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Abstract: Remote-sensing time-series data are significant for global environmental change research 
and a better understanding of the Earth. However, remote-sensing acquisitions often provide sparse 
time series due to sensor resolution limitations and environmental factors, such as cloud noise for 
optical data. Image interpolation is the method that is often used to deal with this issue. This paper 
considers the deep learning method to learn the complex mapping of an interpolated intermediate 
image from predecessor and successor images, called separable convolution network for sequence 
image interpolation. The separable convolution network uses a separable 1D convolution kernel 
instead of 2D kernels to capture the spatial characteristics of input sequence images and then is 
trained end-to-end using sequence images. Our experiments, which were performed with un-
manned aerial vehicle (UAV) and Landsat-8 datasets, show that the method is effective to produce 
high-quality time-series interpolated images, and the data-driven deep model can better simulate 
complex and diverse nonlinear image data information. 

Keywords: sequence image interpolation; separable convolution network; separable convolution 
kernel; UAV dataset; Landsat-8 dataset 
 

1. Introduction 
Remote-sensing time-series data are an important part of big earth observation data. 

As standard spatiotemporal spectral data, remote-sensing time-series data can be applied 
to research and applications in global changes, such as vegetation phenology changes, 
land-surface parameter relationships, and land degradation. The value and successful ap-
plication of remote-sensing time-series data are significant for earth science to expand the 
growth to a deeper level and to better understand the Earth [1,2]. 

Time-series analysis usually requires the data to be dense and has equal time inter-
vals to facilitate the process. However, remote-sensing acquisitions often provide sparse 
time series due to sensor resolution limitations and environmental factors [3], such as 
cloud noise for optical data. 

A conventional method to solve missing data is 1D data interpolation, as is usually 
done for moderate-resolution imaging spectroradiometer (MODIS) data sequences with 
the following processing characteristics. The interpolation method is essentially based on 
a 1D sequence in the time dimension. The sequence is relatively long. This method is not 
suitable for high-spatial-resolution sequence images containing fine spatial pattern infor-
mation. Remote-sensing sequence images are a kind of short-range complex 2D data [4]; 
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these sequences are rich in spatial information that must be considered during interpola-
tion. Due to the limitation of sequence length, it is difficult to interpolate 2D images in the 
same way that an interpolation is applied on 1D data. 

The simplest interpolation way is linear interpolation; however, because the land 
cover of the coverage area changes with time and these changes can show complex phe-
nological dynamics, the simple and uniform weighted linear method cannot meet the re-
quirements of spectral fidelity of interpolated images [5]. 

This paper was inspired by video frame interpolation and applies the idea to the re-
mote-sensing field. The difference is that video frame interpolation focuses on estimating 
inter-frame motion, while remote-sensing sequence image interpolation focuses on esti-
mating inter-scene spectral transformation. 

Niklaus et al. [6] employ a deep fully convolutional neural network to estimate spa-
tially adaptive 2D or separable 1D convolution kernels for each output pixel and con-
volves input frames with them to render the intermediate frame. The convolution kernel 
captures both local motion between input frames and the coefficients for pixel synthesis. 
The key to making this convolution approach practical is to use 1D kernels to approximate 
full 2D ones. The use of 1D kernels significantly reduces the number of kernel parameters 
and enables full-frame synthesis. 

This paper uses the same idea, and also employs a contraction–expansion of the deep 
fully convolutional neural network to estimate spatially adaptive separable 1D convolu-
tion kernels for each output pixel; the convolution kernel captures the local inter-scene 
spectral transformation coefficients for pixel synthesis. 

To the best of our knowledge, this is one of the first attempts to use the prototype of 
a fully convolutional neural network to estimate inter-scene spectral transformation for 
the interpolation of remote-sensing sequence images. The major novelty of this paper can 
be summarized as follows: 
• We use adaptive data-driven model for inter-scene spectral transformation of re-

mote-sensing images, and provide a robust interpolation approach for making up 
the missing remote-sensing images. 

• We verify, by experiments, the possibility of simulating missing remote-sensing im-
age scenes of specified acquisition times and remote-sensing sequences at equal time 
intervals using the proposed data-driven spatially adaptive convolution network. 
This allows the processing of remote-sensing sequences to be carried out under a 
unified framework, instead of requiring different processing logic for each sequence 
due to different time intervals. 
This paper shows that the data-driven model can better simulate complex and di-

verse nonlinear inter-scene spectral transformation, then get the inter-scene interpolated 
image based on this data-driven model. High-quality time series of interpolated images 
can be produced by the same approach. This enriches the research and development of 
the remote-sensing field. 

The rest of the paper is organized as follows. Section 2 reviews related studies re-
garding remote-sensing time-series data interpolation. Experimental datasets and the pro-
posed separable convolution network are described in Section 3. Section 4 presents the 
experiments and results, including visual comparisons and quantitative evaluation with 
other methods. Section 5 discusses the influence of hyperparameters on the interpolated 
result. Section 6 concludes the paper. 

