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Abstract: An estuarine wetland is an area of high ecological productivity and biodiversity, and it is
also an anthropic activity hotspot area, which is of concern. The wetlands in estuarine areas have
suffered declines, which have had remarkable ecological impacts. The land use changes, especially
wetland loss, were studied based on Keyhole and Landsat images in the Liao River delta from 1962
to 2016. The dynamics of the ecosystem service values (ESVs), suitable habitat for birds, and soil
heavy metal potential ecological risk were chosen to estimate the ecological effects with the benefit
transfer method, synthetic overlaying method, and potential ecological risk index (RI) method,
respectively. The driving factors of land use change and ecological effects were analyzed with
redundancy analysis (RDA). The results showed that the built-up area increased from 95.98 km2

in 1962 to 591.49 km2 in 2016, and this large change was followed by changes in paddy fields
(1351.30 to 1522.39 km2) and dry farmland (189.5 to 294.14 km2). The area of wetlands declined
from 1823.16 km2 in 1962 to 1153.52 km2 in 2016, and this change was followed by a decrease in
the water area (546.2 to 428.96 km2). The land use change was characterized by increasing built-up
(516.25%), paddy fields (12.66%) and dry farmland (55.22%) areas and a decline in the wetland
(36.73%) and water areas (21.47%) from 1962–2016. Wetlands decreased by 669.64 km2. The ESV
values declined from 6.24 billion US$ to 4.46 billion US$ from 1962 to 2016, which means the ESVs
were reduced by 19.26% due to wetlands being cultivated and the urbanization process. The area of
suitable habitat for birds decreased by 1449.49 km2, or 61.42% of the total area available in 1962. Cd
was the primary soil heavy metal pollutant based on its concentration, accumulation, and potential
ecological risk contribution. The RDA showed that the driving factors of comprehensive ecological
effects include wetland area, Cd and Cr concentration, river and oil well distributions. This study
provides a comprehensive approach for estuarine wetland cultivation and scientific support for
wetland conservation.

Keywords: estuarine wetland; land use change; ecological effects evaluation; Liao River delta

1. Introduction

Wetland loss and degradation has increased as the global demand for land [1]. An-
thropic activities have globally modified wetlands [2], and more than 50% of wetlands
have been altered since mid-19th century on earth [3]. Wetlands provide hydrological,
biogeochemical, and ecological services (climate regulation, biodiversity protection, food
production) and economic benefits (tourism, recreation) for human welfare [4–6]. Particu-
larly, coastal wetland is one of the most vulnerable and economical ecosystems [7]. About
25–50% of coastal wetlands had been lost during the 20th century alone by converting
into other land uses [8,9]. With the implementation of opening-up and economic policies
in the late 1970s, more than 7500 km2 of wetlands have been occupied for development
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along China coastal zone [10]. Estuarine wetland is one of typical coastal wetlands with a
superior location, rich oil-gas storage and biodiversity [11]. Over the last several decades,
cultivation, building and exploitation have been altering the land use of estuarine wet-
land [12,13]. Majority of wetlands are facing loss and degraded ecosystem functions and
services by excessive use and consumption, especially in developing countries [14]. Many
estuarine wetlands are distributed in east coast of China, which face shrinkage due to
urbanization and agricultural expansion.

Most wetland ecosystems have been converted into other land uses, which leads to
environmental deterioration [15]. Some efforts have been made to explore wetland loss and
its associated ecological effects based on land use transition [16,17]. Specifically, literature
has increasingly focused on coastal wetland loss, and is concerned about changes in
ecological services [18], pollutants in topsoil [10,19], and changes of suitable habitat [20,21].
Ecological effects are primarily concerned about three aspects, including ecosystem services,
habitat, and soil heavy metal pollution. Furthermore, loss of biodiversity, salt marshes,
mangroves, fisheries, and benthic organisms have also been studied [15,22].

The ecosystem service value (ESV) was initially proposed by Westman [23]. Benefit
transfer method, market, and total biomass were used to assess ecosystem services [24,25].
Modeling tools have grown rapidly, such as InVEST [26], EPM, and ARIES model [27].
An approach combining the benefit transfer method and the expert-driven method was
used to widely assess ESVs [28]. Costanza (1997) assumed a unit value per hectare of
ecosystem type and multiplied that value by each land use type area to arrive at aggregate
total values [29]. The value coefficients can be calibrated for local applications with
Chinese terrestrial ecosystems [30]. Suitable habitat models for wildlife, such as the habitat
suitability index, Maxent, and InVEST model have been used to quantitatively assess
the habitat quality of the ecosystem at different scales [31,32]. The association of field
surveys and the factors merging method are direct and accurate, and it is often used in
wildlife management and conservation, especially for birds [33]. For soil heavy metal
pollution, some indexes have been applied such as the single factor, enrichment factor, and
geo-accumulation [34]. The spatial analysis based on GIS have been used to assess the
characteristics of heavy metal pollution in topsoil.

