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Abstract: Accurate monitoring of soil salinization plays a key role in the ecological security and
sustainable agricultural development of arid regions. As a branch of artificial intelligence, ma-
chine learning acquires new knowledge through self-learning and continuously improves its own
performance. The purpose of this study is to combine Sentinel-2 Multispectral Imager (MSI) data
and MSI-derived covariates with measured soil salinity data and to apply three machine learning
algorithms in modeling to estimate and map the soil salinity in the study sample area. According to
the convenient transportation conditions, the study area and sampling quadrat were set up, and the
5-point method was used to collect the soil mixed samples, and 160 soil mixed samples were collected.
Kennard–Stone (K–S) algorithm was used for sample classification, 70% for modeling and 30% for
verification. The machine learning algorithm uses Support Vector Machines (SVM), Artificial Neural
Network (ANN), and Random Forest (RF). The results showed that (1) the average reflectance of each
band of the MSI data ranged from 0.21–0.28. According to the spectral characteristics corresponding
to different soil electrical conductivity (EC) levels (1.07–79.6 dS m−1), the spectral reflectance of
salinized soil in the MSI data ranged from 0.09–0.35. (2) The correlation coefficient between the MSI
data and MSI-derived covariates and soil EC was moderate, and the correlation between certain
MSI data sets and soil EC was not significant. (3) The SVM soil EC estimation model established
with the MSI data set attained a higher performance and accuracy (R2 = 0.88, root mean square error
(RMSE) = 4.89 dS m−1, and ratio of the performance to the interquartile range (RPIQ) = 1.96, standard
error of the laboratory measurements to the standard error of the predictions (SEL/SEP) = 1.11) than
those attained with the soil EC estimation models established with the RF and ANN models. (4) We
applied the SVM soil EC estimation model to map the soil salinity in the study area, which showed
that the farmland with higher altitudes discharged a large amount of salt to the surroundings due
to long-term irrigation, and the secondary salinization of the farmland also caused a large amount
of salt accumulation. This research provides a scientific basis for the simulation of soil salinization
scenarios in arid areas in the future.

Keywords: soil salinization; Sentinel-2 MSI; remote sensing; machine learning; arid area

1. Introduction

Soil salinization is an important ecological and environmental problem in arid and
semiarid regions globally, and it seriously affects ecological stability, regional ecology, food
security, and sustainable agricultural development [1]. As a form of land degradation, soil
salinization can accelerate the desertification process and cause the deterioration of the
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ecological environment. Meanwhile, it also damages the functions of a series of ecological
services, thus affecting human health [2]. Soil salinization directly affects soil characteristics,
such as soil structure, soil microbial activity, etc., which in turn affects soil productivity
and nutrient availability. At the same time, soil salinization also inhibits the absorption of
water and nutrients by plants, thereby affecting physiology and biochemistry attributes
of plants [3].

The timely and accurate acquisition of soil salinization information has an extremely
important practical significance for the prevention and control of land degradation and
ecological restoration in arid areas. Soil salinization monitoring is a basic task to reveal the
occurrence, dynamics, and distribution of salinization [4]. Traditional soil salinization mon-
itoring hardly obtains large-scale salinization distribution information, and it is difficult to
monitor soil salinization dynamics on a large scale.

Currently, remote sensing data have been widely applied in soil salinization monitor-
ing, and accurate soil salinity mapping is imperative, so research on mapping methods is
particularly important.

