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Abstract: Deep learning technology has been extensively explored by existing methods to improve the
performance of target detection in remote sensing images, due to its powerful feature extraction and
representation abilities. However, these methods usually focus on the interior features of the target,
but ignore the exterior semantic information around the target, especially the object-level relationship.
Consequently, these methods fail to detect and recognize targets in the complex background where
multiple objects crowd together. To handle this problem, a diversified context information fusion
framework based on convolutional neural network (DCIFF-CNN) is proposed in this paper, which
employs the structured object-level relationship to improve the target detection and recognition in
complex backgrounds. The DCIFF-CNN is composed of two successive sub-networks, i.e., a multi-
scale local context region proposal network (MLC-RPN) and an object-level relationship context target
detection network (ORC-TDN). The MLC-RPN relies on the fine-grained details of objects to generate
candidate regions in the remote sensing image. Then, the ORC-TDN utilizes the spatial context
information of objects to detect and recognize targets by integrating an attentional message integrated
module (AMIM) and an object relational structured graph (ORSG). The AMIM is integrated into
the feed-forward CNN to highlight the useful object-level context information, while the ORSG
builds the relations between a set of objects by processing their appearance features and geometric
features. Finally, the target detection method based on DCIFF-CNN effectively represents the interior
and exterior information of the target by exploiting both the multiscale local context information
and the object-level relationships. Extensive experiments are conducted, and experimental results
demonstrate that the proposed DCIFF-CNN method improves the target detection and recognition
accuracy in complex backgrounds, showing superiority to other state-of-the-art methods.

Keywords: target detection; remote sensing image; local context; object-level relationship; atten-
tion mechanism

1. Introduction

The target detection and recognition in remote sensing images facilitates a wide range
of applications such as airplane detection [1–3], road detection [4], building detection [5],
land planning [6], and urban monitoring [7]. However, the remote sensing image contains
diverse scenes, including man-made targets with drastic boundaries and a large number of
landscape objects with similar characteristics to the background. Meanwhile, the target
in the remote sensing image is usually small in size, which is easy to change with other
objects in different environments. In addition, the appearance and size of the target may
vary according to the viewpoint, lighting, and weather. Therefore, it is challenging to detect
and recognize targets in remote sensing images due to various scenes with different objects
and diverse targets with different features.
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Efficient and accurate target detection in remote sensing images has attracted much
attention, and a variety of traditional target detection algorithms have been developed.
Generally, these algorithms can be divided into four categories, namely, the template-based
method, the target-based image analysis method, the knowledge-based method, and the
machine learning-based method [5,8–10]. The template-based method could effectively
detect targets in a single and simple background, but its performance will be greatly de-
creased when the object varies in size, density distribution, and direction. The target-based
method [11,12] firstly segments the image into relatively uniform pixel groups, and the
pixel groups are then divided into different categories according to the multi-feature asso-
ciation criteria. The performance of this method is determined by segmentation algorithm
and image complexity. Furthermore, the contour quality of the target directly affects
the performance of subsequent image classification to a large extent. With respect to the
knowledge-based method [13–15], it translates the implicit knowledge into the explicit de-
tection rules. Then, it determines whether the target satisfies these rules. Usually, the prior
knowledge and detection rules are defined specifically, and the accuracy of this method
is greatly limited by the complex and changing scenes and changing target. The machine
learning-based method usually extracts multiple features, such as histogram of oriented
gradient (HOG) [16–18], bag-of-words feature [19–21], scale-invariant feature transform
(SIFT) [22], and texture features [23–25]. Then, a classifier is learned for target detection,
such as support vector machines (SVM) [20,26–28], k-nearest neighbor (kNN) [16,29,30],
AdaBoost [25,31–33], and so on [34–38]. This method has advantages in scalability and
compatibility, and it can establish the target detector automatically via machine learning
techniques. However, the selection of manual features and training data has an obvi-
ous influence on the detection result of this method. Overall, these traditional methods
rely heavily on the manual features, leading to poor performance of target detection and
recognition, as well as insufficient adaptability to different situations and various targets.

Recently, the deep learning technique can extract explicit and implicit features through
multi-scale and multi-level convolution layers, and it can approach arbitrary data with
fully connected non-linear networks. The deep-learning-based method achieves end-
to-end processing, and it shows great potential in remote sensing target detection and
recognition. The general deep-learning-based target detection method such as region-CNN
(RCNN) [39], Fast RCNN [40] and Faster RCNN [41], you only look once (YOLO) [42],
single shot multiBox detector (SSD) [43], and region-based fully convolutional networks
(R-FCN) [44] have been widely used in many applications. Wang et al. [45] propose a
multiscale attention network to highlight the useful features and suppress the cluttered
background. Cheng et al. [46] present a rotation-invariant CNN (RICNN) model to detect
the targets with various degrees of rotation. Wang et al. [47] put forward a feature-merged
single-shot detection (FMSSD) network, which is trained to fuse the contextual information
in multiple scales. This method is robust for targets in a small size. Zheng et al. [48] propose
a hyper-scale object detection network (HyNet), and the network is trained to solve the
scale-variation problem for the geospatial target detection. Han et al. [49] adopt a Bayesian
framework combined with weakly supervised learning for geospatial target detection.

