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Abstract: Intertidal areas provide key ecosystem services but are declining worldwide. Digital el-
evation models (DEMs) are important tools to monitor the evolution of such areas. In this study,
we aim at (i) estimating the intertidal topography based on an established pixel-wise algorithm,
from Sentinel-2 MultiSpectral Instrument scenes, (ii) implementing a set of procedures to improve
the quality of such estimation, and (iii) estimating the exposure period of the intertidal area of the
Bijagós Archipelago, Guinea-Bissau. We first propose a four-parameter logistic regression to estimate
intertidal topography. Afterwards, we develop a novel method to estimate tide-stage lags in the area
covered by a Sentinel-2 scene to correct for geographical bias in topographic estimation resulting from
differences in water height within each image. Our method searches for the minimum differences
in height estimates obtained from rising and ebbing tides separately, enabling the estimation of
cotidal lines. Tidal-stage differences estimated closely matched those published by official authori-
ties. We re-estimated pixel heights from which we produced a model of intertidal exposure period.
We obtained a high correlation between predicted and in-situ measurements of exposure period.
We highlight the importance of remote sensing to deliver large-scale intertidal DEM and tide-stage
data, with relevance for coastal safety, ecology and biodiversity conservation.

Keywords: bathymetry; intertidal mapping; exposure period maps; DEM; tide-stage lags estimation;
Sentinel-2; Guinea-Bissau

1. Introduction

Intertidal flats represent transitional ecosystems linking marine and terrestrial areas
and are characterized by vast extensions of sediments undergoing regular cycles of inun-
dation by seawater and exposure to air [1]. These are very productive areas, intensively
used by underwater consumers such as fish during high tide and sustaining a large variety
and abundance of air-breeding predators such as shorebirds during low tide. Benthic
producers and invertebrates that live in the sediments are pivotal in these ecosystems,
as they constitute the main source of food for these two disparate predator assemblages.
Intertidal systems and associated margins also provide for key ecosystem services, acting
as a nursery and habitat for economically important resources (e.g., crustaceans, molluscs
and fishes, [2]), and also contributing to coastal protection, nutrient cycling and carbon
storage [3,4]. Still, these ecosystems are threatened at a global scale by land reclamation [5],
sediment dredging [6] and sea-level rise [7]. Indeed, a large proportion of the area covered
by intertidal systems declined globally by ca. 16% between 1984 and 2016 [7] and 68%
of their extent is currently subject to moderate to very high human pressure [8]. Hence,
characterizing and monitoring changes in such ecologically valuable systems is a priority
in order to delineate more effective conservation actions.
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Over the past three decades, several techniques have been used to map intertidal
areas and also to develop digital elevation models (DEM) for these areas. Some studies
have involved the use of acoustic sounders installed on ships which provide reliable
measurements of topography, but these techniques are very expensive and time-consuming
when large areas are involved [9]. Airborne Light Detection and Ranging (LIDAR) is a very
promising technique, being able to accurately generate bathymetry estimates [10] at depths
of up to 70 m in clear water [11]. However, the reliability of such techniques can be affected
by water turbidity, and its application is usually constrained to local and regional scales
due to very high acquisition costs [12].

Due to these difficulties, intertidal topography remains poorly mapped worldwide [13,14],
despite its importance to predict flood impacts and other foreseeable changes on many coastal
ecosystems due to sea-level rise [15,16]. In fact, accurately generated DEMs allow for the deter-
mination of the coastal slope and for the identification of areas with a low tidal range, which are
significant parameters for calculating coastal vulnerability indices, and for the assessment of
the impacts of the climate change-induced sea-level rise on these areas [17,18]. DEMs have
also other applications, being useful for instance, in estimating inundation/exposure periods
of intertidal areas [19]. This is a meaningful exercise from an ecological perspective as one
important factor affecting biota zonation in intertidal areas is the exposure period [20,21],
an attribute difficult to obtain over large scales by traditional sampling or observation [19].