In recent years, satellite remote sensing data have played an important role in regional
and even global soil salinization monitoring and mapping [5,6]. The Sentinel-2 satellite
has a short revisit time, multiple wavebands, and a high spatial resolution, and it has
been widely applied in resource monitoring, including soil salinization monitoring and
mapping [7–9]. Davis et al. [10] compared the accuracy of the farmland soil salinity
estimated with the MSI and Operational Land Imager (OLI) and found that these two
sensors attain a similar salinity modeling performance, but the area of salinized land
is overestimated with the OLI, and the area of salinized land covered by vegetation is
underestimated; overall, due to the high spatial and temporal resolution of the MSI, it is
superior to the OLI in terms of soil salinity tracking. Gorji et al. [11] used the OLI and
MSI to conduct soil salinity mapping, and their results demonstrated that different salinity
levels in different electrical conductivity (EC) ranges can be estimated through regression
analysis of ground-measured data and satellite data. Farahmand et al. [12] evaluated
the capability of various nonlinear regression models based on optical Sentinel-2 remote
sensing images to estimate soil salinity. Their evaluation results confirmed that nonlinear
regression models are superior to linear regression models in soil salinity estimation. It is
necessary to use advanced technical methods for digital soil mapping, and there are many
existing methods [13,14]. Different from statistical methods, machine learning algorithms
are a branch of artificial intelligence that use learners to learn autonomously from data
and then predict the results. Taghizadeh-Mehrjardi et al. used a statistical method and
machine learning algorithm to predict the soil particle size fraction, and found that the
ant colony optimization (ACO) had a higher accuracy [15]. Sahour et al. compared the
accuracy of machine learning and statistical methods in groundwater salinity mapping,
and found that extreme gradient boosting (EGB) algorithm had the best performance in
the verification set [16]. Moreover, machine learning algorithms have also been applied
in soil salt prediction. [17,18]. Xu et al. [19] proposed a new method for the simultaneous
identification of the hyperparameters and input features of the support vector machine
regression (SVR) algorithm based on an adaptive genetic algorithm for the quantitative
evaluation of soil salinization. Hong et al. [20] used the Artificial Neural Network (ANN)
algorithm and the SVR algorithm to estimate the soil salinity in the Yanqi Basin of Xinjiang.

Based on the advantages of machine learning algorithms that are easy to process
high-dimensional data and have strong generalization capabilities, this study combines
popular machine learning algorithms with Sentinel-2 MSI data and derivative parameters
to evaluate and map soil salinity, which can prove that Sentinel-2 MSI and its derived
variables have great application prospects in soil salinization monitoring and mapping, and
can also prove that using machine learning algorithms has great potential in the prediction
of soil EC. This research can provide a practical basis to achieve sustainable land use in
arid areas.
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2. Materials and Methods
2.1. Study Region

The Kongterik Pasture Nature Reserve (KPNR) in the Aksu Prefecture, Wensu County,
is located on the northern margin of the Tarim Basin, the Xinjiang Uyghur Autonomous
Region, China, between 40◦46′ N~41◦15′ N and 80◦40′ E~81◦29′ E (Figure 1A). The total
area of the KPNR is 6063.84 km2, and its altitude ranges from 922 to 1207 m above sea level,
gradually decreasing from northwest to southeast. The area exhibits a sparse precipitation,
intense evaporation, and extreme aridity. It has a typical continental arid climate with an
average annual temperature of 10.10 ◦C, an average annual precipitation of 65.4 mm, and
an average annual evaporation of 2300 mm. Because of its relatively flat terrain, shallow
groundwater burial depth, and high ratio of evaporation to precipitation, salt accumulates
on the surface with water movement, resulting in soil salinization (Figure 1D). In addition,
due to the influence of human activities, secondary soil salinization also occurs in the
area (Figure 1E). Therefore, the main natural vegetation in the area mainly comprises
halophytes such as Tamarix chinensis Lour., Halocnemum strobilaceum, Halostachys caspica,
Phragmites communis, Glycyrrhiza uralensis Fisch, Kareliniacaspia, and Kalidium foliatum. The
KPNR contains a large area of saline soil, which is a typical desert oasis transition zone and
ecological degradation zone (Figure 1C). Choosing this area as the research area has a good
representation value, which is of great importance to improve the ecological environment
and the development of agricultural production.

Figure 1. Schematic diagram of the sampling points in the study area. (A) Location map of the
Kongterik Pasture Nature Reserve (KPNR); (B) distribution map of sample quadrat in the study area;
(C) the present land-use map of the KPNR; (D) the native soil salinization landscape in the study
area; (E) the secondary soil salinization landscape in the study area; (F) a schematic diagram of the
collection method of mixed soil samples.