However, the methods mentioned above do not consider the fusion and utilization
of contextual information. Researches on visual perception systems show that the objects
and specific environment are interdependent, providing rich context associations. The
contextual information can indirectly model the relationship between the target and en-
vironment, indicating a direction to feature extraction and feature fusion. In the field of
visual cognition, it is generally acknowledged that the target in consistent backgrounds or
a familiar scene context can be detected more accurately and faster than that in inconsistent
scenes. Furthermore, evidence is shown by a large body of empirical researches [50–54] that
proper context modeling can improve the efficiency of target search and recognition. Sean
Bell et al. [53] incorporate external contextual information by adding a recurrent neural
network to the CNN. Nevertheless, this work only focuses on the internal characteristics of
these region proposals, and ignores the explicit effect of the object on the target. In [55], the
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authors achieve a top-down contextual priming by augmenting a semantic segmentation
network in Faster RCNN. However, the semantic segmentation is defined as a separate net-
work that cannot model the relationship between object and target. Mottaghi [56] presents
a deformable part-based model by combining the region-level local context the with the
scene-level global context. This model is robust to the target detection and recognition in
natural image scenes with small fields of view. However, the remote sensing image usually
has a large field of view with complex scenes, making it difficult to describe the context
information of target detection in a single term. For example, a satellite remote sensing
image often contains airports, ports, sea, and even cities, as shown in Figure 1. Zeng
et al. [57] proposes a gated bi-directional CNN, which is trained to fuse local contextual
information from the candidate areas. However, the explicit relationship between object
and target is ignored by this network. In [52], a structural inference network detector is
proposed to combine the scene context information and the target relationship within a
single image. Nevertheless, the method does not exploit interior features about the target
itself. Furthermore, the information fusion method is rather rough, and the meaningless
background noise of the whole scene may be incorporated into the contextual information.
Li et al. [58] developed a context convolution neural network model based on attention
mechanism, which utilizes both global and local contextual information. However, the
definition of the global context is ambiguous. At the same time, the contextual information
around the target does not rise to the object level, leading to the lack of top-to-down
supervised learning for target detection and recognition. Although these studies deal with
contextual information under the deep learning framework, they have made little progress
in exploring the integration of contextual information, especially in the establishment of
explicit relationships between the object and target. Additionally, these methods usually
choose a rough and simple pooling method for fusing context information, taking the
useless context information as useful information. Overall, it is still challenging to make
effective use of contextual information and integrate the information into current deep
learning frameworks.
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Figure 1. The contextual information in a remote sensing image.

Motivated by the above observations, a novel diversified context information fusion
framework for convolutional neural network (DCIFF-CNN) is presented in this paper. The
DCIFF-CNN utilizes both local context around the region proposal and the object-level
relationship outside the contextual information. Meanwhile, the gated recurrent unit (GRU)
is applied to generate a structured object relation graph. The GRU can iteratively highlight
some context slices that are conducive to the detection task, and provide powerful feature
representation for target detection. Similar to Faster-RCNN, DCIFF-CNN can be divided
into two sub-networks, namely, a multi-scale local context region proposal network (MLC-
RPN) and an object-level relationship contextualized target detection network (ORC-TDN).
The MLC-RPN mergers the convolution-layer features of various scales to capture more
fine-grained details. The object relational structured graph (ORSG) and the attentional
message integrated module (AMIM) are established in the ORC-TDN to infer contextual
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object instances and obtain more meaningful contextual information. First, the MLC-RPN
extracts multi-scale candidate regions to get the object of interest in the image. Then, those
regions are delivered to the ORC-TDN to infer contextual object relationships and detect
targets. In the ORC-TDN, the ORSG is devised to build the relationship between a set
of objects by processing their appearance feature and geometric feature; the established
AMIM integrates the message passed from the object relational graph by designing a
multi-dimensional attention model. After that, the object relationship and target feature
are fed into the GRU to encode the contextual information. Finally, these features are fed
into two sibling fully-connected layers, namely, a box-classification layer and a bounding
box regression layer.

Recently, the recurrent neural network has been widely used in the field of target
detection. Meanwhile, several interesting works combine convolution neural networks and
recurrent neural networks to model target relationships. Song et al. [59] exploit recurrent
neural networks to encode the co-occurring frequency of object-to-object relation to the
features feeding into the classifiers. As a simplified form of recurrent neural network,
Gated Recurrent Unit (GRU) is first proposed by [60]. Liu et al. [52] propose scene GRU
and edge GRU to encode the message in the whole image and the regions. In [61], the edge
GRU and node GRU are proposed to generate a scene graph, which is used as a platform to
model target relationships. In this work, the GRU layer is applied to exploit the contextual
information of the remote sensing image.