Some study cases have explored changes of wetland and its ecological effects with
remote sensing (RS) data [17,35,36], which mainly all began since the launch of Landsat-1
satellite in 1972. After this period, RS data with various resolutions have been applied to
long time-series analysis. With the free opening of images archived by Keyhole satellites
(KH), the observation of RS data has been traced back to the 1960s [37]. The merger of KH
and Landsat images has the powerful capacity of time-series analysis, and it proved to be
effective for the observation of long-term land use changes by RS methods [38–40].

Liao River delta is an estuary area formed by the alluvial deposition of rivers entering
the Bohai Bay, which was covered by wetland vegetation before exploitation. This estuarine
wetland provides a better ecological environment for birds to live in and rest in during
migration [41]. The contradiction between the socio-economic development and the ecosys-
tem conservation has been increasingly intensified. Estuarine wetland degradation has
been carried out due to land use changes, high-density populations, urban and agricultural
development, and oil exploitation. These activities have impacts on the ESVs, habitat for
birds, and soil pollution. A better understanding of ecological effects in estuarine areas is
critical to wetland conservation.

The objects of this paper were to: (1) Analyze the estuarine wetland change and
anthropic activities since 1962 in the Liao River delta; (2) assess the comprehensive eco-
environmental changes, including ESVs, habitat, and soil heavy metal pollution; and (3)
explore the spatial relationship and distribution characteristics between wetland loss and
its ecological effects.
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2. Materials and Methods
2.1. Study Area

Liao River delta (121◦25′~122◦31′E, 40◦39′~41◦27′N) belongs to the south of Liaoning
Province, northeastern China. It is the estuary of the Liao River, Shuangtaizi River, Daling,
and Xiaoling River. The administrative area of Panjin city was selected as the study area
to integrate the socio-economic data, which covers the entire Liao River delta. Paddy
fields, reed wetlands, and water areas are the main components of the region. The survey
records revealed that there are many species migratory birds inhabiting and breeding
in study area, 53% of the total species in China, mainly including red-crowned crane
(Grus japonensis), and black-headed gull (Chroicocephalus saundersi) [42]. Agricultural
activities are dominated by cultivation and aquaculture, industrial activities are dominated
by oil exploitation, and built-up areas are dominated by roads or housing that have
seriously damaged wetlands [42]. It has been recognized as in need of conservation with
the designation of the Shuangtaizihekou (Liao River kou) national reserve in 1986, and the
wetlands being listed as a Ramsar site since 2004 [41]. This reserve has been designated to
strengthen the protection and management of wetland ecosystems.

2.2. Data Collection and Process

The land use maps in 1988, 1998, 2008, and 2016 were interpreted based on Landsat
TM/ETM images (https://earthexplorer.usgs.gov/). The land use maps in 1962 and 1972
were interpreted with Keyhole (KH5) (3.6 m × 3.6 m) and Keyhole (KH9) (0.3 m × 0.3 m)
images (http://www.gscloud.cn/), including paddy field, dry farmland, built-up area,
forestland, wetland, and water area, as seen in Table 1. A digital elevation model (DEM)
(1:50,000) was collected from Liaoning surveying and Mapping Bureau. The images were
pre-processed by registration, splicing, inlaid, and cutting for each year. The manual
interpretation was used to get the classification results of land use. The annual normalized
difference vegetation index (NDVI) from 1988 to 2016 was calculated using the maximum
synthesis method (MVC) based on Google Earth Engine (https://earthengine.google.com/
for revision of the equivalent factors of ESVs). The spatial resolution of the data ranges
from 0.3 m to 30 m, and all images were aggregated to 30 m spatial resolution by resam-
pling. Taking the overall accuracy assessment to evaluate the accuracy of interpretations,
500 sample points were randomly selected in study area. The overall accuracy of the
land use maps for 1962, 1972, 1988, 1998, 2008, and 2016 were 78.42%, 80.65%, 85.21%,
88.02%, 88.57%, and 89.35%, respectively. Manual interpretation and accuracy evaluation
in 1962, 1972, and 1988 were mainly carried out by field surveys and historical records due
to the smaller number of available data, which were affected by clouds, time, and other
factors. The dataset of roads and oil wells was extracted from the above images. The social
economic dataset, including population, GDP, agricultural and fishery output data, were
collected based on the Panjin annual statistics book from 1962 to 2016, which were obtain
from Liaoning statistical Bureau and field surveys.