The “waterline method” constitutes a simple and cost-effective alternative to derive
the intertidal topography over large geographic regions [22]. This multi-temporal approach
estimates intertidal topography from a set of topographic contours obtained from satel-
lite images, depicting the position of the waterline at the widest possible range of tidal
stages [14]. These contours can be assigned to a specific elevation by using hydrodynamic
models to calculate the water height at the time of the acquisition of each image. Synthetic
Aperture Radar (SAR) or Multispectral Instruments (MSI), such as Sentinel-2 sensors,
have been used to this end and may be the only practical way to extract elevation values in
remote and inaccessible places [23–25]. Recently, the authors of [26] proposed a variation
to the waterline method, consisting of a pixel-based technique using the backscatter of
a time-series of SAR Sentinel-1 images to generate a DEM of intertidal areas. The tech-
nique was later generalized for multispectral images [27]. This technique explores the
relationship between the near infrared (NIR) reflectance and pixel elevation, which can be
described by a logistic regression, relating a set of values of the water height at the time of
image acquisition with the corresponding NIR values of each pixel. In this relationship,
NIR reflectance values at a given point will suddenly shift from high values, when the
pixel is exposed, to low values, when the pixel is covered by water (which strongly absorbs
IR radiation). The water height at this shift point is assumed to represent the height of that
particular pixel [26,27].

The application of this method requires precise information concerning the height of
the water at the particular time of image acquisition. Such data are often calculated from
tidal models developed for a given region, based on longitudinal observations collected
by a network of sea-level gauges which are used to derive the regions’ tidal constituents.
However, in remote locations the number of available gauges is often very limited and
consequently tidal models are unable to capture spatial differences in the stage of the tide
over large extents. In such situations, one often assumes that the water height measured
at one reference point is the same across the entire region, a simplification that can lead
to significant errors in the estimates of elevation values when tide-stage differences are
significant [27]. An alternative approach is to use tidal prediction models, such as the
Oregon State University Tidal Prediction Software (OTPS) [28], which had been used for
continental scale time-series tide modelling [25,29]. However, the accuracy of tide heights
estimation again decreases with increasing distances from the gauge location, most particu-
larly in estuarine and insular areas where river flows and landmass configuration can alter
tidal currents and cause considerable tide-stage lags [25].
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In this study, we propose a set of procedures to address the issues outlined above and
further develop the quality of DEM estimation of large intertidal flats using images sensed
by Sentinel-2 Multi Spectral Instrument (S2A&B, hereafter). Using a time-series of images
of the Bijagós Archipelago off the coast of Guinea-Bissau, West Africa, we (i) propose a four-
parameter alternative for the pixel-based logistic algorithm proposed by the authors of [27]
to produce a DEM of the intertidal area, and (ii) implement a pre-calibration procedure
for all bands of the images in the time-series to reduce temporal variability at the pixel
level. Furthermore, we (iii) propose a novel method to estimate cotidal lines in the entire
extent of the Sentinel-2 scene and (iv) produce a final DEM of the area, after correcting for
differences in tidal-stage across the region. Finally, (v) we use the final DEM to produce
a detailed (10 m resolution) map of exposure periods, and (vi) assess the quality of the
prediction using measurements of the exposure period made in the field.

2. Materials and Methods
2.1. Study Area

This study took place in the Bijagós Archipelago, located off the coast of Guinea-Bissau
(11◦52′N, 15◦36′W, Figure 1). The archipelago comprises 88 islands and islets, and it is classified
as a Biosphere Reserve by UNESCO (2011) and as a Wetland of International Importance under
the Ramsar Convention. The total area of this archipelago is ca. 10,470 km2, of which 1200 km2

are occupied by intertidal mudflats and sandbanks [30] and ca. 650 km2 are covered by
mangrove forests [31]. The Bijagós Archipelago has a semi-diurnal tide regime, with strongest
spring tides ranging from 0.3 m to 4.8 m according to the Portuguese Hydrographic Institute
(IH—Instituto Hidrográfico) [32].
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Figure 1. Study area in the Bijagós Archipelago, Guinea-Bissau. RGB-composite after atmospheric correction of Sentinel-2B
imagery on 4 February 2020. Tide gauge of Bubaque is represented as a red triangle and the locations of tide measurements
provided by Instituto Hidrográfico (IH) are represented as pink dots (Abú, Eguba, Uno and Bruce).