Structured graphs have been used extensively to solve the problems in visual recog-
nition. A structure inference machine is designed to model the relationship between the
group activity in [62]. Hu et al. [63] propose a generic structured model to encode the
relationship between scene and object, and the model is employed to improve the image
classification accuracy. Graph Convolutional Recurrent Network (GCRN) [64] combines
the recurrent neural network and structured graph to identify spatial relationships and
find dynamic patterns. In [65], image classification is optimized by the structured prior
knowledge in the form of a knowledge map. Liu et al. [52]. incorporated a Structure
Inference Network (SIN) into a universal target detection framework to infer object state.
Though this work is inspired by [52], which exploits graph structure inference to model
the target relationships, there are essential differences between the two approaches, i.e., the
information acquisition mode and the information fusion mode.

Attention mechanism is an essential information processing method in human percep-
tion. There are many attempts to combine attention mechanism with deep neural networks
to improve the ability of image processing. Li et al. [58] presented attention-based Long
Short-Term Memory (LSTM) layers to exploit global context for object detection. Fan
et al. [66] propose an Attention-RPN to detect objects of unseen categories with only a
few annotated examples. Attention-CoupleNet in [67] is proposed to incorporate the
attention-related information of objects by designing a cascade attention structure. Song
et al. [68] propose a multi-scale attention deep neural network (MSA-DNN) for object
detection, which uses multiple attention blocks with different scales to exploit the global
semantic information. In [69], Convolutional Block Attention Module (CBAM) is proposed
to infer attention maps along two separate dimensions. Inspired by [69], AMIM is pre-
sented to integrate the message passed from the object relational graph by designing a
multi-dimensional attention model.

This paper makes the following four contributions: (1) this paper proposes a novel
target detection framework that makes effective use of contextual information. Most target
detection methods only focus on the interior features of targets, and the exterior context
information is usually ignored. The DCIFF-CNN integrates diversified contextual informa-
tion to capture more fine-grained details and infer contextual object instances. (2) A novel
ORSG module is designed to model the relations between a set of objects by processing
their appearance features and geometric information. The contextual information in the
scene is extremely complex, especially for the remote sensing image. (3) The AMIM is
integrated into the feed-forward convolutional neural networks with negligible overheads
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to highlight the useful object-level contextual information. (4) An end-to-end deep learning
multi-target detection framework integrating MLC-CRPN, ORC-TDN, ORSG and AMIM is
explored for remote sensing images. Over all, the use of interior local contextual informa-
tion and external object-level contextual information in the proposed method contributes
to an enhanced feature representation scheme for target detection. Several state-of-the-art
target detection methods are adopted to evaluate the proposed method. The experimental
results indicate that the proposed method improves the target detection performance with
more desirable and reasonable outputs.

The contents of this paper are organized as follows. The target detection scheme based
on interior local contextual information and external object-level contextual information
for remote sensing image is discussed in Section 2. Section 3 describes the experimental
results on various remote sensing image datasets, and discusses the different experimental
parameters. Section 4 concludes the full paper.

2. Materials and Methods

The target detection framework of DCIFF-CNN is exhibited in Figure 2, which is
mainly composed of two parts, namely, MLC-RPN and ORC-TDN. The MLC-RPN fuses
the multi-scale convolution-layer features to capture the region proposals; the ORC-TDN
models the relationship between targets and objects explicitly. The ORSG modules and
the AMIM module are embedded into ORC-TDN to infer contextual object instances and
obtain more meaningful contextual information. The ORSG models the explicit relationship
between a set of objects by processing their appearance feature and geometric feature, and
the AMIM integrates the message passed from the object relational graph by designing
a multi-dimensional attention model. The contextual information inferred by the two
modules is then fed into GRU for target detection. Compared with traditional CNN-based
target detection methods, DCIFF-CNN shows an advantage in exploiting the relationship of
context to reason the target. The modules in the DCIFF-CNN framework will be described
in the following sections.

Figure 2. The overall framework of diversified context information fusion framework based on convolutional neural
network (DCIFF-CNN).

