. Analysis and Discussion

The results in Section 4 demonstrate that the proposed method yields the best results
in HSI classification, particularly for classes that are difficult to classify using other methods.
Herein, we explore the effect of various factors on model performance. The leakage of
test information, block-patch size, number of labeled pixels in each block, and the effect
between different attention mechanisms are discussed for future reference.

5.1. Effect of Information Leakage

We now revisit the information leakage problem, which may reduce the credibility of
the results obtained by existing traditional data partitioning strategies and classification
networks. As shown in Figure 12, we compare the average results of leaked and non-leaked
datasets generated by the same training model. “Real acc” is obtained from non-leaked
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test samples that do not overlap with the training block, whereas “Leaked acc” is obtained
from samples with information leakage. In Figure 12a, the accuracy of all 16 classes and
OA & AA in Real acc is lower than in Leaked acc. Among them, the largest gap between
Real acc and Leaked acc is in C15, and the performance gap between the two test sets is
more than 10% in the classification of C15. Moreover, there is an optimistic performance of
approximately 3% in OA & AA for Leaked acc. In Figure 12b, C3, C6, and C7 are the main
factors that cause accuracy distortion; the largest performance gap between the two test
sets increases by up to 25%. The OA & AA values also increase from 91.64% & 87.45% to
97.91% & 95.65%. The most serious accuracy distortion occurs in the Indian pines dataset,
as shown in Figure 12c, where almost all classes exhibit highly optimistic performance.
The real OA & AA in this dataset increases by 12.08% & 12.47% on the leaked test set. In
general, we hope that an accuracy comparison between the real and leaked test sets will
enable recognizing and avoiding the information leakage problem in future studies.

Figure 12. Classification results on none-leaked and leaked datasets for (a) Salinas Valley, (b) Pavia
University, and (c) Indian Pines.

5.2. Effect of Block-Patch Size

To achieve the best classification results, we now discuss the effect of different block-
patch sizes. In this study, blocks are set to select the training and validation data. The size
of these blocks in the experiment determines the spatial information of the training and
validation samples. Moreover, the number of training and validation samples is controlled
by the patch size in the sliding window strategy. We empirically set the difference between
block and patch size to 2 in the comparison experiment. The results on the three datasets
are shown in Table 8. For example, in the Salinas Valley dataset, the proposed TAP-Net
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achieves the highest accuracy with an OA/AA of 90.31%/93.18% when the block-patch size
is 10–8. Performance decreases gradually with an increase or decrease in the block-patch
size. In fact, the spatial information in the training patch decreases if smaller block size
is used. Conversely, the correlation between pixels decreases when the same number of
labeled pixels are randomly distributed in larger blocks. Similar results are obtained on
the other datasets; on the Pavia University (10–8) and the Indian Pines (6–4) datasets, the
best performance is achieved, with an OA & AA of 91.64% & 87.45% and 81.35% & 78.85%,
respectively. It should be noted that when the block-patch size is set to 10–8 for Indian
Pines, all the labeled pixels appear in the training set, and thus no test results are obtained.

Table 8. Effect of the block-patch size on OA & AA (%): (a) Salinas Valley, (b) Pavia University, and
(c) Indian Pines.

(a) Salinas Valley

Block_Patch 6_4 8_6 10_8 12_10 14_12

Accuracy (%)
OA 88.77 89.1 90.31 89.47 86.39
AA 91.9 93.06 93.18 93.77 89.4

(b) Pavia University

Block_Patch 6_4 8_6 10_8 12_10 14_12

Accuracy (%)
OA 88.42 89.41 91.64 86.38 83.32
AA 84.1 84.75 87.45 80.72 77.05

(c) Indian Pines

Block_Patch 2_1 4_2 6_4 8_6 10_8

Accuracy (%)
OA 74.21 76.33 81.35 79.18 /
AA 68.52 70.64 78.85 65.38 /

5.3. Effect of the Number of Labeled Pixels in Each Block

The labeled pixels in each block (Np in the data partitioning part) determine the
distribution of the training pixels. In this study, the number of training, validation, and
test pixels have a fixed upper limit. For example, in the training set, the total number
of training blocks decreases if more labeled pixels appear in each training block. As the
sampling blocks in a class decrease, the location of partitioning blocks within the class
becomes unbalanced. As the percentage of labeled pixels in a training block decreases,
more blocks should be partitioned to ensure that the same number of pixels are used for
training. However, the continuity of spatial information within the block will be reduced
because of the decreased labeled pixels. The balance between the number of blocks and
pixels is important in classification. Figure 13 shows the effect of different Np in different
datasets. The Salinas Valley, Pavia University, and Indian pine datasets achieve the best
performance when Np is set to 10, 15, and 8, respectively.