2. Related Studies 
Remote-sensing data interpolation methods can be divided into two major types ac-

cording to known spatial and temporal neighborhood data. The first is to establish a suit-
able spatial interpolation model based on the spatial relationship between spatial neigh-
borhood data. The second is to establish a corresponding time-series interpolation model 
based on the time characteristics between temporal neighborhood data. 
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Seaquist et al. [7] used the ordinary kriging (OK) method to improve the accuracy of 
a normalized difference vegetable index (NDVI) maximum value composite (MVC) syn-
thesized time series. Mercedes et al. [8] used a spatial interpolation method to interpolate 
leaf-area index (LAI) data. Shrutilipi et al. [9] compared the accuracy of remote-sensing 
data interpolated by different spatial interpolation methods and concluded that the accu-
racy of OK was better than inverse distance weight (IDW). The above methods can use 
the spatial information of remote-sensing images for spatial interpolation, and cannot use 
time-series information for temporal interpolation. 

Zhou et al. [10] used NDVI data of the MODIS satellite to conduct simulation exper-
iments and evaluate the Savitzky–Golay (SG) filtering [11] and harmonic analysis of time-
series (HANTS) model [12] refactoring effect at different time intervals. According to the 
daily harmonic changes of land surface temperature (LST), Crosson et al. [13] used the 
LST data of MODIS Terra and Aqua to repair missing LST points by harmonic analysis. 
The above methods provide better 1D data fitting for the interpolation of time-series data 
at different time intervals, and are not suitable for the interpolation of high-dimensional 
time-series data (remote-sensing sequence images). 

Recently, the emergence of the enhanced spatial and temporal adaptive reflectance 
fusion model (ESTARTFM) [14], spatial and temporal adaptive reflectance fusion model 
(STARTFM) [15], and global dense feature fusion convolutional network [16] has pro-
vided ideas for research on time-series image interpolation. These models can obtain high 
temporal and spatial resolution fusion data, but they cannot elaborate on the spatiotem-
poral evolution of sequence images. 

It is not enough to consider remote-sensing data interpolation only from the temporal 
or spatial dimension. Our proposed separable convolution network combines the tem-
poral neighborhood of predecessor and successor images and the spatial neighborhood to 
consider the interpolation of scene-based remote-sensing sequence images. It does not rely 
on other high-temporal-resolution remote-sensing data, and only interpolates based on 
the sequence itself. This provides a new idea for the interpolation of remote-sensing data. 

3. Materials and Methods 
3.1. Datasets 

This paper uses two datasets (UAV and Landsat-8) for experiments. Figure 1 shows 
the location of the UAV dataset: the Sougéal marsh (western France, 48.52°N, 1.53°W), 
which is part of the long-term socio-ecological research (LTSER) site Zone Atelier Ar-
morique. This site is a large flooded grassland of 174 ha located in the floodplain of the 
Couesnon River, upstream of Mont-Saint-Michel Bay [17]. The projection type is France 
Lambert-93. The spatial resolution is 0.02 m. The number of bands is 4: green, red, red-
edge, and near-infrared. Figure 2 shows the location of the Landsat-8 dataset, which lo-
cated in the southeast of Gansu Province (Path: 129, Row: 37, 33.44°N, 105.06°E). The pro-
jection type is Universal Transverse Mercator (UTM). The spatial resolution is 30 m. The 
number of bands is 7: coastal, blue, green, red, near-infrared, short-wave infrared-1, and 
short-wave infrared-2. 



Remote Sens. 2021, 13, 296 4 of 21 
 

 

 
Figure 1. Location of unmanned aerial vehicle (UAV) dataset. 

 
Figure 2. Location of Landsat-8 dataset. 

3.2. Theoretical Model 
Given two images 𝐼𝐼𝑡𝑡1 and 𝐼𝐼𝑡𝑡2 temporally in a sequence, it is reasonable to assume 

the middle image Iestimated between images 𝐼𝐼𝑡𝑡1 and 𝐼𝐼𝑡𝑡2could be estimated by Equation (1): 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑏𝑏1(𝑥𝑥,𝑦𝑦) ∗ 𝐾𝐾1(𝑥𝑥,𝑦𝑦) + 𝑏𝑏2(𝑥𝑥,𝑦𝑦) ∗ 𝐾𝐾2(𝑥𝑥,𝑦𝑦) (1) 

where 𝑏𝑏1(𝑥𝑥,𝑦𝑦) and 𝑏𝑏2(𝑥𝑥,𝑦𝑦) are the patches centered at (x, y) in 𝐼𝐼𝑡𝑡1 and 𝐼𝐼𝑡𝑡2, and K1(x, y) 
and K2(x, y) are a pair of 2D convolution kernels; note that ∗ denotes a local convolution 
operation. The pixel-dependent kernels K1 and K2 capture both motion and re-sampling 
information required for interpolation. The 2D kernels, K1 and K2, could be approximated 
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by a pair of 1D kernels. That is, K1 could be approximated as k1,v∗k1,h and K2 could be ap-
proximated as k2,v∗k2,h. Under this assumption, the main task is to estimate each separable 
1D kernel parameter k1,v, k1,h, k2,v, k2,h. 