Table 1. Characteristics of multi-year images and soil sample data used in the study.

Data Date of Data Description Source

Land use map

25 August 1962 <3.6 m Keyhole (KH5)
https://earthexplorer.usgs.gov/

2 May 1972 0.3 m Keyhole (KH9)
https://earthexplorer.usgs.gov/

9 August 1988
14 May1998

20 October 2008
15 October 2016

30 m × 30 m Landsat1,5,7,8
https://earthexplorer.usgs.gov/

184 Soil samples October 2014
68 samples National reserve

116 samples Out of national reserve

https://earthexplorer.usgs.gov/
http://www.gscloud.cn/
https://earthengine.google.com/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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A total of 184 soil samples (surface (0–5 cm) were selected in October 2014. The
geographic positions of sampling sites were recorded using portable GPS units, which
is distributed as shown in Figure 1. Three duplicates were extracted and mixed at each
sampling site. Six soil heavy metal pollutants were tested, including cadmium (Cd), copper
(Cu), chromium (Cr), nickel (Ni), zinc (Zn), and lead (Pb). The soil standard reference
material (GBW07401, GSS-1) provided by the Center of National Standard Reference
Material of China was used to control the test quality. Soil samples were treated with a
microwave digestion instrument (CEM Inc., Matthews, NC, USA), and then tested for
the concentrations of the heavy metals. The heavy metals were measured via inductively
coupled plasma mass spectrometry (ICP-MS, PerkinElmer, Waltham, MA, USA) [43].
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Figure 1. Geographical location of the study area.

2.3. Land Use Dynamic Change Analysis Method

To quantitatively reflect the rate of land use change, the single dynamic index was
used [44]. The land use TUPU analysis method was adopted to the land use change. The
land use maps were used to build transfer matrix for information visualization of land
use conversion. It was conducted to integrate the spatial information of the coded land
use change value in ArcGIS. Specifically, the codes of the adjacent two phase maps were
selected for the algebraic operation to obtain the value [20].

K =
Ua−Ub

Ua
× 1

T
× 100% (1)

where K represents the single dynamic index of land use, Ua and Ub represent the area of a
certain land type at the beginning and the end of the period, respectively, and T represents
the research period.

2.4. Comprehensive Evaluation Method

The comprehensive environmental effects were evaluated in this paper from three
aspects, the change of ESVs, habitat suitability for water birds, and pollution risk of soil
heavy mental. The ESVs and habitat suitability were assessed based on the value equivalent
factor method and synthetic overlaying analysis of factors, respectively. The pollution risk
was assessed by kriging interpolation and index evaluation. Then, the driving factors of
comprehensive environmental effects were studied through redundancy analysis (RDA)
from natural, socio-economic, and spatial geographic conditions, as shown in Figure 2.
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2.4.1. Evaluation of the Ecosystem Service

The assessment method proposed by [29] has been widely calculated ESVs. The mod-
ification of the Chinese ecosystem coefficients was based on expert knowledge through
over 700 ecologists [30,45], generating the table of the value per unit area of the ecosys-
tem. The annual corrected equivalent factor was estimated at an equivalent ESVs of
410.80 US$/(hm2 a) (based on the 2016 USD value; $1 could be converted to 6.67 RMB)
based on the grain yield per unit area and the average grain price in 2016. The average
equivalent ESVs coefficients of the wetlands were revised using the equivalent factors
by the regional NDVI values, which may produce accurate results, especially in regions
with large areas of reed wetland. Besides, built-up areas were not considered to provide
ecosystem services [46]. Additionally, cultivated land was mentioned in this study, which
includes paddy fields and dry farmland, for the ESVs calculation as following:

VCI =
(

NDVI−NDVImin
NDVImax−NDVImin

)
× 100%

ESV =
m
∑

j=1

n
∑

i=1
(LUAi×VCij)

ESVcorrected =ESV × VCIk
VCI

(2)

where NDVI, NDVImax, and NDVImin indicate the annual average NDVI, the maxi-
mum, and minimum annual average NDVI for the local grid, respectively. VCI indicates
the vegetation condition index calculated from time-series NDVI. VCI is the annual average
VCI in study area, VCIk is the average VCI in the k county. ESV and ESVcorrected indicate
the ecosystem service value before and after correction. VCij indicates the jth category of
the coefficient for the ith land use type, LUAi indicates the ith land use type area, n is the
number of land use types, and m is the number of sub-categories of ESVs.