2.2. Image Selection and Pre-Processing

A total of 35 Level-1C-processed images from S2A&B were downloaded from Sentinel’s
Scientific Data Hub (https://scihub.copernicus.eu/), georeferenced in WGS84/UTM 28 N
time zone [33,34] (the specifications of the MultiSpectral Instrument onboard Sentinel-2 can
be found at https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/
resolution-and-swath). The images were sensed in two different periods: between December

https://scihub.copernicus.eu/
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/resolution-and-swath
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2017 and May 2018 and November 2019 and April 2020 (Table S1, Supplementary Material).
In addition to presenting a cloud cover lower than 10%, images were selected to depict the
most diverse situations of tidal stages in order to get the most accurate representation of the
spatial progression of the water across the intertidal area.

Atmospheric correction is a crucial step in the analysis of multispectral satellite images,
namely to improve the accuracy of bathymetric models [23,35,36]. Hence, we converted
all Level-1C top of atmosphere reflectance products (ρtoa) into Level-2A (L2A) bottom
of atmosphere surface reflectance products (ρs), using the ACOLITE software (version
20190326.0) developed by the Royal Belgian Institute of Natural Sciences (RBINS) [37].
The ACOLITE processor was especially designed for aquatic applications and it uses the
“dark spectrum fitting” approach, described in [38–40]. For the purposes of this study,
we only used the green (560 nm) and NIR (~833 nm) bands as processed by ACOLITE,
both at 10 m resolution. All other analyses were carried out in R software v.4.0.0 [41],
mostly using the library raster [42] and its dependencies.

Despite this atmospheric correction, scenes from the same area obtained in different
dates will often show some differences in the range of band reflectance, even if representing
regions that remained almost unchanged. Such differences can result from slight differences
in light conditions at the corresponding acquisition dates and can be detected by simply
plotting the reflectance of a given band obtained in two different periods for the same area
(Figure 2). To calibrate the bands of each scene to a common dynamic range, we used one
of the scenes (informally selected to have an average reflectance range in the green and
NIR bands) as a reference and then we calculated band-wise major axis regressions with all
other images, which were then corrected using the corresponding regression coefficients
(Figure 2). Major axis regressions minimize the sum of squared distances between the
points and the regression line, measured perpendicularly to the line, and were estimated
using lmodel2 package [43] in R software. While fitting these regressions, we only included
pixels with very low (<0.05) and high (0.2) NIR reflectance, representing seawater and land
areas, respectively, and excluded intertidal areas which vary considerably among scenes,
according to the tidal-stage (Figure 2).

2.3. Estimation of Water Heights in Sentinel-2 Scenes

We compiled information on the time of high- and low-water at the Bijagós Archipelago,
as well as the corresponding water heights for each scene used in this study, from the Por-
tuguese Hydrographic Institute (https://www.hidrografico.pt/). The data available refer
to a single location in the archipelago, Bubaque (Longitude 15◦50.0′W; Latitude 11◦18.1′N).
Based on these values, we estimated the water height at the exact time of image acquisition
(hsat) as:

hsat = hHighWater −

(
hHighWater − hLowWater

)
×
(

cos
(

π × Tsat−TLowWater
THighWater−TLowWater

)
+ 1
)

2
(1)

where hsat corresponds to the water height predicted at the satellite sensing time (Tsat),
in meters (m), hLowWater and hHighWater correspond to the low- and high-water marks, respec-
tively, and TLowWater and THighWater to the time of low and high water in hours, respectively
(water heights are presented in Table S1, Supplementary Material).