Furthermore, the changes between Iestimated and the changes of 𝐼𝐼𝑡𝑡1 and 𝐼𝐼𝑡𝑡2over time are 
considered to be nonlinear. The 1D kernel parameter functions k1,v, k1,h, k2,v, k2,h can be as-
sumed, and both are nonlinear mappings that can be represented by convolutional neural 
networks. Without loss of generality, we assume that the four 1D kernels have a tightly 
supported set. We apply the kernels to each of the multispectral channels to synthesize 
the output pixel. 

3.3. Architecture of the Model 
The architecture of the model is shown in Figure 3; the separable convolution net-

work consists of a contracting part and an expanding part. The contracting part is used to 
extract features of training samples, and the expanding part is used to recover the ex-
tracted features. 

 
Figure 3. Overview of our separable convolution network architecture. 

The extracting part mainly contains five convolution layers and five pooling layers. 
The number of filters in each convolution layer is 16, 32, 64, 128, and 256. Stacks of 3 × 3 
convolution with rectified linear unit (ReLu) are used in each convolution layer. Maxi-
mum pooling is used in each pooling layer. The expanding part mainly contains four de-
convolution layers and four upsampling layers. The number of filters in each deconvolu-
tion layer is 256, 128, 64, and 32. The upsampling layers can be executed in various ways, 
such as nearest-neighbor, bi-linear interpolation, and cubic convolution interpolation [18–
20]. Furthermore, we utilize skip connection [21,22] to let upsampling layers incorporate 
features from the contracting part of the separable convolution network. To estimate four 
sets of 1D kernels, we direct the feature information in the last expansion layer into four 
sub-networks, with each sub-network evaluating one kernel. 

In our experiments, the default image block size is 125 × 125 pixels and the separable 
convolution kernel size is 11 × 11 pixels. Our approach shares the different convolution 
kernels to each of the input channels. 
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3.4. Loss Functions 
Our research uses two types of loss function, ℓmse loss and ℓc loss, which measure the 

difference between an interpolated image Iestimated and corresponding reference image Igt. 
The first loss function is ℓmse norm based on pixel difference and is defined in Equation (2): 

ℓ𝑚𝑚𝑚𝑚𝑚𝑚 =
1
n
Σ(||𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐼𝐼𝑔𝑔𝑡𝑡||2) (2) 

The second loss function is ℓc norm based on the combination of feature difference 
and pixel difference and is defined in Equation (3): 

ℓ𝑐𝑐 = ℓ𝑚𝑚𝑚𝑚𝑚𝑚 + ||𝜑𝜑(𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) − 𝜑𝜑(𝐼𝐼𝑔𝑔𝑔𝑔)||2  (3) 

where φ extracts features from an image. We tried to use feature extractors like visual 
geometry group (VGG-19) [23]. During feature extraction, interpolated result and refer-
ence image are intercepted to the 10th layer of the VGG-19 network, which has a total of 
16 layers. The extracted feature is usually based on high-level features of input images, 
and it can increase the high-frequency components of the interpolated result. To check 
their result, we used two versions of our convolution model. For the first and second loss, 
we used ℓmse loss and ℓc loss for simplicity in this paper. 

3.5. Evaluation Indicator 
Our research uses two evaluation indicators to evaluate the quality of the interpo-

lated result: root mean square error (RMSE) and entropy function. RMSE measures the 
pixel error between an interpolated image Iestimated and corresponding reference image Igt, 
as defined in Equation (4): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
n
Σ(||𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐼𝐼𝑔𝑔𝑔𝑔||2) (4) 

The entropy function based on statistical features is an important indicator to meas-
ure the richness of image information. The information amount of an image I is measured 
by the information entropy D(I), as defined in Equation (5): 

𝐷𝐷(𝐼𝐼) = −�𝑃𝑃𝑖𝑖𝑙𝑙𝑙𝑙(𝑃𝑃𝑖𝑖)
𝐿𝐿−1

𝑖𝑖=0

 (5) 

where Pi is the probability of a pixel with a gray value of i in image, and L is the total 
number of gray levels (L = 256). According to Shannon’s information theory [24], there is 
the most information when there is maximum entropy. Generally speaking, the larger the 
D(I), the clearer the image. The benefit of using entropy over RMSE is that entropy can 
capture the amount of information in the image, and the detailed information of the image 
can be reflected indirectly through entropy. 

4. Experiments and Results 
4.1. Training Strategy 

We take three scenes composed of one sequence from the dataset as examples, and 
select the first two scenes as the input and the last scene as the output to train the model. 
Each sequence was trained to get one network model. 

The size of scenes in sequence in both UAV and Landsat-8 datasets was 3100 × 5650. 
To get enough training samples, all scenes in a sequence were aligned and divided into 
three regions: a training region with a size of 2000 × 2000, accounting for 22.8% of the 
entire scene; a validation region with a size of 2000 × 2000, also 22.8% of the scene; and the 
rest of the scene, used as the testing sample, accounting for 55.4% of the entire scene. All 
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three regions were continuously cropped as a block with a size of 125 × 125, and there was 
overlap when cropping. 

The optimizer used in the training was Adamax with 𝛽𝛽1= 0.9, 𝛽𝛽2= 0.99, and a learning 
rate of 1e-3. Compared to other network optimizers, Adamax could achieve better con-
vergence of the model [25]. 