Sensitivity analysis was calculated the coefficient of sensitivity of the value coefficient,
to test whether the results of the ESV coefficient are credible. This method was used to
modify the value coefficient of each land use type by (±) 50%, and then the changes of
corresponding ESVs were calculated. The reliability of the ESVs results can be verified by
sensitivity analysis [24], and the index can be calculated as:

CS =

∣∣∣∣ (ESVj− ESVi)/ESVi
(VCjk−VCik)/VCik

∣∣∣∣ (3)

where CS represents the coefficient of sensitivity. When CS < 1, it indicates that ESV lacks
flexibility for VC, and the resulting reliability is high, When CS > 1, just the opposite. ESVi
and ESVj indicate the ESVs before and after the adjustment, VCi and VCj indicate the ESV
coefficients before and after the adjustment, and k represents the land use type.
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2.4.2. Evaluation of Suitable Habitat for Birds

Estuarine wetlands in the Liao River delta are crucial bird migration stopover sites.
A combination of single factor extraction and the merging method was used to establish
the suitable habitat for birds [33]. In order to obtain scientific evaluation results, field
surveys combined with consulting experts were used to select and determine six factors
that affected the bird habitat, namely disturbance degree, food richness, water condition,
shelter condition, roads, and oil wells. The classification of disturbance degree, food
richness, and water condition were based on the land use classification, and NDVI analysis
for shelter condition was also required. Based on previous research results and the field
surveys, the characteristics of suitable habitat for birds was determined [47]. Taking the
red-crowned crane, which is highly sensitive to disturbance, the nearest distance to a road
needs to be 410 m, and to an oil well is 500 m [48]. These six types of habitat factor maps
were carried out by synthetic overlaying analysis, which is used to combine and overlay
among factor maps in spatial analysis, and generated suitable habitat maps to reflect the
bird habitat changes.

2.4.3. Pollution Risk Assessment

The geo-accumulation index was used to assess the soil heavy metal contamina-
tion level [49]. The potential ecological risk index (RI) was evaluated the level of heavy
metal pollution in topsoil, indicating the toxicity and environmental response of the soil
heavy metals [50]. The kriging interpolation method was adopted to calculate the spatial
distribution of the pollution. The equations are as follows:

Igeo = Ci
1.5×Bi

RI =
m
∑

i=1
Ei

r =
m
∑

i=1
Ti

r × Ci
j =

m
∑

i=1
Ti

r ×
ci

0
ci

n

(4)

where Igeo is the geo-accumulation index of a sampling point, Ci represents heavy metal
i concentration in topsoil, Bi is the background value of heavy metal i [51], which is
obtained from Chinese soil element background value, and 1.5 is the background matrix
correction factor. Ei

r is the single potential ecological risk factor, Ti
r is the toxic-response

factor for a given substance, which accounts for the toxic requirement and the sensitivity
requirement, and RI represents the sum of all risk factors, as shown in Table 2. Ci

j represents

the contamination factor, Ci
0 and Ci

n are the concentration and a reference value for soil
heavy metal, respectively. In this paper, the soil background values of Liaoning province
were considered as references to evaluate the present pollution conditions and the potential
for ecological impacts.

Table 2. Description of the Igeo, risk factor (Ei
r), and risk index (RI) ranks as suggested by [43].

Igeo Ei
r RI Ecological Risk Ranks

<1 <40 <70 low
1–2 40–80 70–140 moderate
2–3 80–160 140–280 considerable
3–5 160–320 - high
>5 ≥320 ≥280 very high

2.4.4. Driving Factors Analysis

The redundancy analysis (RDA) was applied to analyze the relationship between
the wetland loss and the environmental effects. The determination of factors was chosen
based on related studies [17,52]. A total of 13 factors from 3 aspects were chosen. Four
variables were selected to represent socio-economic conditions, including population,
GDP, agricultural, and fishery output. The five variables reflected the natural conditions,
including the NDVI, soil texture, wetland area, agriculture area, and soil heavy metal
contamination. Four variables were selected to represent the spatial geographic conditions,
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including the distance to a river, distance to a road, distance to a city, and distance to
an oil well. The ESVs, suitable habitat area, and RI were selected to represent ecological
services, suitable habitat, and soil heavy metal potential risk. A detrended correspondence
analysis (DCA) was proceed to choose the most valid ordination method. The RDA method
was chosen due to the gradient length was less than 3 (0.3). According to the values of
contribution and significance, the major factors that affected the dependent variables were
selected by the interactive forward-selection method. The RDA method was performed by
the selected factors, which was undertaken based on the software CANOCO 4.5 [53].