2.2. Sample Collection and Analysis

A field survey and soil sample collection were performed on 14 June 2019, which
coincided with the transit time of the Sentinel-2A satellite. Because there is only one
highway in the entire study area, the route of the investigation process was designed based
on the accessibility of potential field investigation sites. According to the local soil salt
content determined in previous field investigations, local digital soil map, surface salinity
characteristics, and land use/cover on remote sensing images (Figure 1B), 160 soil sampling
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quadrats were established throughout the study area, and the size of each quadrat was
designed to be 10 m × 10 m. With the use of the five-point sampling method, soil samples
(from 0 to 20 cm) were collected at the 4 corners and the center of each plot and mixed
into one mixed sample (Figure 1F). Moreover, a portable GPS instrument (Trimble JUNO,
positioning accuracy ≤ 5 m) was employed to record the geographic positions. Although
the positioning accuracy of the GPS instrument was insufficient, this did not affect the
position alignment between the remote sensing images and sampling quadrats (since the
image resolution is 10 m). All collected soil samples were transported to the laboratory
to determine the moisture content and conductivity. The fresh soil samples (20.00 g) were
weighed and placed in a drying cabinet at 105 ◦C ± 2 ◦C and dried to a constant weight to
calculate the soil moisture content. An amount of 20.00 g from each natural air-dried soil
sample was weighed to prepare a soil extract at a soil-water ratio of 1:5, and its conductivity
was measured after filtration.

2.3. Source of the Remote Sensing Data and Their Preprocessing

Multispectral remote sensing data have been widely applied in soil salinization moni-
toring because of their large coverage area, easy access, and suitable spatial and spectral
resolutions [21]. However, many studies have tended to use images with high spectral and
spatial resolutions to obtain suitable results [22]. The launch of the Sentinel-2 satellite was
the result of the joint cooperation between the European Space Agency, the European Com-
mission, the industry, service providers, and data users [23]. Sentinel-2 data exhibit many
of the technical characteristics of Landsat series data with a more frequent 5-day revisit
cycle [24]. The Sentinel-2 satellite is equipped with the most advanced MSI instrument
that provides high-resolution optical images. The MSI instrument of the Sentinel-2 satellite
yields 4 image bands with a spatial resolution of 10 m (B2, B3, B4, and B8), 6 image bands
with a spatial resolution of 20 m (B5, B6, B7, B8a, B11, and B12), and 3 image bands with a
spatial resolution of 60 m (B1, B9, and B10). The relevant parameters have been described
in many studies and are not provided in detail in this study [25]. In accordance with the
timing of the ground survey, this study selected the MSI data of Sentinel-2B on 14 June 2019.
The acquired Sentinel-2B data are reflectance data of the top of the atmosphere (TOA) at the
level-1C (L1C) processing level. The L1C MSI data were converted into level-1A (L1A) MSI
data with the Sen2Cor algorithm to assess the soil salinity. In particular, after atmospheric
correction, the top of the atmosphere reflectance was converted into the bottom of the
atmosphere or Earth surface reflectance. Four image bands with a resolution of 10 m and
six image bands with a resolution of 20 m were adopted in this study. The images in the
10 m bands were resized to a 20 m pixel size, and these images were then stacked with
SNAP software and clipped to obtain a subset of the study area.

2.4. Data Processing Method

In this study, the Sentinel-2B data were processed using three different methods to
obtain various modeling factors, including 10 selected bands (after atmospheric correction),
3 bands generated after principal component analysis of the 10 selected bands, and various
spectral indices constructed with these 10 bands. In addition, DEM were included as
modeling factors.

2.4.1. Modeling Factors

In arid regions, the spectral index is a common and effective method of soil salinity
monitoring [26]. The salt spectral index was proposed based on local environmental condi-
tions and cannot be described separately from local conditions [27]. In this study, specific
satellite salinity indices were selected, and these salinity indices were screened or combined
to construct a highly robust salinity index model. In addition, in this study, the original
band reflectance images, the first three bands of principal component (PC) transformation,
the terrain index, the tasseled cap transformation-derived wetness (TCW) [28] index, and
the vegetation index (VI) were also selected (Table 1).



Remote Sens. 2021, 13, 305 5 of 14

Table 1. Modeling indices used and their calculation equations.

Modeling Indices Acronym Equation Reference

Resampled original
band reflectance

images

B2-Blue, B3-Green, B4-Red,
B5-Rededge1, B6-Rededge2,

B7-Rededge3, B8-NIR, B8a-Rededge4,
B11-SWIR1, B12-SWIR2

The central wavelengths are 492.1 nm, 559 nm,
665 nm, 703.8 nm, 739.1 nm, 779.7 nm, 833 nm,

864 nm, 1610.4 nm, and 2185.7 nm,
respectively.