2.1. Multi-Scale Local Context Region Proposal Network (MLC-RPN)

Similar to RPN [58], an image of any size is fed into the MLC-RPN, and a group of
region proposals with classification probabilities is then output from the MLC-RPN. The
general framework of the MLC-RPN is displayed in Figure 3. A pre-trained convolutional
neural network VGG [70] is employed in the MLC-RPN. Meanwhile, features maps of
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different levels are integrated to extract the region proposal. The scale of targets in remote
sensing images with various resolutions is different. Generally, the scale of targets in
low-resolution images is smaller; the scale of targets in high-resolution images is larger.
Additionally, the information contained in the small-scale target is more macroscopic and
abstract, whereas the information contained in the large-scale target is richer and more
detailed. One issue in traditional convolutional networks is that the detection performance
for small-size instances is unstable. This is because the feature map of the last layer in
the networks is too coarse to make an accurate classification. For instance, an object with
size of 64 × 64 going to the last convolutional layer of a VGG16 network will have a
size of 4 × 4. Inspired by the structured object modeling network in natural images [52],
a multi-scale local contextual feature fusion method is proposed in this paper that can
take full advantage of different information to represent rich features of ground objects.
Different from the method in SSD [43], the proposed MLC-RPN focuses on the multi-
resolution region, whereas the method in SSD extracts regions of different scales. In the
CNN network, a certain feature scale changes with the iteration of the network. When
the scale change is unreasonable, it may be necessary to use the feature of multiple scales
for auxiliary processing. Furthermore, the features of different scales are fused to realize
feature complementation. In the CNN network, layer 3 and layer 5 are selected for context
feature fusion at different scales. The sampled feature representations of f with various
scales is denoted as

{
S f

i |i =3, 5
}

. In the MLC-RPN, the feature map of the last layer must
have a shape of 512 × 7 × 7, so that it can match the dimension and amplitudes of the
fully-connected layer. To meet this requirement, the local response normalization (LRN)
is applied to normalize multiple feature maps f to match the original amplitudes. Then,
these features are concatenated into C = concat

{
S f

i

}
{i = 3, 5}, where concat indicates that

the feature maps are spliced in the channel dimension. Ultimately, a 1× 1 convolution
layer is adopted to compress the sampled features into a uniform space.

Figure 3. The general framework of the multi-scale local context region proposal network (MLC-RPN).

The resulting feature map is sent to two side-by-side fully-connected layers, i.e.,
the box-classification layer and box-regression layer. Denoting the number of region
proposals as k, the regression layer will have 4k outputs, which are encoded to represent
the coordinates of k boxes. Additionally, 2k scores will output from the box-classification
layer, which is used to estimate the probability of each region proposal.

2.2. Object-Level Relationships Context-Based Target Detection Network (ORC-TDN)

The final target detection results cannot be directly obtained from the region proposals
output by MLC-RPN because they only show the area where the suspected target may
appear. To further detect the target accurately, ORC-TDN is added behind the MLC-
RPN to extract complete target features. The establishment of the proposed ORC-TDN
method adds the attentional message integrated module (AMIM) and the object relational
structured graph (ORSG) into the existing CNN architecture. The AMIM merges contextual
information and aggregate information from a set of elements. The ORSG processes a set
of objects simultaneously through encoding the appearance feature and geometric feature,
so that the contextual object instances can be inferred.
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2.2.1. Problem Statement

In the real world, targets always appear in a specific scene, and some connection
exists between targets and other objects. In remote sensing images, context refers to any
information in the image that directly or indirectly affects the perception of the target in
the scene. For example, the basketball court may look like a tennis court, but it is definitely
ships, not vehicles, that can appear on the water’s surface.

Inspired by the structured object modeling network in natural images [52], the struc-
tured graph can be deployed to adaptively aggregate information from contexts. To learn
latent representations of objects, a visually-grounded graph most accurately related to the
image is generated [61]. Shown in Figure 4, a relationship graph R = (T, O, E) is proposed
to model the graphical problem between target and context information. The node t ∈ T
represents the target, while node o ∈ O is the contextual area (object), and e ∈ E denotes
the edge (relationship) between each pair of nodes.
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GRU is a lightweight and effective recurrent neural network, which takes its previous
node information and incoming messages as input, and generates an updated node infor-
mation as output. It can be seen that passing messages among the GRU units along the
context areas is feasible. The structure of GRU is illustrated in Figure 5, and there are two
gate functions to regulate the flow of information, namely the update gate z and the reset
gate r. The update of hidden state is decided by the update gate, and the status message
of the previous moment is related to the value of the update gate. A large value of the
update gate means that more state information from the previous moment is introduced,
and vice versa. The reset gate is applied to restrain the amount of state information from
the previous state that needs to be ignored. A small value of the reset gate means that more
state information from the previous state is ignored, and vice versa. The update gate and
the reset gate are computed as follows:

zt = σ(Wz[ht−1, xt]) (1)

rt = σ(Wr[ht−1, xt]) (2)

where Wr and Wz are the weight matrixes that can be learned; [, ] represents the concate-
nation of vectors, and σ denotes the logistic sigmoid function. ht−1 and xt represent the
previous hidden state and the current input, respectively. The output of GRU is denoted as

ht = ztht−1 + (1− zt)h̃ (3)

where
h̃ = φ(Wh[ht−1 ∗ rt, xt]) (4)

h̃t denotes the new hidden state; φ is activation function; Wh is a learnable weight ma-
trix, and ∗ represents the element-wise multiplication. As shown in the above formulations,
the updated information of zt can be used for both forgetting information and selecting
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information. Generally, GRU can be applied to remember long-term information, and the
input of GRU is a symbol sequence, where the initial state of GRU can be set as null or a
random vector. In this paper, the GRU is utilized to encode various contextual information
of the target state.