Figure 13. Influence of the number of labeled pixels in each block: (a) Salinas Valley, (b) Pavia University, and (c) In-
dian Pines.
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5.4. Advantages and Limitations

The problem of information leakage leads to overoptimistic performance, which might
be unreliable. In this paper, a novel data partitioning strategy without information leakage
and a well designed deep learning architecture are proposed. Although the proposed
modules are meaningful for HSI classification, there are still a few limitations needed to be
addressed in future research.

5.4.1. Impact of the Attention Module

To verify the effectiveness of the triple-attention module, we added a channel–spectral
attention module (ParallelNet-CS), spectral–spatial attention module (ParallelNet-SS), and
triple-attention module (TAP-Net) to ParallelNet for comparison. For simplicity, we take
the Pavia University as an example, and the results of these attention-based ParallelNet
are shown in Table 9. Evidently, the proposed triple-attention module provides the best
performance, with OA & AA of the module is 91.64% & 87.45%, which is significantly
better than that of other attention modules. Moreover, the smaller standard derivation of
OA, AA and Kappa score corresponding to TAP-Net indicates its better stability under the
same parameter settings. Similar results shown in supplementary material were observed
on the Salinas Valley and Indian Pines dataset.

Table 9. Comparison between different attention mechanisms over Pavia University dataset in terms
of Per-class, overall (OA), average (AA) accuracy (in %) and the Kappa score.

Class
Method

ParallelNet ParallelNet-SS ParallelNet-CS TAP-Net

C1 94.29± 0.83 95.53± 2.06 94.07± 2.88 95.67 ± 1.43
C2 93.97± 3.70 98.23± 1.85 98.25 ± 1.69 97.61± 1.39
C3 69.81± 23.93 85.48 ± 15.35 81.00± 12.68 73.08± 11.00
C4 85.31± 4.78 91.03± 4.54 88.82± 6.65 94.23 ± 1.38
C5 99.50± 0.25 99.52± 0.27 99.70 ± 0.26 99.48± 0.35
C6 71.24± 13.94 72.90± 25.97 83.08± 5.97 84.17 ± 10.26
C7 50.97± 10.15 66.77± 26.09 67.68 ± 19.86 59.92± 12.74
C8 73.52± 12.75 66.43± 10.23 71.88± 9.27 83.60 ± 7.42
C9 92.44± 0.30 99.18± 0.55 98.14± 1.42 99.33 ± 0.44

OA 86.30± 2.94 89.36± 2.97 90.33± 2.16 91.64 ± 1.08
AA 82.01± 3.14 86.12± 5.56 86.96± 3.45 87.45 ± 3.09

Kappa 0.846 ±0.01 0.857 ± 0.05 0.879 ± 0.02 0.892 ± 0.02

The statistical testing can make claims about whether the distribution of one set of
results are different from another set. In this study, we execute a two-tailed Wilcoxon’s test
over per-class AA to verify if the differences between the investigated modules are statisti-
cally important. The statistical difference between SerialNet, ParallelNet, ParallelNet-SS,
ParallelNet-CS and TAP-Net is shown in Table 10, demonstrating that the proposed triple
attention module has significant improvement (p-value < 0.05) over SerialNet, ParallelNet,
ParallelNet-CS and ParallelNet-SS. Similarly, the channel–spectral and spectral–spatial
attention module also delivered large improvement in comparing with SerialNet and Paral-
lelNet without attention. However, there is no statistical difference between ParallelNet-SS
and ParallelNet-CS, although the performance of ParallelNet-CS is slightly better than that
of ParallelNet-SS.
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Table 10. Results of two-tailed Wilcoxon’s tests over per-class accuracy for proposed methods.