First three bands of
principal component
(PC) transformation

PC1, PC2, PC3

Sentinel-2B 10-m resolution and 20-m
resolution images are resampled to a 20-m
resolution and then subjected to principal

component transformation.

Normalized difference
salinity index NDSI (R − NIR)/(NIR + R) [29]

Salinity index S1 B/R

S2 (B − R)/(B + R)

S3 (G × R)/B

S5 (B × R)/G

S6 (R × NIR)/G

SI (B + R)0.5 [30]

SI1 (G × R)0.5

SI2 [(G)2 + (R)2 + (NIR)2]0.5

SI3 [(R)2 + (G)2]0.5

SI4 (B × R)0.5

Intensity index 1 Int1 (G + R)/2 [31]

Intensity index 2 Int2 (G + R + NIR)/2

Vegetation Index NDVI (NIR − R)/(NIR + R)

EVI 2.5 × [(NIR − R)/(NIR + 6 × R − 7.5 × B + 1)]

CRSI [(R × NIR) − (B × G)]/[(R × NIR) + (B × G)]

RVI NIR/R

SAVI (1 + L)[(NIR − R)/(NIR + R + L)]

GDVI (NIRn − Rn)/(NIRn + Rn), n = 2

Tasseled cap wetness TCW 0.1509 × B + 0.1973 × G + 0.3272 × R + 0.3406
× NIR − 0.7112 × SWIR1 − 0.4573 × SWIR2 [32]

Note: B = B2 (492.1 nm), G = B3 (559 nm), R = B4 (665 nm), NIR = B8 (833 nm), SWIR1 = B11 (1610.4 nm), SWIR2 = B12 (2185.7 nm).

2.4.2. Modeling Methods and Accuracy Verification

In this study, the total data set (n = 160) was divided into a modeling set (112 soil
samples, 70% of the total soil samples) and a verification set (48 soil samples, 30% of the
total soil samples) by Kennard–Stone (K–S) algorithm. In the total data set, according to the
sampling order, one sample was selected every four samples as a verification sample. Three
modeling methods were applied to evaluate the soil salinity in the study area, namely,
Support Vector Machines (SVM), Random Forest (RF) algorithm, and ANN algorithm.
When establishing the soil EC estimation model, according to the principle of minimum
mean square error of cross-validation (RMSECV), the kernel function selected by SVM was
a polynomial, the penalty parameter C was 6, the regression accuracy ε was 0.1, and the γ
value was 2.0. The ANN model selected a multi-layer perceptron (MLP), set a hidden layer,
and 30 hidden layer nodes. The number of decision trees N of the RF model was 100, the
feature variable K selected each time was 34, the maximum tree depth D was 10, and the
minimum child node size was 5. The K–S algorithm and three modeling algorithms were
implemented in matlab2016a.



Remote Sens. 2021, 13, 305 6 of 14

Four basic parameters were considered to evaluate the model: The determination
coefficient (R2), root mean square error (RMSE), ratio of the performance to the interquartile
range (RPIQ), and ratio of the standard error of the laboratory measurements to the
standard error of the predictions (SEL/SEP).

3. Results
3.1. Statistics of the Soil Sample EC Values and Sentinel-2B Reflectance Data
3.1.1. Descriptive Statistics of the Soil Samples Electrical Conductivity (EC) Values

The total salinity data set was divided into two parts: One was the modeling set,
accounting for 70% of the total data set, and the other was the verification set, accounting
for 30% of the total data set (Table 2).

Table 2. Descriptive statistics of the total, modeling, and verification soil EC data sets.

Data Set n Mean Min. Max. S.D. C.V.

Total data set 160 24.03 1.07 79.6 10.70 44.53
Modeling data set 112 23.86 1.07 79.6 10.65 44.64

Verification data set 48 24.72 6.32 64.65 10.64 43.04
Note: Table 2 provides the data range of the three data sets, and the standard deviation and coefficient of variation
are consistent. In the total data set, the soil EC ranges from 1.07 to 79.6 dS·m−1, the standard deviation is
10.70 dS·m−1, and the coefficient of variation is 44.53%, which is a moderate variation. The data range of the
modeling set is consistent with that of the total data set, while the data range of the validation set is a subset of
their ranges, i.e., included in their ranges, which is 6.32~64.65 dS·m−1. The standard deviation and coefficient of
variation of the three data sets are not significantly different. The standard deviations of the modeling set and the
validation set are 10.65 dS·m−1 and 10.64 dS·m−1, respectively, and the coefficients of variation are 44.64% and
43.04%, respectively. The above statistics demonstrate that the division of data sets meets the modeling conditions.