Figure 5. Illustration for gated recurrent unit (GRU).

2.2.2. Attentional Message Integrated Module (AMIM)

In the relationship graph, it is important to encode and integrate the messages trans-
mitted by the node. Since each node needs to receive multiple incoming messages and
these messages can be updated at any time, it is essential to exploit a polymerized function
that can merge the incoming messages into meaningful representations and remember
the updated node information at the same time. Different from the context informa-
tion in natural images, the features of target in remote sensing images are spare and the
background is complex, causing much useless background information in the context
information. In this case, an AMIM is deployed to find and fuse the useful contextual
information. Inspired by [69], each attention module in this paper predicts an attention
map M, which contains both channel dimension and spatial dimension. Meanwhile, AMIM
differs from the attention mechanism in [69] in that it processes and incorporates multiple
contextual information instead of dealing with one piece of information separately. The
feature map of input is denoted as f ∈ RC×H×W , which is compressed through spatial
dimension and channel dimension, respectively. In this way, a multi-dimensional cal-
culation can be carried out to obtain more accurate and effective features. The feature
map Fc = [f1, f2, · · · , fi, · · · , fC] and Fs = [f(1,1), f(1,2), · · · , f(j,k), · · · , f(H,W)] are given as
the combination of channels fi ∈ R1×H×W and spatial f(j,k) ∈ RC×1×1, respectively. The
channel attention map Ac ∈ RC×1×1 is obtained by performing average pooling and max
pooling on the features, and it is derived as follows.

Ac(f) = σ
(

W1

(
δ
(

W2zc
avg

)))
+ σ(W1(δ(W2zc

max ))) (5)

zc
avg(i) =

1
H ×W

H

∑
j=1

W

∑
k=1

fi(j, k) (6)

zc
max(i) = max

j∈{1,2,··· ,H}
k∈{1,2,··· ,W}

{fi(j, k)} (7)
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where W1 ∈ RC× C
2 and W2 ∈ R C

2 ×C, σ and δ stand for the sigmoid function and the ReLU
operator, respectively. Note that the weights W1 and W2 come from two fully connected
layers. zc

avg ∈ RC×1×1 and zc
max ∈ RC×1×1 denote features from average pooling and max

pooling, respectively. Similarly, the spatial attention map As ∈ R1×H×W is calculated by

As(f) = σ(W3 ∗ (zs
avg ; zs

max )) (8)

zs
avg(j, k) =

1
C

C

∑
i=1

f(j,k)(i) (9)

zs
max(j, k) = max

i∈{1,2,··· ,C}

{
f(j,k)(i)

}
(10)

where σ and ∗ represent the sigmoid function and the convolution operation, respectively.
W3 ∈ R1×1×C×1 stands for the weight of the convolution layer zs

avg ∈ R1×H×W and
zs

max ∈ R1×H×W denotes features from average pooling and average pooling, respectively.
The structure of AMIM is illustrated in Figure 6, which includes attention modules

from both the channel dimension and the spatial dimension. The attention module of the
channel dimension and spatial dimension derives an attention map with one-dimension
and two-dimension, respectively. In this paper, the two modules work in parallel to extract
important information efficiently. If the input feature map values highly on both channel
re-scaling and spatial re-scaling, the feature will be given higher activation.

Figure 6. Illustration of the attentional message integrated module (AMIM).

2.2.3. Object Relational Structured Graph (ORSG)

The purpose of using GRU in this paper is to effectively transfer messages from targets
and objects to nodes. It is important to devise a transmission function that can transfer
information from all areas into a meaningful representation. The feature maps of object
are taken as the initial value for the GRU, and the input value comes from the integrated
message of other nodes. The relationship between the object and the target changes with
the state update of objects, and the updated time step makes the model more stable. In this
paper, a structured graph of object relationship is proposed to update the message of nodes,
as shown in Figure 7. In ORSG, the deep neural network is combined with the graph model
for a structured prediction task that is solved by structural reasoning technology. The GRU
in Figure 7 is applied to encode messages from objects. Since there are multiple objects,
an integrated message mi needs to be pre-calculated. If a long sequence of messages from
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every object is taken as input, a lot of time will be consumed and there will be much useless
information. With the addition of AMIM, the GRU updates the node with some selected
important integrated messages. It is reasonable that different objects contribute different
messages to the node, and the target-object relationship ej→i is denoted as the influence
of object on target. Obviously, the influence of an object on the target consists of both
the appearance feature and the geometric feature. As shown in Figure 7, the integrated
message to the target node is calculated as

mi = Ac
(

Foj→ti

)
∗ Foj→ti + As

(
Foj→ti

)
∗ Foj→ti (11)