4.2. Testing Strategy 
This paper mainly conducted three sets of the experiment. Each set had an experi-

mental purpose and corresponding data. The first set was mainly designed to verify the 
effectiveness of our proposed method; this experiment was implemented within the scene 
of sequences. The second set was a generalized application in the time dimension, and 
this experiment was implemented between two sequences. The third set of the experiment 
was mainly to generate missing images in different time series using the proposed 
method, and this was implemented among multiple sequences. The corresponding exper-
imental data are described in the following paragraphs in detail. 

Before describing the experimental data in every experiment, we will first introduce 
some symbols used below. I represents image scene in sequence, and 𝐼𝐼𝑡𝑡3 represents the 
image acquired at time 𝑡𝑡3 . The mapping model generated by ℓc loss is expressed 
as 𝑓𝑓[𝐼𝐼𝑡𝑡1 ,𝐼𝐼𝑡𝑡2 ,𝐼𝐼𝑡𝑡3]

ℓ𝑐𝑐 , and the mapping model generated by ℓmse loss is expressed as 𝑓𝑓[𝐼𝐼𝑡𝑡1 ,𝐼𝐼𝑡𝑡2 ,𝐼𝐼𝑡𝑡3]
ℓ𝑚𝑚𝑚𝑚𝑚𝑚 , 

where [𝐼𝐼𝑡𝑡1 , 𝐼𝐼𝑡𝑡2 , 𝐼𝐼𝑡𝑡3] represents training image triples, 𝐼𝐼𝑡𝑡1and 𝐼𝐼𝑡𝑡2represent the training image 
pairs, 𝐼𝐼𝑡𝑡3 represents the reference image, t1 and t2 represents the month of training image 
pairs acquired, and t3 represents the month of the reference image acquired. 
𝑓𝑓[𝐼𝐼𝑡𝑡1 ,𝐼𝐼𝑡𝑡2 ,𝐼𝐼𝑡𝑡3]
ℓ𝑐𝑐 �𝐼𝐼𝑡𝑡1 , 𝐼𝐼𝑡𝑡2�  represents output image with mapping model 𝑓𝑓[𝐼𝐼𝑡𝑡1 ,𝐼𝐼𝑡𝑡2 ,𝐼𝐼𝑡𝑡3]

ℓ𝑐𝑐  and input 
scenes 𝐼𝐼𝑡𝑡1  and 𝐼𝐼𝑡𝑡2, and 𝑓𝑓[𝐼𝐼𝑡𝑡1 ,𝐼𝐼𝑡𝑡2 ,𝐼𝐼𝑡𝑡3]

ℓ𝑚𝑚𝑚𝑚𝑚𝑚 �𝐼𝐼𝑡𝑡1 , 𝐼𝐼𝑡𝑡2� has a similar meaning. 
In the first set of the experiment, both the testing samples and the generated results 

were blocks within the scene of sequences, and this is called block interpolated results. 
The reference block was the real one there. Our proposed method and the method of 
Meyer et al. [26] were compared in this experiment. The method of Meyer et al. was ex-
trapolated, the extrapolated result was expressed as 𝑓𝑓[𝐼𝐼𝑡𝑡1 ,𝐼𝐼𝑡𝑡2]�𝐼𝐼𝑡𝑡1�, where 𝑓𝑓[𝐼𝐼𝑡𝑡1 ,𝐼𝐼𝑡𝑡2]  repre-
sents extrapolated mapping trained by training image pair [𝐼𝐼𝑡𝑡1 , 𝐼𝐼𝑡𝑡2] with reference image 
𝐼𝐼𝑡𝑡2. 𝐼𝐼𝑡𝑡1  in the brackets represents the input used to generate the extrapolated result. 

Table 1 shows the sequences used in this experiment and the dates of all scenes ac-
quired in them. Figure 4 shows the distribution of training blocks, testing blocks, and val-
idation samples within all the scenes, where the area inside the red and green boxes indi-
cate the training and testing blocks, and the others are validation samples. 

Table 1. Name and date of experimental datasets in first set of experiment. 

Dataset Image Names Image Dates 

UAV 

I4 April 2019 
I5 May 2019 
I6 June 2019 
I7 July 2019 
I8 August 2019 

Landsat-8 

I4 April 2013 
I7 July 2013 
I9 September 2013 
I11 November 2013 
I12 December 2013 
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Figure 4. Distribution of training, testing, and validation samples in first set of experiment: (A) un-
manned aerial vehicle (UAV) and (B) Landsat-8 images; areas inside red and green box and remain-
der of images show distribution of training, testing, and validation samples, respectively. 