3. Results
3.1. Spatial and Temporal Changes in Land Use

The area of paddy fields, dry farmland, wetland, forestland, built-up areas, and water
area were 1351.30 km2, 189.5 km2, 1823.16 km2, 0.2 km2, 95.98 km2, and 546.22 km2,
respectively, in 1962. By 2016, the areas were 1522.39 km2, 294.14 km2, 591.49 km2, 0 km2,
1153.52 km2, and 428.96 km2, respectively. Wetland and water area decreased 669.64 and
117.26 km2, and built-up areas, paddy fields, and dry farmland increased by 495.51, 171.08,
and 104.65 km2 during 1962–2016, respectively. A single dynamic index (Figure 3) showed
that the built-up area had a continuous increase (0.13%, 5.92%, 7.82%, 3.59%, and 1.86%),
and the change rate of built-up areas peaked from 1988 to 1998. Conversely, a continuous
declining tendency (2.85%, 0.10%, 0.09%, 0.26%, and 1.18%) was observed in wetlands, and
the wetland loss was the fastest in the first and the last periods. Forestland rarely appeared
since the 1980s. The water area was gradually decreasing before the 1990s, and then, the
water area remarkably increased to a proportion of 4.72% during 2008–2016.
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The characteristics of land use in spatial distribution exhibited significant differences
during 1962–2016 (Figure 4). The wetlands were converted to paddy fields (25.30%), dry
farmland (5.96%), built-up areas (13.15%), and water areas (16.43%). The conversion of
“wetland-paddy field” (Figure 4 code 51) had the largest change in area of 471.79 km2,
which indicated that the wetland was being cultivated. Meanwhile, the conversion of
“wetland-water area” (Figure 4 code 56) for 306.28 km2 and “wetland-built-up area”
(Figure 4 code 53) for 245.19 km2 took the second and third change area order, which
reflected that the wetland was mainly being occupied by aquaculture activities, urban ex-
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pansion, and harbor construction. The water area was converted to built-up areas (Figure 4
code 56) of 88.06 km2, which were distributed along the Liao River and coastal zone. The
paddy fields, dry farmland, and water area were converted to built-up areas with propor-
tions of 9.13%, 2.00%, and 4.73%, respectively. The “land use change” was slight at the
core of the delta since 1988, which is mostly distributed in natural reserves, indicating that
wetland resources were effectively protected in the Liao River delta through establishment
of the reserve.
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dry farmland, and the other codes follow the same rule).

3.2. Ecosystem Services Changes

The ESVs results were 6.24, 5.01, 4.87, 4.67, 4.60, and 4.46 billion US$ in 1962, 1972,
1988, 1998, 2008, and 2016, respectively. The ESVs had lost about 1.78 billion US$, ac-
counting for 28.58% since 1962 (Table 3). The values of waste regulation and hydrological
regulation were the highest ones, followed by climate regulation, biodiversity protection,
soil formation and retention, recreation and culture, gas regulation, and raw material
production (Figure 5A). The ESVs values of ecological service functions showed a declining
change, however the ESVs of raw material had an increasing trend (0.33%) from 1962
to 2016. The declining ESVs were mainly caused by the loss of wetland, which has the
highest ecological services. Additionally, forestland and water areas were converted to
cultivated land, which led to an increase in raw materials. The values of regulating services
decreased (22.50%, 33.01%, 29.43%, and 31.58%), and the values of supporting services
decreased (20.47% and 26.00%) 1962–2016. Regulating services and supporting services
were contributed to the ESVs with the large proportion that were observed. The ESVs of
wetland and water area decreased significantly, with the proportions of 36.73% and 21.47%,
and the ESVs of cultivated land increased 17.89% (Table 4). The wetland contributes the
most to the ESVs, followed by cultivated land and water area. Compared with other land
use types, the ESVs of wetland always showed negative changes during 1962–2016. The
area with high ESVs has gradually decreased, and the area with low ESVs has increased
1962–2016.

The results of ESVs were not flexible relative to the value coefficient due to the CS
value was less than 1. The CS values in descending order were wetland > cultivated land >
water area > forestland (Figure 5B). The CS value of wetland in 1962 was the highest, up to
0.8, which shows a higher decreasing trend than the other land use types. Moreover, the
CS values of cultivated land and water area had relatively large effects on the total ESVs.
The results of ESVs were not flexible to the VC value, which was observed by sensitivity
analysis, and even though the VC value was uncertain, the results were still stable.
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Table 3. Change in ecosystem service values (ESVs) from 1962 to 2016 in Liao River delta.