ParallelNet ParallelNet-SS ParallelNet-CS TAP-Net

SerialNet 0.007 2.99× 10−6 1.46× 10−5 1× 10−6

ParallelNet 0.018 0.025 0.005
ParallelNet-SS 0.912 0.028
ParallelNet-CS 0.016

5.4.2. Impact of Data Splits and Augmentation

Data partitioning has a great influence on the classification performance, as the dis-
tribution of partitioned training and test sets might be balanced or unbalanced (i.e., some
classes are missed in the training or test set). In contrast to VHIS [33], our proposed method
is able to provide a more balanced data splits. As shown in Table 11, the proposed TAP-
Net achieves better performance with both data split strategies. It demonstrates that the
importance of data split strategy and the effectiveness of the proposed TAP-Net.

In [34], the authors introduced three training- and test-time data augmentation tech-
niques. The VHIS with data augmentation consistently got better performance than that
without data augmentation across three benchmark datasets, with an improvement of
0.58–14.54% on OA/AA. However, these pixel-wise augmentation methods are not appli-
cable for 3D network. Inspired by [34], we applied a simple data augmentation strategy,
including flip and rotate. As shown in Table 11, the performance of TAP-Net with data
augmentation are significantly better than that without data augmentation. Taking the
Salina Valley dataset for instance, the overall accuracy, average accuracy, and the Kappa is
90.31%, 93.18% and 0.881 respectively with data augmentation, whereas the corresponding
value is 85.57%, 89.04% and 0.850 without data augmentation. However, developing more
sophiscated data augmentation ways and evaluating the difference between them is outside
the scope of this paper, and we will work on this topic in our future research.

Table 11. Physicochemical characteristics of some grains of sorghum sampled in the main markets of Maroua town and
used for the production of the indigenous beers.

Salinas Valley Pavia University Indian Pines

OA AA Kappa OA AA Kappa OA AA Kappa

Data Splits

VHIS-VHIS 64.2 64.7 / 73.26 62.08 / 67.11 55.11 /
VHIS-TAP 69.91 71.93 0.666 73.60 63.14 0.645 70.91 59.24 0.668
TAP-VHIS 85.57 89.04 0.850 84.60 81.72 0.805 57.61 53.15 0.507
TAP-TAP 90.31 93.18 0.881 91.64 87.45 0.892 81.35 78.85 0.787

Data augmentation
DA-VHIS 77.52 79.24 0.749 73.84 62.71 0.631 69.49 58.15 0.653
TAP(DA) 85.19 89.32 0.834 84.08 76.71 0.8 74.36 68.38 0.707

TAP(NoDA) 90.31 93.18 0.881 91.64 87.45 0.892 81.35 78.85 0.787

VHIS-VHIS: VHIS’s data splits and VHIS’s network, VHIS-TAP: VHIS’s data splits and TAP-Net’s Network, TAP-VHIS: TAP-Net’s data
splits and VHIS’s network, TAP-TAP: TAP-Net’s data splits and TAP-Net’s network, DA-VHIS: VHIS with data augmentation proposed
in [34], TAP(NoDA): TAP-Net without any data augmentation, TAP(DA): TAP-Net with our proposed data augmentation.

6. Conclusions

Hyperspectral image classification, which aims to assign a unique label to each pixel of
HSI, is a critical step for HSI analysis. Although CNN-based models have exhibited promis-
ing performance, most CNN-based HSI classification methods have potential training-test
information leakage, leading to overoptimistic results. In this study, we proposed a triple-
attention-based parallel network and a novel data partitioning strategy for pixel-wise
classification. First, we introduced a parallel network that utilizes parallel subnetworks
with the same spatial resolution and repeatedly reuses high-level feature maps of pre-
ceding subnetworks to refine the segmentation map. Subsequently, to further improve
the performance of the classifier, we proposed the triple-attention module to strengthen
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useful information and weaken meaningless information. Furthermore, we introduced
a novel data partitioning method to serve as a standard for future research in this field.
It provides a balanced training/test-set without information leakage, and is suitable for
practical HSI annotations. Ablation studies regarding to the attention mechanism, parallel
network and data split strategy demonstrate the effectiveness of these modules across three
benchmark datasets. The CSSA and Parallel Net module used in TAP-Net can be used as
separate modules in other algorithms. Considering the effectiveness of data augmentation,
a more sophisticated ways to enhance the HSI data is highly desired, and we will focus it
in future study.
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