The second set of the experiment was implemented between two sequences. The 
mapping model was generated by one sequence and the application by an adjacent se-
quence, that is, the testing frames out of another sequence, and here the generated result 
is called the scene interpolated result. If the mapping model generated by ℓc loss was 
𝑓𝑓[𝐼𝐼𝑡𝑡1 ,𝐼𝐼𝑡𝑡2 ,𝐼𝐼𝑡𝑡3]
ℓc , the scene interpolated result was 𝑓𝑓[𝐼𝐼𝑡𝑡1 ,𝐼𝐼𝑡𝑡2 ,𝐼𝐼𝑡𝑡3]

ℓ𝑐𝑐 �𝐼𝐼𝑡𝑡1
′ , 𝐼𝐼𝑡𝑡2

′ �. If the mapping model gen-
erated by ℓmse loss was 𝑓𝑓[𝐼𝐼𝑡𝑡1 ,𝐼𝐼𝑡𝑡2 ,𝐼𝐼𝑡𝑡3]

ℓ𝑚𝑚𝑠𝑠𝑒𝑒 , the scene interpolated result was 𝑓𝑓[𝐼𝐼𝑡𝑡1 ,𝐼𝐼𝑡𝑡2 ,𝐼𝐼𝑡𝑡3]
ℓ𝑚𝑚𝑚𝑚𝑚𝑚 �𝐼𝐼𝑡𝑡1

′ , 𝐼𝐼𝑡𝑡2
′ �. 𝐼𝐼𝑡𝑡1

′  
and 𝐼𝐼𝑡𝑡1 represent images of the same place in month 𝑡𝑡1. 𝐼𝐼𝑡𝑡2

′  and 𝐼𝐼𝑡𝑡2 represents images of 
the same place in month 𝑡𝑡2 . Figure 5 shows the visual effect between training image 
(𝐼𝐼𝑡𝑡1, 𝐼𝐼𝑡𝑡2) and testing image (𝐼𝐼𝑡𝑡1

′ , 𝐼𝐼𝑡𝑡2
′ ). 

 
Figure 5. Visual effect of training and testing images in second set of experiment (𝐼𝐼4 and 𝐼𝐼5 show 
visual effect of training image; 𝐼𝐼4′  and 𝐼𝐼5′  show visual effect of testing image). 

The third set of the experiment was conducted with multiple sequences. The remote-
sensing sequence here mainly reflected two aspects: (1) non-equidistant missing images 
in the same time series and (2) non-equidistant missing images of the same scene in dif-
ferent time series. It was difficult to find an analysis method to analyze these sequences 
in a unified and integrated manner. The number of sequences in a year may be relatively 
small, and the time interval between images uncertain, so there were non-equal time in-
tervals; some were long and some were short. Figure 6A shows available UAV images 
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from 2017 to 2019 in this experiment. It is obvious there were many missing images for 
the frequency of one image per month. This experiment tried to generate those missing 
images. Figure 6B shows one strategy for generating missing data. The red points mark 
the first level interpolated result, in which training and testing images are both existing 
images; lines of the same color connect two testing images; green points mark the second 
level interpolated result, of which red point images are among training or testing images; 
cyan-blue points mark the third level interpolated result, of which green point images are 
among training or testing images. In this experiment, our method produced 19 scene im-
ages, and the network model was trained 19 times. The mapping model generated during 
each training was used to generate a new scene image. The training triplet images, testing 
images, and output images are listed in Table 2. 

 
Figure 6. Strategy for generating missing data in third set of experiment: (A) available UAV im-
ages from 2017 to 2019; (B) one generation strategy. Red, green, and cyan-blue curves show lines 
of first, second, and third level of interpolated result. 

Table 2. Training triplet images, testing images, and output images in third set of experiment. 

Color of Points Training Triplet Images Testing Images Output Images 

Red 

April, May, January 2019 

April, May 2018 

January 2018 
April, May, March 2019 March 2018 
April, May, June 2019 June 2018 
April, May, July 2019 July 2018 

April, May, August 2019 August 2018 

Green 

July, October, November 2017 July, October 2018 November 2018 
July, August, September 2018 

July, August 2019 

September 2019 
July, August, October 2018 October 2019 

July, August, November 2018 November 2019 
July, August, December 2018 December 2019 

Cyan-blue 

October, November, January 2018 

October, November 2017 

January 2017 
October, November, February 2018 February 2017 

October, November, March 2018 March 2017 
October, November, April 2018 April 2017 
October, November, May 2018 May 2017 
October, November, June 2018 June 2017 

October, November, August 2018 August 2017 
October, November, September 2018 September 2017 
October, November, December 2018 December 2017 
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4.3. Experimental Details 
Image blocking: Due to the limitation of the sequence image size, inputting the whole 

scene image (image size is 3100 × 5650) would cause the system to run out of memory. To 
address this issue, remote-sensing images needed to be processed in blocks during the 
experiment. The input image was divided into 25 blocks (each 620 × 1130), which could 
cover the entire image information and relieve memory pressure. 

Time complexity: We used the Python machine learning library (PyTorch) to execute 
this separable convolution network. To improve computational efficiency, we organized 
our layer in computer unified device architecture (CUDA) that applies estimated 1D ker-
nels. Our network was able to interpolate a 620 × 1130 image in 40 s. Obtaining the overall 
scene image (image size 3100 × 5650) took about 15 min under the acceleration of the 
graphics processing unit (GPU) [27]. 