Categories
Sub-

Categorie/Billion
Dollars

1962 1972 1988 1998 2008 2016 1962–2016(%)

Supplying
services

Food production 0.10 0.12 0.12 0.11 0.10 0.10 −1.11
Raw material 0.04 0.05 0.04 0.04 0.04 0.04 0.33

Regulating
services

Gas regulation 0.19 0.17 0.17 0.16 0.15 0.14 −22.50
Climate regulation 1.09 0.85 0.84 0.82 0.80 0.73 −33.01

Hydrological
regulation 1.25 0.93 0.88 0.82 0.84 0.88 −29.43

Waste regulation 1.92 1.46 1.42 1.36 1.35 1.31 −31.58

Supporting
services

Soil formation and
retention 0.48 0.46 0.45 0.44 0.42 0.39 −20.47

Biodiversity
protection 0.71 0.60 0.59 0.57 0.55 0.53 −26.00

Cultural
services

Recreation and
culture 0.46 0.37 0.36 0.34 0.34 0.34 −26.89

Total 6.24 5.01 4.87 4.67 4.60 4.46 −28.58
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Table 4. ESVs change rate (%) of each land use type from 1962 to 2016.

Type Year Cultivated Land Wetland Water area Forestland

Change rate (%)

1962–1972 42.33 −25.13 −31.34 292.50
1972–1988 −1.77 −1.62 −15.47 −100.00
1988–1998 −5.05 −1.04 −20.45 –
1998–2008 −7.63 −2.88 19.39 –
2008–2016 −3.86 −10.62 42.46 –
1962–2016 17.89 −36.73 −21.47 –

3.3. Birds Suitable Habitat Changes

The suitable habitat for birds was divided into the suitable and unsuitable habitat.
The results showed that the suitable habitat was constantly decreasing with a degradation
trend (Figure 6). The area of bird suitable habitat declined from 2359.80 km2 in 1962 to
910.31 km2 in 2016 due to the wetlands being cultivated and the urbanization process,
which experienced a continuous decrease of 1449.49 km2, with a proportion of 61.42%.
The wetland was dominated by natural wetland, such as reed swamp with rare built-up
areas, obviously without oil wells. The bird habitat area accounted for 59% of the study
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area in 1962. Suitable habitat for birds was mainly distributed in the estuarine wetlands in
2016, which reflects that the wetland and tidal-flats in the Liao River delta are the main
habitats of birds. Contrarily, the unsuitable habitat area was gradually increasing, mainly
distributed around built-up areas and oil wells.
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3.4. Potential Soil Pollution Ecological Risk

The statistical results indicated that the mean concentrations of soil heavy metals were
measured, Cr (154.95 ± 52.16), Zn (102.21 ± 19.44), Ni (40.71 ± 9.13), Cu (17.23 ± 6.05),
Pb (11.97 ± 3.66), and Cd (1.41 ± 0.82) (Table 5). The coefficient of variation of heavy
metals was within the range of 12.65–58.23%. Particularly, the concentrations of Cd, Cr, Cu,
and Pb had a high coefficient of variation (>30%), which indicated that soil heavy metals
have similar sources. The Ni and Zn had a low coefficient of variation (<30%), which
indicated they were more uniformly distributed in the study area. Among them, the mean
concentrations of Cd, Cr, Ni, and Zn were all above the local soil background values.

Table 5. Summary statistics of heavy metal concentrations and properties in the topsoil [51].

Minimum Maximum Average S.D. CV(%) Background
Value (China)

Background Value
(Liaoning Province)

Cu(mg/kg) 4.55 31.67 17.23 6.05 35.1 22.6 19.8
Cr (mg/kg) 50.65 275.79 154.95 52.16 33.66 61 57.9
Cd (mg/kg) 0.26 3.46 1.41 0.82 58.23 0.097 0.108
Ni (mg/kg) 20.87 59.34 40.71 9.13 22.44 26.9 25.6
Zn (mg/kg) 53.4 149.5 102.21 19.44 19.02 74.2 63.5
Pb (mg/kg) 2.95 19.57 11.97 3.66 30.54 26 21.4