3.1.2. Descriptive Statistics of the Soil Sample Sentinel-2B Reflectance Data

To detect the characteristics of the spectral bands of the Sentinel-2 images, 6510 random
pixels (not including vegetation and water mask pixels) were selected in each band, and a
statistical analysis of the pixel distribution characteristics was performed (Figure 2).

Figure 2. Pixel count statistics of 6510 random soil pixels in the Sentinel-2 MSI spectral band. (A) Band 2-Blue; (B) band
3-Green; (C) band 4-Red; (D) band 5-Rededge1; (E) band 6-Rededge2; (F) band 7-Rededge3; (G) band 8-NIR; (H) band
8a-red edge4; (I) band 11-SWIR; (J) band 12-SWIR.
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Figure 2 shows that the reflectance values in all bands range from 0 to 1, and the
values in each band are relatively similar. The mean reflectance is between 0.21 and 0.28,
and the standard deviation is between 0.041 and 0.054.

Seven representative soil samples were selected with different salinity levels to an-
alyze the corresponding reflectance characteristics in the Sentinel-2 band (Figure 3). The
reflectance curves of these soil samples were similar in shape. The soil samples with an
EC of 79.60 dS·m−1 and the soil samples with an EC of 1.07 dS·m−1 attained a higher
reflectance than the other soil samples. Among them, the reflectance of the soil sample
with an EC of 79.60 dS·m−1 was between 0.32 and 0.36, which was the highest value. The
reflectance of the soil sample with an EC of 1.07 dS·m−1 was between 0.12 and 0.31. The
reflectance curve of the soil samples with an EC ranging from 8.57 dS·m−1 to 79.60 dS·m−1

was more concentrated, and the reflectance in the 10 wavebands was low. In this study, the
soil samples with the highest and lowest EC values did not correspond to the highest- and
lowest-reflectance curves, respectively, which should be closely related to the soil moisture
content and salt composition [33,34].

Figure 3. Reflectance of the soil samples with different salinity levels in the Sentinel-2 spectral bands.

To examine the sensitivity of the Sentinel-2B MSI-derived covariates (spectral bands, PC
image, vegetation index, TCW, DEM, and satellite salinity indices) to the soil EC, Pearson
correlation analysis was performed, and a correlogram was established (Figure 4). As shown
in Figure 4A, there was a significant statistical correlation between the 35 covariates
generated from the Sentinel-2 MSI data and soil EC. Seven spectral indices, namely, NDVI,
RVI, GDVI, SAVI, EVI, NDSI, and B12, failed the significance test (p < 0.05). In this study,
PCA2 and PCA3 attained the highest correlation with the soil EC, while SSM exhibited
the strongest relationship with S3 and B12, rather than with the soil EC. We found that
although there was a statistically significant correlation between the measured soil salinity
and TCW, the correlation coefficient was not the highest. In particular, the correlation
between the soil salinity and the surface soil moisture index was low in this study area. In
addition, good correlations between the soil EC and nine spectral bands were observed.
In general, most of the MSI-derived covariates exhibited significant correlations with the
soil EC in the study area (Figure 4A). Figure 4A showed that the correlation coefficients
between many factors are very high, which indicates that there is multicollinearity among
factors, and multicollinearity will increase the variance of the regression coefficients and
make the established model unstable. Therefore, by calculating the variance inflation factor
(VIF), we screened the variables and selected the variables with 1 < VIF < 10, thereby
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reducing the multicollinearity among the factors (Figure 4B). Finally, 18 variables were
selected to establish the soil salinity estimation model for improving the accuracy and
stability of the model.

Figure 4. Correlation coefficients between the laboratory-measured soil electrical conductivity (EC) values and Sentinel-2B
MSI-derived covariates based on 160 samples. (A) Correlogram of all factors; (B) correlogram of selected factors.