4.4. Results 
Table 3 shows the quantitative evaluation indicator between the block interpolated 

result and reference block using our proposed method in both datasets in the first set of 
the experiment. The table shows that the entropy value produced by using ℓc loss was 
higher than that produced by using ℓmse loss, and the RMSE [28] value produced by using 
ℓmse loss was lower than that produced by using ℓc loss. Table 4 shows a quantitative com-
parison between the block interpolated result and reference block using our proposed 
method and the method of Meyer et al. on both datasets. The table shows that the entropy 
value was higher and the RMSE value was lower using our method compared to the val-
ues produced using Meyer et al.’s method on both datasets. Figure 7 shows the visual 
effect and pixel error between the block interpolated result and reference block using dif-
ferent loss functions in both datasets and illustrates that using ℓmse loss led to visually 
blurry results, and using ℓc loss led to clear results with more high-frequency components 
[29–31] in our proposed method. Figure 8 shows the visual comparison and pixel error 
between the block interpolated result and the reference block using our method and the 
method of Meyer et al. on both datasets, and illustrates that the block interpolated result 
using our method was close to the spectral features of the reference block. 

Table 3. Quantitative evaluation between block interpolated result and reference block using our proposed method on 
both datasets. 

Dataset Interpolated Results (Block) Reference Blocks Entropy RMSE (Pixel) 

UAV 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵𝓵𝓵𝓵𝓵  

I6 
3.719 1.052 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  3.723 1.077 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵𝓵𝓵𝓵𝓵  

I7 
3.441 1.070 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  3.450 1.294 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵𝓵𝓵𝓵𝓵  

I8 
3.498 1.116 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  3.508 1.429 

Landsat-8 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟕𝟕,𝑰𝑰𝟗𝟗]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟕𝟕�
𝓵𝓵𝓵𝓵𝓵𝓵𝓵𝓵  

I9 
3.143 0.817 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟕𝟕,𝑰𝑰𝟗𝟗]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟕𝟕�
𝓵𝓵𝓵𝓵  3.145 1.112 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟕𝟕,𝑰𝑰𝟏𝟏𝟏𝟏]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟕𝟕�
𝓵𝓵𝐦𝐦𝐦𝐦𝐦𝐦  

I11 
3.842 1.233 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟕𝟕,𝑰𝑰𝟏𝟏𝟏𝟏]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟕𝟕�
𝓵𝓵𝓵𝓵  3.846 1.321 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟕𝟕,𝑰𝑰𝟏𝟏𝟏𝟏]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟕𝟕�
𝓵𝓵𝓵𝓵𝓵𝓵𝓵𝓵  

I12 
3.545 1.040 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟕𝟕,𝑰𝑰𝟏𝟏𝟏𝟏]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟕𝟕�
𝓵𝓵𝓵𝓵  3.550 1.476 
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Table 4. Quantitative comparison between block interpolated result and reference block using our proposed method and 
method of Meyer et al. on both datasets. 

Dataset Interpolated Results (Block) Reference Blocks Entropy RMSE (Pixel) 

UAV 

𝑓𝑓[𝐼𝐼4,𝐼𝐼5,𝐼𝐼6](𝐼𝐼4, 𝐼𝐼5)
ℓmse  

I6 
3.719 1.052 

𝑓𝑓[𝐼𝐼4,𝐼𝐼6](𝐼𝐼4) 3.701 1.320 
𝑓𝑓[𝐼𝐼4,𝐼𝐼5,𝐼𝐼7](𝐼𝐼4, 𝐼𝐼5)
ℓmse  

I7 
3.441 1.070 

𝑓𝑓[𝐼𝐼4,𝐼𝐼7](𝐼𝐼4) 3.440 1.888 
𝑓𝑓[𝐼𝐼4,𝐼𝐼5,𝐼𝐼8](𝐼𝐼4, 𝐼𝐼5)
ℓmse  

I8 
3.498 1.116 

𝑓𝑓[𝐼𝐼4,𝐼𝐼8](𝐼𝐼4) 3.477 2.369 

Landsat-8 

𝑓𝑓[𝐼𝐼4,𝐼𝐼7,𝐼𝐼9](𝐼𝐼4,𝐼𝐼7)
ℓmse  

I9 
3.143 0.817 

𝑓𝑓[𝐼𝐼4,𝐼𝐼9](𝐼𝐼4) 3.125 1.550 
𝑓𝑓[𝐼𝐼4,𝐼𝐼7,𝐼𝐼11](𝐼𝐼4, 𝐼𝐼7)
ℓmse  

I11 
3.842 1.233 

𝑓𝑓[𝐼𝐼4,𝐼𝐼11](𝐼𝐼4) 3.572 1.957 
𝑓𝑓[𝐼𝐼4,𝐼𝐼7,𝐼𝐼12](𝐼𝐼4, 𝐼𝐼7)
ℓmse  

I12 
3.545 1.040 

𝑓𝑓[𝐼𝐼4,𝐼𝐼12](𝐼𝐼4) 3.541 1.769 
 

 

Figure 7. Visual effect, detailed information, and pixel error between block interpolated result and reference block using 
(A) UAV and (B) Landsat-8 datasets with (b, d, f) ℓmse loss and (c, e, g) ℓc loss. 
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Figure 8. Visual effect and pixel error between block interpolated result and reference block using (A) UAV and (B) Land-
sat-8 datasets with (b, d) our proposed method and (c, e) the method of Meyer et al. 