2.4. Identification of the Intertidal Area

The method developed by authors in [27] is computationally intensive, since it requires
a set of operations carried out at each pixel of the image. To avoid unnecessary calculations,
the process starts by identifying the zone of interest, comprising only pixels in the intertidal
area. To achieve this, we first calculated the Normalized Difference Water Index (NDWI,
proposed by authors in [44] for each image), to maximize the contrast between water and

https://www.hidrografico.pt/
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other land cover types. This index is calculated as a standardized ratio between the green
and NIR reflectance (ρ), as given by equation:

NDWI =
ρGreen − ρNIR
ρGreen + ρNIR

(2)

Pixels corresponding to permanent water bodies and to land have a low temporal
variability in their NDWI values, since they represent relatively constant conditions. In con-
trast, pixels in the intertidal zone typically show a higher variability in NDWI, as they
are subject to cycles of exposure to air and coverage by water. We followed the authors
of [27] to identify areas of land, water and intertidal areas using increasing thresholds
of temporal variability in NDWI. Using the NDWI of all scenes, we then calculated the
temporal standard deviation in NDWI of each pixel, based on all scenes, as:

σ(x, y) =

√√√√ 1
M

M

∑
i=1

(
NDWIi − NDWI

)2 (3)

where NDWI is the temporal mean of the NDWI of each pixel (x, y) across all images (M).
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2.5. Estimation of the Height of Intertidal Pixels

The elevation of each pixel can be estimated by the height of the water at which its
NIR reflectance suffers a sudden change in magnitude. Emerged areas of the intertidal
typically show high NIR reflectance, which will suddenly drop to very low values when
the water line reaches that area, due to the high NIR absorption. Therefore, as proposed
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by [27], one expects a sigmoid relationship between the height of the water and the NIR
reflectance of a given pixel, given by:

ρi(x,y) =
(topasymptote− bottomasymptote)

1 + e−a(hi−hpixel)
+ bottomasymptote, i = 1, . . . , M (4)

where ρi is the standardized NIR reflectance of the pixel with coordinates (x, y), hpixel corre-
sponds to the elevation (in meters) of the pixel (x, y) and hi is the water height associated
with each scene (in meters, Figure 3). Besides the inflection point (hpixel), which is our
main parameter of interest, the logistic function is characterized by three other parameters:
top asymptote, bottom asymptote and steepness (a). These four parameters were estimated
for each intertidal pixel using the nplr package [45], running in R software [41]. The algo-
rithm uses a Newton-Raphson method to minimize a weighted sum of squared errors [45],
and whenever model convergence was not reached, the pixel was marked as being outside
of the intertidal zone. This procedure was run for each pixel of the intertidal area, resulting
in a preliminary DEM of the archipelago.
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2.6. Estimation of Differences in Tidal-Stage across the Archipelago