The Igeo values and ranks of pollutants at each sampling point are presented in
Figure 7. The Igeo values of Cd ranged from 0.70–3.26, with the highest value in paddy
fields and the lowest value in built-up areas. Cd reached a high level. The Igeo values of Cr
reached light to moderate levels. Cr with highest Igeo value was around the core of the Liao
River estuary. The pollution hotspots of Zn were closer to the paddy fields, wetlands, and
built-up areas, which reached a moderate level. Some Ni pollution hot spots were found
near oil wells in the wetlands. The Igeo values of Cu and Pb were almost 0, revealing that
their level of pollution is relatively low. The Igeo values were ranked as Cd > Cr > Ni > Cu
> Zn > Pb.
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The Cd posed a considerable potential ecological risk at 184 sampling points. The high
ecological risks of Cd are the consequences of fertilizers and pesticides used in agriculture
activities. Ni posed the second largest ecological risk. For Cu, Cr, Zn, and Pb, the risk
indexes were low levels. Ei

r indicated that the degree of pollution of the soil heavy metals
decreased as follows: Cd > Ni > Cu > Cr > Pb > Zn. The mean value of RI was 343.98,
which indicated that all sample sites arrived at a moderate potential ecological risk level
in Figure 8A. A total of 81 of 184 sites exhibited considerable or high ecological risk. The
RI values were significantly correlated with the presence of oil wells. The RI of estuarine
wetlands in the reserve were at low and moderate levels as shown in Figure 8B. The
distributions of Cd and the RI were similar, indicating that the RI was impacted by Cd.
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3.5. Relationships among the Changes of Ecological Effects and Factors

The results showed that the wetland area, Cd concentrations, Cr concentrations,
distance to oil wells, distance to a river, and agricultural and fishery output have power
in explaining the ESV, RI, and suitable habitat (p < 0.05). Approximately 74.70% of the
variation were explained by the selected variables. The first two ordination axes explained
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over 78.0% of the correlation with both the driving factors of wetland loss and ecological
effects (p = 0.01). The results indicated that the percentage of wetland area had a greater
impact on environmental effects, with contributions of 44.5%, and the Cd concentrations
also had a greater impact, with contributions of 37.3% in Table 6. As shown in Figure 9,
RI was positively related to Cd, Cr, agriculture and fishery output, and the distance to oil
wells and negatively related to the wetland area. Wetland area has a negative relationship
with the potential ecological risk. A positive correlation between wetland area and ESVs
was found, which demonstrated that the change of wetland is likely to lead to ESV loss.
Suitable habitat area was positively related to the distance to rivers, and negatively related
to the distance to an oil well, which indicated that the water condition is an important
factor for bird habitats and oil exploration is likely to lead to suitable habitat loss. The
wetland loss and driving factors, such as agriculture, oil wells, and industrial exploitation
have resulted in cumulative environmental effects.

Table 6. Selected variables for further redundancy analysis (RDA) by the Monte Carlo permutation
test (n = 499).

Variables Explanation (%) Contribution (%) Pseudo-F Significance-p

Wetland area 36.0 44.5 23.1 0.002
Cd 30.2 37.3 35.9 0.002

Distance to river 5.7 7.6 8.0 0.012
Fishery output 3.2 3.9 4.9 0.024

Cr 1.8 2.2 2.9 0.049
Agricultural output 1.5 1.8 2.5 0.048
Distance to oil wells 0.5 0.6 0.8 0.040
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4. Discussion
4.1. Influence Process of Wetland Loss on Ecological Effects

The wetland was the primary land use type in the Liao River delta during 1962–2016.
However, the wetland area has decreased dramatically, mainly being converted into cul-
tivated land and built-up areas. The wetland has been developed as farmland, built-up
areas, and aquaculture in the past few decades [54]. Some surveys were carried out on the
changes of wetlands, such as the Yellow River delta, Yangtze River delta, Sanjiang plain,
and Jiangsu coastal zone. Comparing the wetlands loss in the Liao River delta to those four
areas showed that wetland loss was common. For example, the coastal wetland in Jiangsu
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has lost about 323.46 km2 over the past 10 years [55], and wetland loss in Sanjiang plain has
reached 73.3% (about 27,700 km2) since 1954 [56]. The ESVs lost in the Yellow River delta
has decreased by about 10.89% in 2009–2015 [57], and the ESVs of Yangtze River delta has
lost about 2.12 billion US$ 2009–2016 [58]. A continuous declining tendency was observed
in ESVs of wetlands due to wetland being converted to cultivated land, since the ESVs
of cultivated land increase significantly [56]. Conversion of wetland to agricultural land
increases the material production values, however the conversion led to the ESVs loss of
wetlands for pollution purification, biodiversity conservation, leisure and entertainment.
In particular, this is critical to migratory birds since in the Liao River delta, suitable habitat
for birds has lost from 135.77 to 74.24 km2 along the Yangtze River 1986–2015 [59]. The
suitable habitat for birds is constantly decreasing with a degradation trend in the study
area, due to dam construction raised the terrain and silted up the sediment, resulting in the
lack of water. Aquaculture has led to the degradation or even disappearance of wetland
plant communities, which means the birds have no shelter. Potential ecological risk of
heavy metal in the Yellow River delta and the Yangtze River delta are at a high level for
Cd [60,61]. The comparison indicated that Cd was the primary pollutant at a high pollution
level in the coastal and estuarine areas. Scholars have revealed that Pb pollution is largely
related to the exploitation of mines [43]. Some Pb pollution hotspots are more evenly
distributed around roads in the study area. The atmospheric Pb caused by the burning of
gasoline may be the reason for the distribution of its pollution hot spots. Analysis of all
these factors involved in eco-environmental changes have rarely been integrated in the
past, but they are comprehensively analyzed and studied in this paper.