Foj→ti = ej→i ∗ foj→ti (12)

ej→i = ∑
j:j→i

tanh
(

W f

[
fti , foj

])
∗ relu

(
WsSj→i

)
(13)

where Ac and As are attention weight coefficients in Section 2.2.2; Foj→ti denotes the
message from object oj to target ti; fti and foj represent the appearance feature of target ti
and object oj, respectively; fti and foj are scalar forms of fti and foj , respectively; ej→i is a
scalar weight; W f and Ws are learnable weight matrixes; [, ] denotes the concatenation of
vectors; ∗ represents the element-wise multiplication. The geometric feature Sj→i is defined
as follows

Sj→i =

[
log

(∣∣xi − xj
∣∣

wj

)
, log

(∣∣yi − yj
∣∣

hj

)
, log

(
wj

wj

)
, log

(
hi
hj

)]
(14)

where xj and yj represent the top-left coordinates of bounding-box for the context area. wj
and hj stand for the width and the height of bounding-box for the context area, respectively.
The first two elements are converted by log(.) to calculate more nearby objects.

Figure 7. Object relational structured graph (ORSG).

Figure 7 shows the object-level relational structured graph. For target ti, the visual
feature fi of the node ti is taken as the initial hidden state of GRU. e1→i is applied to
calculate the message Fj→i from node o1 to node ti. The AMIM integrates all the messages
from the object into mi, and the result is input to the GRU. The hi output by GRU is then
used as the final updated node state. Based on the description of GRU in Section 2.2.1,
Equation (4) can be expressed as follows:

hi = φ(Wh[fi ∗ ri, mi]) (15)
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In the following iterations, the new target-object message is taken as the new input of
GRU, and the next hidden state is further calculated.

2.2.4. Target Detection Process

As mentioned earlier, the multi-class remote sensing target detection method proposed
in this paper involves many contents, and it seems to be a little complex. To facilitate an
easy understanding, the target detection flow path of the proposed method is briefly
described in Algorithm 1. In the ORC-TDN, the final integrated node representations of
GRU are used to predict target category and bounding box regression. Supposing that b
and b′ denote the predicted bounding box and the true bounding box, respectively, p and
p′ represent the predicted class probability and the true class probability. The loss function
of each target is optimized as follows.

L = Lcls
(

p, p′
)
+ λLreg

(
b, b′

)
(16)

Lcls
(

p, p′
)
= − log

[
p′p +

(
1− p′

)
(1− p)

]
(17)

Lreg
(
b, b′

)
= smoothL1

(
b− b′

)
(18)

where λ is the balancing parameter, and smoothL1 is the smooth L1 loss proposed in [40].
To verify the proposed method, corresponding experiments are given in the next section.

Algorithm 1: The target detection method for remote sensing images based on structured
object-level relational reasoning.

Input: Remote sensing image dataset
Output: Bounding boxes and target category of multi-class targets
1. Get ROIs (region proposals) through MLC-RPN.
1.1. Set: The feature map from conv3 S f

3 , The feature map from conv5 S f
5

1.2. Get the fused features C = concat
{

S f
i

}
{i = 3, 5}

1.3. Perform 1× 1 convolution on C and send it to the full connection layer.
1.4. Get ROIs
2. The ROIs are fed to ORC-TDN.
2.1. Establish the ORSG and AMIM
2.2. ORSG includes node ti, node oj and edge ej→i, edge is determined by relative object feature
and position in ROIs
2.3. Calculate the message Fj→i from node oj to node ti through Formula (12)–(14)
2.4. Obtain the channel attention map Ac and spatial attention map As of Fj→i through Formula
(5)–(10).
2.5. Obtain the integrated message mi of the object context through Formula (11)
2.6. The context information mi and appearance feature fi of target are taken as the input of GRU.
Obtain the output of GRU through (15).
2.7. The output of GRU is fed into the full connection layer.
3. Obtain bounding boxes and target category of multi-class targets from the full connection
layer of ORC-TDN.

3. Results

Sufficient experiments have been undertaken in this section to demonstrate the capa-
bility of the proposed DCIFF-CNN. The image data used for experiments are introduced
first. Then, some common evaluation criteria are listed. Finally, the effectiveness and
robustness of the proposed target detection method is validated.

3.1. Dataset Description and Experimental Settings

A multi-class target detection dataset, NWPU VHR-10 [8,46,71], is used to validate the
proposed method. This dataset includes 650 optical remote sensing images, and they are
divided into ten different types of target. At least one kind of target exists in each image,
and most images contain more than one type of targets. For these images, 565 images were
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obtained from Google Earth, and the other 85 color images were obtained from Vaihingen
data. In this paper, 20% of the dataset is applied to train and adjust the model; another
20% to verify the model, and the last 60% to test the model. Since most of the methods
adopt this ratio, in order to reflect the applicability of the proposed method, this ratio is
adopted for experiments in this paper. At the same time, in order to make the results more
convincing, the comparison methods used in this paper also use this ratio for experiments.
The detailed information of the dataset, i.e., target sizes and target numbers are listed in
Table 1.