3.2. Construction of the Optimal Soil EC Estimation Models

Based on Figure 4, the original Sentinel-2B MSI images, their derived features (e.g., satel-
lite salinity indices, vegetation index, principal component factors, and TCW) and the DEM
were adopted as RS data sources (covariates) to estimate the soil EC. With the use of 18
spectral parameters as the independent variables required by the soil EC prediction model
and with the soil EC data as the dependent variables, three machine learning algorithm
estimation models were constructed with ANN, RF, and SVM (Table 3).

Table 3. Accuracy statistics of the Artificial Neural Network (ANN), Random Forest (RF), and
Support Vector Machines (SVM) soil EC estimation models. RMSE: Root mean square error; RPIQ:
Ratio of the performance to the interquartile range; SEL/SEP: Standard error of the laboratory
measurements to the standard error of the predictions.

Modeling Method Rm
2 Modeling

Rv
2 Verification

RMSE RPIQ SEL/SEP RMSE RPIQ SEL/SEP

SVM 0.71 5.78 1.75 1.26 0.88 4.89 1.96 1.11
RF 0.81 4.67 1.85 1.42 0.27 10.61 0.65 1.79

ANN 0.80 4.53 2.06 1.27 0.57 8.15 1.26 1.34

18 spectral variables were selected to establish soil EC models. To evaluate the
modeling effect and accuracy, the predicted soil EC based on SVM, RF, and ANN was
validated against the measured soil EC. Four parameters, namely, R2, RMSE, RPIQ, and
SEL/SEP, were considered for evaluation in this study. Among them, the R2 value is
directly proportional to the model accuracy. The closer the R2 value is to 1, the higher the
model fitting accuracy is. The RMSE value is inversely proportional to the accuracy of the
model. The closer this value is to 0, the lower the deviation between the measured value
and the model-predicted value is, and the stronger the prediction ability is. The RPIQ is
the ratio of the interquartile range to the RMSE. The interquartile range is the difference
between the 75% and 25% sample values. It is generally accepted that RPIQ < 1.7 indicates
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a low model reliability, 1.7 ≤ RPIQ < 2.2 indicates that the model exhibits a relatively
balanced predictive ability, and RPIQ ≥ 2.2 indicates that the model achieves an excellent
predictive effect [35]. The ideal value of SEP/SEL is 1, which indicates that the variability
in the predicted values is equal to the variability in the measured values, and the farther the
SEP/SEL value is from 1, the higher the variability between the predicted and measured
values is [36].

The statistical results (Table 3) of the model parameters showed that among the
modeling data sets obtained with these three models, in regard to the RF model, the R2

value was the highest, and the RMSE was relatively low, at 0.81 and 4.67, respectively,
while in the SVM model, the R2 value was the lowest, at 0.71, the RPIQ was 1.75, and the
SEL/SEP was the closest to 1. Neither the RF model nor the ANN model satisfied the
modeling requirements. Among the validation sets of the three models, in regard to the
SVM model, the R2 value was 0.88, which was the highest value, and the RMSE was the
lowest, at 4.89. Moreover, the RPIQ was between 1.7 and 2.2, and SEL/SEP was also the
closest to 1. Therefore, Table 3 indicates that the SVM model is the most robust model
among the three models.

In regard to the SVM model, RF model, and ANN model, there were obvious outliers
in the estimated values of the soil samples based on EC (20–50 dS m−1). They occurred on
both sides of the 1:1 line, and these points were relatively discrete (Figure 5). The estimated
data points obtained with the SVM model were more concentrated than those obtained
with the RF model and the ANN model (Figure 5A).

Figure 5. Scatter plots of the measured and estimated soil EC values derived from the SVM, RF, and ANN regression
models using the Sentinel-2 MSI data. (A) SVM model, (B) RF model, (C) ANN model. The black solid line represents the
line where the ratio of the measured values to the estimated values is 1:1.

3.3. Soil EC Mapping Based on the Optimal Estimation Models

Based on the RS data sets (Sentinel-2B MSI) and corresponding SVM models, we
generated a soil EC distribution map of the KPNR (Figure 6).