Table 5 shows the quantitative evaluation indicator between the scene interpolated 
result and reference scene image in the second set of the experiment. The table shows that 
the entropy value produced by using ℓc loss was higher than that using ℓmse loss, and the 
RMSE value produced by using ℓmse loss was lower than that using ℓc loss. Figures 9 and 
10 show the visual effect and pixel error between the scene interpolated result and refer-
ence scene image using different loss functions and illustrates that the scene interpolated 
result using ℓmse loss and ℓc loss was close to the reference scene image. Figures 11–13 show 
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the spectral curves between the scene interpolated result and reference scene image using 
different loss functions at different coordinates (vegetation, pond, ditches, and lake) from 
June to August 2019 and illustrates that using ℓmse loss and ℓc loss could maintain better 
spectral features between the scene interpolated result and reference scene image. 

Table 5. Quantitative evaluation between scene interpolated result and reference scene image. 

Interpolated Results (Scene) Reference Images Entropy RMSE (Pixel) 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒
′ , 𝑰𝑰𝟓𝟓

′ �
𝓵𝓵𝐦𝐦𝐦𝐦𝐦𝐦  

I6 

3.650 1.124 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒

′ , 𝑰𝑰𝟓𝟓
′ �

𝓵𝓵𝐜𝐜  3.656 1.163 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒

′ , 𝑰𝑰𝟓𝟓
′ �

𝓵𝓵𝐦𝐦𝐦𝐦𝐦𝐦  
I7 

3.346 1.017 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒

′ , 𝑰𝑰𝟓𝟓
′ �

𝓵𝓵𝐜𝐜  3.346 1.381 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒

′ , 𝑰𝑰𝟓𝟓
′ �

𝓵𝓵𝐦𝐦𝐦𝐦𝐦𝐦  
I8 

3.494 1.210 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒

′ , 𝑰𝑰𝟓𝟓
′ �

𝓵𝓵𝐜𝐜  3.506 1.550 

 
Figure 9. Visual effect and pixel error between scene interpolated result and reference scene image 
using (a) Initial image (b,d) ℓmse loss and (c,e) ℓc loss (1, 2, and 3 band composite). 
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Figure 10. Visual effect and pixel error between scene interpolated result and reference scene im-
age using (a) Initial image (b,d) ℓmse loss and (c,e) ℓc loss (1, 2, and 4 band composite). 

 
Figure 11. Spectral curves between scene interpolated result and reference scene image using dif-
ferent loss functions at different coordinates in June 2019. 
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Figure 12. Spectral curves between scene interpolated result and reference scene image using dif-
ferent loss functions at different coordinates in July 2019. 

 
Figure 13. Spectral curves between scene interpolated result and reference scene image using dif-
ferent loss functions at different coordinates in August 2019. 

In the third set of the experiment, ℓc loss was used to generate a mapping model. 
There were no reference images in this experiment. Figure 14 shows the interpolated re-
sults of UAV images using ℓc loss from 2017 to 2019 and the visual effects of three-level 
interpolation according to the interpolation strategy in Table 2. It appears that as the level 
of interpolation increased, the spectral features of the interpolated result became worse. 
This may be caused by the propagation of pixel error as the level of interpolation in-
creased. 
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Figure 14. Interpolated result of UAV images using ℓc loss from 2017 to 2019 according to interpolation strategy in Table 
2: existing images and interpolated results in (A) 2019 sequence, (B) 2018 sequence, and (C) 2017 sequence. 

5. Discussion 
5.1. Stacked Convolution Layers 

We observed that the number of stacked convolution layers had an impact on the 
interpolated result, and conducted a visual comparison between the block interpolated 
result and reference block using different stacked convolution layers. We selected 1 × 1, 2 
× 2, and 3 × 3 stacked convolution layers to train the proposed separable convolution net-
work. Table 6 shows the quantitative evaluation indicator and Figure 15 the visual effect 
and pixel error between the block interpolated results and reference block using different 
stacked convolution layers. 

Table 6. Quantitative evaluation between block interpolated result and reference block using different stacked convolu-
tion layers. 

Stacked Numbers Interpolated Results (Block) Reference Blocks RMSE (Pixel) 

1 × 1 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I6 1.375 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I7 1.556 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I8 1.666 

2 × 2 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I6 1.258 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝐜𝐜  I7 1.431 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I8 1.465 

3 × 3 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I6 1.077 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I7 1.294 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I8 1.429 
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Figure 15. (a) Initial image (b–d) Visual effect and (e–g) pixel error between block interpolated results and reference block 
using stacks of 1 × 1, 2 × 2, and 3 × 3 convolution layers. 

5.2. Pooling Type 
We observed that the pooling type of the network model had an impact on the inter-

polated result, and conducted a visual comparison between the block interpolated result 
and reference block using different pooling types. We selected average pooling and max-
imum pooling to train the proposed separable convolution network. Table 7 shows the 
quantitative evaluation indicator and Figure 16 visual effect and pixel error between the 
block interpolated result and reference block using different pooling types. 

Table 7. Quantitative evaluation between block interpolated result and reference block using different pooling types. 