Table 1. A detailed introduction to NWPU VHR-10 dataset.

Target Classes Target Numbers (Pixels) Target Sizes (Pixels)

Airplane 757 50 × 77–104 × 117
Ship 302 20 × 40–30 × 52

Storage tank 655 27 × 22–61 × 51
Baseball diamond 390 66 × 70–109 × 129

Tennis court 524 45 × 54–122 × 127
Basketball court 159 52 × 52–179 × 179

Ground track field 163 195 × 152–344 × 307
Harbor 224 95 × 32–175 × 50
Bridge 124 88 × 90–370 × 401
Vehicle 477 20 × 41–45 × 80

To improve quantity and diversity of the images for testing, another real dataset
collected by ourselves is also used in the experiments. This dataset consists of three types
of targets, i.e., airplane, ship, and car. In order to diversify the context information, ships
exist in two kinds of scenes: river and sea. The airplane and ship in the dataset are collected
from Google Earth, and car is photographed by an unmanned aerial vehicle of DJI M100,
which is equipped with a DJI Zenith Z3 camera. Since this dataset contains real shooting
images, it can better demonstrate the robustness and practicability of the proposed method.
The detailed information of the collected data is listed in Table 2.

Table 2. The detailed information of the collected dataset.

Target Target Context Image Size
(Pixel) Number of Targets

airplane runway 877 × 768 1500
Ship sea 1104 × 740 1000
Ship river 1104 × 740 1000
car road 1280 × 720 1500

A PC equipped with CPU of Intel Core i7, random access memory with capacity of
16GB, and a GPU of NVIDIA GTX-1080 is used to perform the experiment. Meanwhile,
this PC runs the operating system of Ubuntu 14.04.

3.2. Evaluation Metrics

To verify the performance of the proposed target detection framework, two widespread
criteria are adopted to estimate the detection results quantitatively, namely, precision rate
and recall rate. The precision rate denotes the ratio of predicted positive targets to all actual
positive targets, and the recall rate indicates the ratio of predicted positive targets to all
actual positive targets. They are calculated as follows

precision =
TP

TP + FP
(19)

recall =
TP

TP + FN
(20)
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where TP (true positives) represents the number of predicted positive targets, FP (false
positives) denotes the number of falsely detected targets and FN (false negatives) is the
number of falsely detected backgrounds. When the overlapping area between the ground
truth and the bounding box is greater than 0.5, the area is defined as TP. On the contrary,
when the overlapping area between the ground truth and the bounding box is less than 0.5,
the area is defined as FP.

The AP represents the mean value of precision within the range from recall 0 to recall
1 and it is obtained by computing the area under the precision-recall curve. The mean AP
(mAP) indicates the mean value of AP across several classes.

AC and PR are adopted to quantify the target detection result of the collected dataset.
AC denotes the accuracy of detection result and PR indicates the precision ratio.

AC =
Number o f detected target

Number o f target
(21)

PR =
Number o f detected target

Number o f detected target + Number o f detected background
(22)

3.3. Target Detection Results on NWPU VHR-10 Dataset

To evaluate the robustness and effectiveness of the proposed method, another eleven
methods are taken for performance comparison. Among these methods, there are four
traditional methods, which are widely used in target detection. The remaining seven
methods are based on deep learning, which have made a great breakthrough in the field
of target detection. SSCBow is chosen as the representative bow-based method. COPD is
taken to represent the SVM-based method, and FDDL is employed as a typical method
based on sparing coding. In this paper, YOLO1 [72], YOLO2 [72], YOLO3 [42], YOLO4 [73],
RICNN [46], FRCNN [41], MSCNN [74], and SSD [43] are selected as the deep learning
approaches. FRCNN and YOLO are representative CNN-based methods for the target
detection; MSCNN and SSD focus on the multiple scales, and RICNN is widely used to
assess new methods, especially the target detection method in remote sensing images.