The soil EC distribution map (Figure 6) highlights those areas with a continuous
distribution of saline soils. For further analysis and visualization, a commonly used soil
salinity classification scheme was adopted to classify the soil salinity levels of the predicted
images (Schoeneberger et al., 2002): Non-saline (0 dS·m−1 < EC ≤ 2 dS·m−1), very slightly
saline (2 dS·m−1 < EC≤ 4 dS·m−1), slightly saline (4 dS·m−1 < EC≤ 8 dS·m−1), moderately
saline (8 dS·m−1 < EC ≤ 16 dS·m−1), and strongly saline (>16 dS·m−1). Figure 6 shows
that the area with a strong salinity (>16 dS·m−1) occupied the majority of the study sample
area. The areas with the highest salinity occurred in the northwest area with the highest
altitude and the southern area with the lowest altitude in the study area. Most of these
landscapes are flat. The northwestern area with high elevations is located in the upper and
middle parts of the alluvial fan. As a large amount of salt is discharged from the cultivated
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land areas in the upper and middle parts of the alluvial fan, the discharged salt flows
to the surrounding area with a low altitude. Hence, high soil salinization occurs in the
surrounding area of cultivated land. In the southern low-elevation area, land cultivation
leads to a shallow groundwater depth, which causes serious secondary soil salinization
when the land is left uncultivated. Soils with an EC of 0–8 dS·m−1 (non-saline, very slightly
saline, and slightly saline soils) were mainly distributed in the cultivated farmlands and
areas with relatively large topographic changes, such as parts of the northeast and south
of the study area. Soils with an EC ranging from 8 dS·m−1–16 dS·m−1 (moderately saline
soils) largely occurred in some abandoned farmlands in the southern part of the study area.

Figure 6. Soil EC distribution map derived from the SVM models based on the Sentinel-2B MSI data.

4. Discussion
4.1. Soil Salinity Detection Based on the Sentinel-2 MSI Data

The Sentinel 2 multispectral sensor is similar to other multispectral sensors in that
it uses the spectral information reflected by ground objects to detect useful geographic
information [37]. Soils with different salinities have different spectral characteristics,
which is the basis of the remote sensing monitoring of soil salinization. The area covered
by a white salt crust has a high salt content. However, in each band of the Sentinel-2
MSI data, the spectral reflectance of the soil samples did not necessarily increase with
increasing soil salinity (Figure 3). This makes it difficult to directly use multispectral
bands and their derived spectral indices to monitor and map the soil surface salinity.
According to previous studies, the salinity index and vegetation index were used to
estimate the soil salinity [38,39]. Due to differences in geographic location, topography, and
vegetation types, the soil salinity under vegetation cover varied greatly, ranging from non-
saline soil to heavily saline soil [40,41]. However, in many previous studies, regions with
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vegetation coverage were directly identified as non-salinized regions or slightly salinized
regions [42,43]. MSI data with a high spatial resolution contain few mixed pixels, which
reduces the impact of the above issue (Figure 5). Therefore, in this study, we did not mask
the vegetation coverage area before modeling, and we also collected samples in vegetated
areas to use their spectral parameters to model and estimate the soil salinity and obtain
the true soil salinity in the vegetation coverage area. The vegetation cover and the soil
index are indispensable environmental variables for soil salinization monitoring, and these
variables change with the environmental conditions. Therefore, environmental information
reflecting changes in soil properties such as vegetation cover, phenology, and plant growth
should be carefully considered.

4.2. Accuracy of the Soil Salt Estimation Model Based on the Spectral Variables

The key to the successfully inversion of the soil salt content using spectral variables
is to choose an effective mathematical regression model. Algorithms such as MLR, PLSR,
and BP neural networks have been widely applied in the inversion and modeling of soil
component contents [44,45]. Machine learning has the ability of autonomous learning and
can solve the problem of complex nonlinear function approximation in soil salinization
monitoring. Wang et al. [24] compared the accuracy of the OLI and MSI in soil salinity
mapping. The R2 value of the MSI-based soil EC estimation model reached 0.912, while the
R2 value of the estimated model in this study was only 0.783, which mainly occurred due
to the difference in the number of samples. The former study had only 64 samples, while
in this study, 160 samples were used for modeling. Therefore, R2 is low, but the soil salinity
mapping in this study should be more realistic and objective. The performance of the SVM
soil salinity estimation model is better than that of the ANN model and the RF model,
which may be due to their own algorithm characteristics. SVM is a small sample learning
method with solid theoretical foundation. It is based on the principle of structural risk
minimization, which ensures that the learning machine has good generalization ability. By
introducing kernel function, the global optimality of the algorithm is guaranteed, and the
empirical component in the neural network is avoided. ANN is a learning method based
on statistics. Its performance depends on the number of samples in the model training
process, and in most cases, the number of samples is limited. A large amount of sample
data with different value ranges will influence the RF model. If the value range is small,
the variance will be small and the offset will be large, making the model precision on the
training set much higher than that on the test set. In this study, there are 34 variables and
160 soil samples. In terms of the number of samples, the SVM model has more advantages
than ANN model. Due to the large number of variables and the small value range of some
variables (such as 10 bands of MSI), the accuracy of the RF model is also greatly affected.
Therefore, the SVM soil salinity estimation model has the best performance among the
three models.