Pooling Type Interpolated Results (Block) Reference Blocks RMSE (Pixel) 

Average pooling 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I6 1.326 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I7 1.492 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I8 1.700 

Maximum pooling 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I6 1.077 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I7 1.294 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I8 1.429 

 
Figure 16. Visual effect and pixel error between block interpolated result and reference block us-
ing (a) Initial image (b,d) average pooling and (c,e) maximum pooling. 
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5.3. Temporal Gap between Testing Blocks and Model Requirements 
We observed that for a given model, the testing block needed to meet certain require-

ments. What would happen if a temporal gap existed between testing blocks and those 
requirements? We conducted a visual comparison between the block interpolated result 
and reference block when a temporal gap existed between testing blocks and model re-
quirements. We selected several testing blocks (April, May 2018; April, October 2018; and 
April, December 2018) to test the learned mapping model (𝑓𝑓[𝐼𝐼4,𝐼𝐼5,𝐼𝐼6]

ℓ𝑐𝑐 , 𝑓𝑓[𝐼𝐼4,𝐼𝐼5,𝐼𝐼7]
ℓ𝑐𝑐  and 𝑓𝑓[𝐼𝐼4,𝐼𝐼5,𝐼𝐼8]

ℓ𝑐𝑐 ); 
the model required that testing blocks should be acquired in April and May. Table 8 shows 
the quantitative evaluation indicator and Figure 17 the visual effect and pixel error be-
tween the block interpolated result and the reference block using different testing block 
pairs. 

Table 8. Quantitative evaluation between block interpolated result and reference block using different testing block pairs. 

Testing Image Date Interpolated Results (Block) Reference Blocks RMSE (Pixel) 
April, May 2018 𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  

I6 

1.341 

April, October 2018 𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟏𝟏𝟏𝟏�
𝓵𝓵𝓵𝓵  3.912 

April, December 2018 𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟏𝟏𝟏𝟏�
𝓵𝓵𝓵𝓵  3.989 

April, May 2018 𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  

I7 

1.498 

April, October 2018 𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟏𝟏𝟏𝟏�
𝓵𝓵𝓵𝓵  5.096 

April, December 2018 𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟏𝟏𝟏𝟏�
𝓵𝓵𝓵𝓵  5.271 

April, May 2018 𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  

I8 

1.653 

April, October 2018 𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟏𝟏𝟏𝟏�
𝓵𝓵𝓵𝓵  5.313 

April, December 2018 𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟏𝟏𝟏𝟏�
𝓵𝓵𝓵𝓵  5.568 

 

 
Figure 17. (a) Initial image (b–d) Visual effect and (e–g) pixel error between block interpolated result and reference block 
using testing block pairs April–May, April–October, and April–December 2018. 

5.4. Separable Convolution Kernel Size 
We observed that the separable convolution kernel size of the network model had an 

impact on the interpolated result, and conducted a visual comparison between the block 
interpolated result and reference block using different separable convolution kernel sizes. 
We selected separable convolution kernels with sizes of 11, 13, and 15 to train the pro-
posed separable convolution network. Table 9 shows the quantitative evaluation indicator 
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and Figure 18 the visual effect and pixel error between the block interpolated result and 
reference block using different separable convolution kernel sizes. 

Table 9. Quantitative evaluation between block interpolated result and reference block using different separable convo-
lution kernel sizes. 

Kernel Size Interpolated Results (Block) Reference Blocks RMSE (Pixel) 

11 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝐜𝐜  I6 1.077 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I7 1.294 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I8 1.429 

13 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝐜𝐜  I6 1.178 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I7 1.446 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I8 1.765 

15 

𝒇𝒇
[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟔𝟔]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝐜𝐜  I6 1.217 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟕𝟕]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I7 1.656 
𝒇𝒇

[𝑰𝑰𝟒𝟒,𝑰𝑰𝟓𝟓,𝑰𝑰𝟖𝟖]�𝑰𝑰𝟒𝟒, 𝑰𝑰𝟓𝟓�
𝓵𝓵𝓵𝓵  I8 1.868 

 

 
Figure 18. (a) Initial image (b–d) Visual effect and (e–g) pixel error between block interpolated result and reference block 
using separable convolution kernel sizes 11, 13, and 15. 

6. Conclusions 
The paper presents a remote-sensing sequence image interpolation approach that can 

transform spectral mapping estimation and pixel synthesis into an easier process of using 
a separable convolution network to estimate spatially adaptive separable 1D convolution 
kernels. The conclusions of this paper can be summarized as follows: 

(1) The proposed separable convolution network model provides a new method of 
interpolating remote-sensing images, especially for high-spatial-resolution images. The 
model can better capture and simulate complex and diverse nonlinear spectral transfor-
mation between different temporal images, and get better-interpolated images based on 
the model. 

(2) Using ℓc loss can produce clearer images in the separable convolutional network 
compared to ℓmse loss. Using 3 × 3 convolutional layers with ReLu, max pooling, and sep-
arable convolution kernel of size 11 led to better-interpolated results in the separable con-
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volutional network. Experiments showed that the proposed separable convolution net-
work could be used to get interpolated images to fill in missing areas of sequence images, 
and produce full remote-sensing sequence images. 

The limitation of this method is that the proposed separable convolutional network 
in this paper can only perform single-scene interpolation, and the quality of the interpo-
lated result depends heavily on the reference image. In future work, the proposed method 
will be improved from single-scene to multi-scene interpolation using time as a variable 
to reduce the dependency of interpolation results on the reference image. 
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