As mentioned above, the times of high- and low-tides available for the Bijagós
Archipelago have been calculated from measurements at a single location, in the Island of
Bubaque (see Figure 1). However, the archipelago extends over ca. 100 km in latitude and
in longitude, and therefore considerable differences in tidal stages are expected to occur
across the region. Such differences will obviously impact the estimation of the heights of
each pixel, since the height of the water at a particular location at the time of acquisition
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of the satellite images (hi in Equation (4)) will differ from that of the reference location
(in Bubaque). The difference between tidal stages will obviously increase with an increas-
ing distance between the locations along the axis of tide-wave progression, introducing a
systematic geographic bias in the estimation of intertidal DEM. To account for this problem,
we estimated the tide lags for the Bijagós Archipelago by examining the differences between
the predictions of pixel height obtained using satellite scenes representing rising tides only,
as compared with those obtained with images acquired during ebbing tides. In fact, if the
local tidal-stage is correctly determined, the pixel height estimated from images depicting
ebbing tides should be fairly similar to that obtained with data representing rising tides.
However, if the predicted water height at a given location occurs e.g., 1 h after the reference
value used in the model, one would expect that predictions of pixel height based on rising
tides will be underestimated (as the water is yet to reach the height required to cover the
pixel), while predictions based on ebbing tide deliver overestimated heights (because the
water will still be covering that pixel for 1 h, see Figure 4c). Likewise, when the tidal-stage
at a place occurs, for example, 1 h before the time in the reference location, the opposite
will occur (Figure 4a).
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We explored these differences among tide stages to estimate the time-lags of each pixel.
To do this, we run two separate logistic models, one based on images representing ebbing
tides and another one using rising tides. We then defined a sequence of potential tide
time-lags ranging from −90 min to +90 min (at 5 min intervals) in relation to the tidal time
of our reference point (at Bubaque), and for each of these values we recalculated the water
height of all images within each dataset (one for scenes acquired during ebbing tides and
another for rising tides). We fit a set of models for each time-lag and dataset, and finally
selected the time-lag that resulted in the smallest difference between the estimated pixel
height of ebbing- and rising-tide models (see Figure 5). This computationally intensive
procedure was repeated for 50,000 random pixels in the intertidal area, selected among
those previously estimated to have an elevation within 2.47± 0.25 m (see above). This value
corresponds to the mean water height of all satellite images, ensuring that the distribution
of points around the inflection point is more balanced and therefore parameter estimation
is more accurate.

To estimate the time differences in tidal-stage for all intertidal pixels of our study
region, we fit a generalized additive model (GAM) using the time differences in tidal-stage
estimated at the 50,000 random pixels as dependent variable and the longitude and latitude
as predictors, using mgcv package [46]. GAM fit involved the use of penalized thin-plate
regression splines, with regression parameters (i.e., amount of smoothing) selected by
generalized cross-validation [46]. We choose this type of model because tide-stage delays
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are expected to show a very strong spatial (latitudinal and longitudinal) correlation, hence a
very smooth spatial variation which will be well captured by the use of thin-plate splines.
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2.7. Production of the Final Bathymetric Map

Based on the previous procedure, we produced a map representing the spatial dif-
ferences in tidal-stage across the archipelago. Using this information, we re-estimated
the heights of all intertidal pixels using the logistic function as explained above, but now
calculating the water heights of all images according to the time-lag in the tide stage,
in relation to the reference point (Bubaque).

2.8. Estimation and Validation of the Intertidal Exposure Period

We used the corrected pixel elevation to estimate the exposure period of all pixels in
the intertidal zone, assuming a simple sinusoidal function and a tide cycle lasting 12.40 h.
This value corresponds to the mean cycle duration recorded in our Sentinel-2 scenes dataset
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(mean = 12.40 ± 0.13 h, n = 35 days). We used this value in a simple sinusoidal function to
estimate the exposure period (in hours) of each pixel:

Exposure(h) = 12.40×

1−
acos

(
2×

( hpixel−hLowWater
hHighWater−hLowWater

)
− 1
)

π

 (5)

where hpixel is the height of the pixel (m), and hHighWater and hLowWater are the high- and
low-water marks (m), respectively. We used this formula to produce a map representing
the exposure periods of intertidal sediments for an average tide, using a mean high- and
low-water mark of 1.05 m (±0.55 m SD) and 3.90 m (±0.54 m SD), respectively, calculated
as averages of the values obtained in the Sentinel-2 scenes dataset (n = 35).