4.2. Policy Implications

Ecological effects always affect the human well-being and sustainable developments.
The conservation of ecosystem and economic development are emphasized in national
decision-making reports. Historically, the delta was a swamp area with a small human
population. Agriculture and aquaculture developed rapidly after reclamation departments
were established in 1960s. After oil and gas were discovered, oil production activities began
in 1970. The region has experienced rapid economic growth based on the overexploitation
of resources and agriculture activities, which has caused a series of environmental problems.
The establishment of a national reserve and the implementation of wetland restoration
projects [62], such as “returning cultivated land to wetland”, has restored tidal flats and
marshes, and the facilities that threaten ecosystems have been reduced. In order to achieve
the coordinated development of ecological, economic, and social benefits, the “three
lines” (three lines—Permanent basic farmland red line, Urban development boundary,
and Ecological red line) should be promoted in China [20,63]. The “Ecological Red Line”
policy formed the boundary lines of the key ecological protection area and has important
strategic value for ecological security and sustainable development in the Liao River delta.
Wetland protection is the prerequisite for development and utilization, so where is the red
line of development? The ecological red line of wetland ecosystem is supported in the
implementation of controls, which guides the economical and intensive use of wetland
resources for sustainable development. The combination of the ecological red line and land
use transition to build a regional ecological security pattern can better strengthen regional
ecological protection and curb the degradation of the ecosystem. The results of this paper
can be regarded as a reference in policy decision-making.

4.3. Validity and Limitations

The wetland changes and its ecological effects were studied in this study. The wetland
ecosystem is an essential part of the Liao River delta. Which factors have the greatest impact
on wetland changes? The dominant factor is still controversial due to many factors driving
wetland changes [13]. Many studies have indicated that natural and socio-economic factors
mainly lead to the wetland changes [7,52]. A total of 13 representative factors were chosen
for analysis, and we also considered spatial geographic conditions in this study. Besides,
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the ESVs were calculated with modified coefficients. The price of production was decided
by the mean values in Panjin city in 2016 in this study. The grain yield per unit area was
selected as the revised index by related literatures [30], and the coverage coefficient was
selected according to the correlation between the NDVI and the ESVs. Due to the obvious
seasonal differences, NDVI data should be chosen to match the time of the study. Moreover,
it is revised from the scale of nation to region, in order to ensure the comparability of the
equivalents under different scales and to show the heterogeneity of the ESVs in spatial
distribution. The NDVI data of 1962 and 1972 were not obtained, and the grain yield per
unit area has not been revised by the coefficient. A sensitivity index was used to verify the
results of the ESVs, and proved to be reliable. Applying comprehensive and explanatory
evaluations such as those employed here will be key to future conservation of wetland
resources in estuarine areas.

5. Conclusions

This paper analyzed the main land use type changes in the Liao River delta during
1962–2016, and estimated the changes of ESVs, the suitable habitat, and risk assessment
of soil heavy metals. We have reached the following conclusion. The area of wetland
has decreased 669.64 km2, with a proportion of 36.73%. The “wetland-paddy field” is the
major change. The ESVs has lost about 1.78 billion US$ in 1962–2016. Regulating services
and supporting services mainly contributed to the total ESVs. The suitable habitat area
was decreased by 1449.49 km2, with a proportion of 61.42%. Cd pollution is the highest
soil pollution ecological risk in the Liao River delta, followed by Ni, Cu, Cr, Pb, and Zn.
Wetland area, Cd, Cr, distance to a river, distance to an oil well, and agricultural and fishery
output also had impacts on ecological environmental effects. This paper put forward a
set of methods to evaluate the environmental changes of estuarine wetland ecosystem.
The implications of this paper provide some references for wetland conservation and the
sustainable development of the region, as well as other estuaries area.
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