Based on 18 variables and 3 machine learning algorithms, 3 soil salinity estimation
models were established in this study. It was found that only the SVM model meets
the accuracy requirements and can be used for the quantitative inversion of the soil EC.
Xing et al. [46] proposed a data-driven model based on the support vector machine to
predict the daily soil temperature in different climates at the continental scale with a
relatively high accuracy. Zhang et al. [47] used a combination of partial least squares
(PLS), multiple linear regression (MLR), and support vector machine (SVM) to establish
a prediction model for the soil organic matter, total nitrogen, total phosphorus, and total
potassium contents. Their results revealed that the SPA-SVM model attains the best
applicability for all soil nutrient contents. Jiang et al. [20] compared the performance of soil
electrical conductivity (EC) estimation models established by support vector machines and
artificial neural networks. Their results showed that the support vector machine regression
algorithm is superior to the artificial neural network algorithm in soil salinity monitoring.
The SVM is a nonlinear model estimation method, and its accurate estimation effect has
been verified [48,49]. On this basis, other methods, such as deep learning and gene
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expression programming, can also be applied, or other factors related to soil salt transport,
such as the temperature vegetation dryness index (TVDI) and surface temperature (Ts), can
be included to further improve the accuracy of soil salinity estimation.

4.3. Uncertainty Analysis of Soil Salinity Mapping Based on the Sentinel-2 MSI Data

Uncertainty is an important problem in soil property mapping. In this study, there are
two main aspects of the uncertainty: One is the uncertainty of the model, and the other
is the uncertainty of the relationship between the soil salinity data and MSI data. In this
study, mixed soil samples from 0 cm–20 cm below the surface were collected according
to the usual sampling principles [26,50]. However, were the spectral variables indicating
salinity characteristics obtained from the MSI data suitable to reflect the EC value of the
0–20 cm mixed soil samples? The data could be more suitable to reflect the EC value of
0–5 cm or 0–10 cm mixed soil samples. These spectral variables (salinity index, vegetation
index, etc.) are affected by many environmental factors, such as soil organic matter, soil
moisture, soil surface roughness, and soil metal mineral content. Moreover, even if the
MSI data were subjected to geometric correction and atmospheric correction, the images
would still be affected by the terrain conditions and shadows. The sample size is not large
enough, which may also lead to potential uncertainties. In future research, we will increase
the number of samples and sampling points, and choose more sampling depths to reduce
the uncertainty of soil salt prediction.

It should be pointed out that the inversion capability of a single satellite image is
always limited. We could apply multiple satellites, scales, and spectral dimensions to map
soil properties to achieve more accurate prediction results [50,51]. Finally, combining the
classic theory of soil science and remote sensing with data mining algorithms used for big
data analysis is essential for better soil salinity mapping.

5. Conclusions

In this study, we analyzed the spectral characteristics of MSI images, established SVM, RF,
and ANN soil EC estimation models, and verified the performance of each model. Moreover,
we conducted soil EC mapping in the study area. The main conclusions are as follows:

1. The average reflectance of each band of the MSI data ranges from 0.21–0.28. According
to the spectral characteristics corresponding to the different soil EC levels, the spectral
reflectance of salinized soil in the MSI data ranges from 0.09–0.35.

2. In general, the correlation coefficient between the MSI data and MSI-derived covari-
ates and soil EC was moderate, and the correlation between certain MSI data sets and
soil EC was not significant.

3. The SVM soil EC estimation model established with the MSI data set attained a better
performance and accuracy than those attained with the soil EC estimation models
established with the RF and ANN models.

4. We applied the SVM soil EC estimation model to map the soil salinity in the study
area, which provides a scientific basis for the simulation of soil salinization scenarios
in arid areas in the future.
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