To validate the map of the exposure period, we measured the exposure/inundation
periods at 66 sites using time-lapse cameras in different islands of the archipelago. Between
February and March 2020, we set several cameras in the intertidal area, fixed them to a stick
and facing at its base to record the exact time the water reached each site during ebbing
and rising tides (Figure S1 in Supplementary Material). The location of each camera was
georeferenced with a portable GPS (ca. 4 m accuracy), and recorded footage at 1-min intervals
which were subsequently examined to determine the exposure period of each site. These field
measurements were compared with exposure values estimated by the models at the same
pixels, as determined by their GPS positions. To calculate the predicted height of each pixel,
we used the tide parameters (hHighWater and hLowWater) for the corresponding camera sampling
dates. A schematic representation of all procedures is presented in Figure 6.
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3. Results
3.1. Identification of the Intertidal Area

The inter-calibration of the images was the first step of all the analysis described
below and had a visible effect on the dynamic range of the NIR reflectance in our image
set (see Figure 2), most especially by reducing the variability at low reflectance levels
which in turn affected the pixel height estimation (Figure S2 in Supplementary Material).
The distribution of the standard deviations in NDWI calculated for all pixels showed
three clear peaks (Figure 7), with the lowest values associated with land (highest stability
in NDWI values), and the highest temporal variability associated with intertidal areas.
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The highest peak, corresponding to areas of water, showed intermediate variability in
NDWI. We defined a threshold of SD (NDWI) = 0.2, above which pixels were considered
to represent intertidal areas (see Figure S3 in Supplementary Material). This conservative
value was defined as to minimize the omission error for pixels in the intertidal area, and any
pixel misclassified as water will be excluded in subsequent analytical steps.
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3.2. DEM of the Bijagós Archipelago

The automated application of the logistic function (Equation (4)) to each pixel provided a
map of the elevation of the intertidal flats of the archipelago with a high spatial detail, capturing
the slopes associated with small channels in the intertidal area (Figure 8). The estimated
elevation values ranged from 1.04 to 4.69 m, limited by the lowest and highest tides recorded
in our scene dataset. According to the Portuguese Hydrographic Institute, the hydrographic
reference at Bubaque is 2.54 m below mean sea level.
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3.3. Estimation of Spatial Differences in Tidal-Stage at the Archipelago Scale

The representation of differences in tidal-stage across the archipelago is shown in
Figure 9. The orientation of the cotidal lines indicates that the tide progresses along a
SW-NE axis, and involves a difference of ca. 1 h in the tidal-stage between the most dis-
tant regions in that axis. The stage differences provided by the Hydrographic Institute
at four locations were relatively close to those estimated by our model (average absolute
difference = 6.6 min), with a maximum discrepancy in Abu (Figure 1), where our predic-
tion underestimates the reported tidal stage by 15 min (see Table S2, in Supplementary
Material). A final DEM of the archipelago was calculated after correcting the water height
of each image and accounting for the spatial differences in the tidal stage (Figure S4,
in Supplementary Material).
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3.4. Mapping and Validating the Intertidal Exposure Period

Figure 10 represents the exposure period estimated from the DEM, for an average tide
in the archipelago (low water mark = 1.05 m, high water mark = 3.9 m, amplitude = 2.85 m).
There was a strong agreement between the predicted exposure periods and those measured
in the field using time-lapse cameras (r2 = 0.94; n = 66, p < 0.001), with low exposure values
presenting lower prediction accuracy (Figure 11).
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4. Discussion

In this study we present, for the first time, a set of automated remote sensing methods
that allow the estimation of tidal-stage lags over large intertidal areas, the production of
cotidal lines, and the predictions of the exposure time of intertidal sediments, which were
validated by in-situ measurements of the position of the water line. These procedures can
significantly increase the quality of intertidal DEM by removing a geographical bias in
water level estimation. We also refined and expanded the application of logistic regressions
in a time-series of remote sensed images to estimate the topography of intertidal areas,
as proposed by [26,27]. These refinements also included a prior inter-calibration of NIR
reflectance among all images in the time series, and a more flexible formulation of the
logistic function (now with four parameters).

The quality of the topographic predictions of the intertidal areas using our approach
is strongly contingent on the availability of time-series images for a given site. The lowest
and highest water marks recorded in the series (generally during spring tides) determine
the range of height predictions that the models can provide. On the other hand, the avail-
ability of images portraying intermediate water heights is critical to reduce the uncertainty
associated with the inflection points of the logistic function, which corresponds to the
estimate of the height of the pixel. In this study, we used data from 35 Sentinel-2 A&B
scenes, almost twice the number previously used to derive the topography in this area [27].
In doing so, we were able to expand the range of tides from 1.39–4.16 m [27] to 1.04–4.69 m,
and also to gather more data from intermediate tidal- stages (7 out of 35 images with water
heights between 2 and 3 m). We could not find images with tidal heights lower than 1.04 m,
thus preventing the identification of the lowest lying intertidal areas, which only occur in
the strongest spring tides, exposing sediments at heights of 0.5 to 1.0 m. However, such
strong spring tides are rather uncommon, which reduces the limitation of our approach.

The atmospheric correction of multispectral images is an important step prior to image
analysis, as aerosols and gases have a strong influence in the nature of signal, particularly
in water bodies [47], where they can constitute up to 90% of the signal [48,49]. This is
particularly relevant for the method presented here, which relies to a very large extent
on the large and rapid change in pixel reflectance in relation to the presence of water.
Our study shows that, despite the atmospheric correction implemented by ACOLITE,
some discrepancies persisted in the dynamic range of NIR reflectance of images obtained
in different dates (see Figure 2). The application of a major axis regression visibly reduced
this unwanted source of variability in the NIR values (see Figure 3), ultimately improving
the estimation of the inflection point of the logistic function, from which the height of each
pixel is calculated. This linear correction is very easy to implement and it is likely to be of
use in several other remote sensing techniques involving the use of time-series of satellite
images, such as crop monitoring [50] or annual monitoring of tree vitality [51].

Modelling the water level considering the tide-stage lags over large areas generally
improves the accuracy of DEMs [52,53]. Some efforts have been developed to address this
issue, but they usually involve continental-scale models (e.g., [25]), where the gravitational
effects of the moon are much more significant than, e.g., the smaller scale physiography
of the coast of land. Furthermore, at a larger scale there is higher availability from tide
gauges to help modelling tide-stage differences. In this study we propose a new method to
assess spatial differences in tidal-stage at a smaller scale based on the expected differences
in pixel-height estimation obtained from using ebbing tides and rising tides separately.
Our approach is still based on the NIR reflectivity of each used pixel and requires a single
site as a reference height. This new development enables the estimation of cotidal lines
from pixel height estimations made in intertidal areas, and such methodology can be
applied in other regions whenever tidal areas are distributed more or less evenly across
the region of interest. The Bijagós Archipelago represents an almost ideal setting for such
application, since there are extensive intertidal areas associated with each island providing
a good spatial coverage for tide lag estimation. Cotidal maps are by themselves useful
products but are also a significant advance as a means of reducing the geographical bias
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in techniques that rely on exact water heights registration across the region of interest.
This is particularly relevant in remote areas where tide gauges are scarce and, therefore,
information on tide stage lags is totally absent.

The estimated cotidal lines for the Bijagós Archipelago indicate a tide progression roughly
from SW to NE, being more compressed in areas with higher landmass concentration, and shal-
lower waters both causing a stronger gradient in the tidal wave. The cotidal line corresponding
to the absence of tide-stage lag lies very close to the eastern tip of Bubaque (see Figure 8),
thus correctly matching the location of the reference tide measurements. This observation,
together with the low mean absolute error (6.6 min, see Supplementary Material Table S1), is a
good indication of the adequacy of the method, despite the somewhat larger error observed at
the northern part of the areas (15 min in relation to the value reported by the Hydrographic
Institute). These larger differences might be due to the fact that the reference data provided
by IH is probably outdated, as they are based on tidal observations carried out in the 1960s.
However, they may also steam from the inability of the method to distinguish between the
small discrepancies in tide lags associated with rising and ebbing tides, with spring and
neap tides, with shallower and deeper areas, therefore representing average conditions for
the region.

To assess the quality of our final DEM, we validated our predictions of exposure
periods (produced based on the corrected DEM) with a large set of direct measurements of
the waterline position. There was a very good agreement between the observed exposure
periods and those predicted by our model. As expected, pixels with lower elevation
showed a higher-than-expected exposure period, producing a systematic bias, particularly
at heights lower than 2.2 m. To some extent, this can occur because the intertidal sediments
are predominantly muddy [27]. In fact, in these areas the intertidal sediments are exposed
for only a short period, and therefore often retain a thin film of surface water or form
small water pools that never dry completely. This circumstance ultimately affects the
NIR reflectance (because NIR radiation is absorbed by this film of water) and results in
a slight overestimation of the corresponding bathymetric values. Nonetheless, the final
exposure product has a very strong correlation with the observed values showing that,
with some subsequent calibration work, the remote sensing approach we present can
deliver large scale and very detailed DEMs and average exposure data, with relevance for
many areas, from coastal safety to ecology and conservation of these critically important
habitats, which are globally threatened due to climate changes [7].

5. Conclusions

The method proposed in this study allows for the estimation of differences in water
elevation due to the spatial variation in the tidal phase, using Sentinel-2 scenes. We were
able to detect differences of over 1 h in the tide-phase within the Bijagós Archipelago,
an area encompassed by a single Sentinel-2 scene. Although this study was carried out with
Sentinel-2 scenes, our approach can probably be applied to scenes acquired by other sensors
with similar characteristics, including the ones onboard Landsat 8. Landsat 8 scenes have
an extent of 170 km by 185 km, and therefore spatial differences in water height are likely to
be even more significant. The methodological refinements proposed in the study, and the
possibility to correct for differences in tide-phases, allow for important improvements in
the accuracy of intertidal DEMs. This is of significant relevance, since these coastal habitats
are likely to undergo important topographical changes in the near future due to sediment
mobilization caused by sea-level rise and by increased frequency of extreme weather events
associated with the ongoing climatic changes. Accurate intertidal maps and DEMs are
also an important tool to resource (including wildlife) managers, since the topography
influences several important ecosystem processes (e.g., the settlement of specific life-stages
of commercially relevant marine organisms), which in turn affects the spatial variation in
the structure of communities, from benthic organisms to higher vertebrates.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2072-4
292/13/2/320/s1, Table S1: Sentinel-2 scenes used in this study, with indication of the estimated
height of the water at Bubaque at the time of image acquisition and of the corresponding tidal
stage; Table S2: Estimated and measured tide delay (minutes). Measured delays were provided
by Portuguese Hydrographic Institute at four locations: Abú, Bruce, Eguba and Uno, see Figure 1.
The mean absolute difference is 6.6 min (n = 5); Figure S1: Time-lapse cameras pointing down and
set to detect the exposure period of intertidal sampling points; Figure S2: Example of the application
of the logistic function to reflectance of a sample pixel, using images that were (red dots) and
were not inter-calibrated (black dots), and its effects on the estimation of the height of the pixel.
Note the reduction in variability, particularly on lower values of NIR reflectance; Figure S3: Temporal
variability of the NDWI of the 35 Sentinel-2 scenes in a small part of the study area (a), showing the
clear distinction between land (darker regions, with low variability), water (medium variability) and
intertidal areas (clear colors, corresponding to high variability). Panel (b) shows the areas with values
of variability higher than 0.2 (see methods); Figure S4: DEM of the Bijagós archipelago obtained by
recalculation of height of water at each pixel in all images, according to the tide-stage differences
estimated for each pixel.
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