Figure 8 shows the detection results of these methods. It can be seen that the methods
based on deep learning exhibit obvious advantages compared with traditional methods.
The traditional manual methods have a limitation of only extracting the artificial features of
the bottom layer, whereas the method based on deep learning can extract both the explicit
features from the bottom layer and abstract features from the top layer. Furthermore, the
proposed DCIFF-CNN achieves the highest mean average precision (mAP) among all the
methods, and it obtains a higher AP among all targets. Furthermore, it can be seen that
YOLO1 gets a slightly lower mAP value. This is because the input image in YOLO1 is
divided into a S × S grid which can only deal with two targets simultaneously, leading
to its weak ability in detecting small and dense targets such as storage tanks. The mAP
value of YOLO2 and YOLO3 are both higher than that of YOLO1. In addition, the detection
performance measured in mAP of DCIFF-CNN is slightly higher than that of RICNN.
This is because the RICNN is implemented in multiple pipelines, whereas the proposed
DCIFF-CNN is an end-to-end network that can skip intermediate steps. Furthermore, the
performance of SSD is better than other baseline methods due to the multiple feature maps
and pixel resampling stages employed by SSD. However, the DCIFF-CNN obtains higher
AP values in all kinds of targets. For the target of ground track fields, MSCNN obtains a
satisfying AP value. However, the performance of this method is unstable for detecting
small targets. Consequently, the experiment results in Figure 8 illustrate that the proposed
DCIFF-CNN obtains better robustness and effectiveness for target detection, which benefits
from the multi-scale local context and object-level relationships context.
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directions. Figure 9b,i display the detected targets in complex backgrounds. Figure 9c,d 
show the detected harbor and bridge, respectively, and the detection accuracy of these 
targets can reach 99%. The detected targets in Figure 9e,f conform to the same category, 
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Figure 8. Performance comparisons of twelve different methods in terms of average precision (AP) values. (a) The AP value
of an airplane; (b) The AP value of a ship; (c) The AP value of a storage tank; (d) The AP value of a baseball diamond; (e)
The AP value of a tennis court; (f) The AP value of a basketball court; (g) The AP value of a ground track field; (h) The AP
value of an harbor; (i) The AP value of a bridge; (j) The AP value of a vehicle; (k) The mAP value of ten classes of targets.
All the methods are carried out with the same dataset and the same data ratio (Dataset: NWPU-VHR (train:20%, val:20%,
test:60%)).

Some typical detection results from the proposed DCIFF-CNN method are exhibited in
Figure 9, where DCIFF-CNN achieves an outstanding performance in all ten categories of
targets. Figure 9a shows the detected airplane with different colors and various directions.
Figure 9b,i display the detected targets in complex backgrounds. Figure 9c,d show the
detected harbor and bridge, respectively, and the detection accuracy of these targets can
reach 99%. The detected targets in Figure 9e,f conform to the same category, and they are
similar in color, shape, and size. Figure 9j–l show the detection results of vehicles in various
backgrounds. It is demonstrated that the proposed method has excellent target detection
capability under various complex backgrounds. In Figure 9b,g,h the storage tank crowds
together, but they are detected and recognized efficiently. In conclusion, the proposed
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method obtains accurate and stable results for target detection and recognition in different
categories and different scenarios.
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Figure 9. Some target detection results with the proposed approach.

The detection results of some different methods are displayed in Figure 10. The size of
the storage tank in the image is extremely small, i.e., 27× 27 to 30× 30 pixels. Furthermore,
the targets in the image are crowded together. In Figure 10, the red boxes, the blue boxes
and the green boxes denote the correct detected targets, the incorrect detected targets, and
the missing targets, respectively. It is verified that the proposed DCIFF-CNN method is
more robust to the detection of small targets than other methods.

The precision-recall curves (PRCs) of eight methods are displayed in Figure 11. For a
better comparison and visualization, the range of different targets in the Y-axis is adjusted
according to the actual detection results. It can be seen that most methods achieve stable
results for detecting airplane, ground track field, and baseball diamon. This is because
these targets have special features in this dataset, which are of great help to target detection.
For example, the appearance feature of the airplane in this dataset is unique; the ground
track field has an obviously larger size than any other targets, and the shape of the baseball
diamond is unique. Meanwhile, the proposed method is excellent in both precision and
recall for the target detection of ship, tennis court, harbor, bridge and vehicle. The PRCs
of these targets have little fluctuation, and an effective balance is achieved between the
detection rate and the recall rate. It is indicated that the proposed explicit context model can
effectively exploit rich contextual information to detect different targets more accurately.
For the target of a storage tank, the variation range of PRC is slightly larger, and the
recall rate decreases obviously with the increase of precision rate. This is because the
size of this target is relatively small, and its context environment is more complex, as this
target may appear in the sea or an urban environment at the same time. However, the
proposed method is still superior to other methods. For the target of a basketball court, the
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proposed method is somewhat inferior to the MSCNN method. This is because the similar
characteristics of basketball courts and tennis courts bring some difficulties to the target
detection. However, the proposed method is still superior to most methods. Overall, these
results show that the added AMIN and ORSG can integrate useful contextual information,
and generate object-level graphs through the background information.
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The computational complexity analysis between these methods is provided in Table
3. As can be seen in Table 3, YOLO-based methods are more efficient than other methods,
but with some compromise of detection accuracy. SSD gets faster speed due to the single
shot multi-box detector. It can be seen that the proposed DCIFF-CNN achieves a tradeoff
of detection accuracy and computation efficiency. This demonstrates that the proposed
method is robust in both detection accuracy and speed. This might benefit from the use of
attentional contextual information, which discards useless contextual information.

Table 3. The computational complexity analysis for different methods in terms of NWPU VHR-10 dataset.

Method FRCNN-ZF FRCNN-VGG MSCNN SSD YOLO1 YOLO2 YOLO3 DCIFF-CNN

Mean times(s)
(Testing for per

image)
1.31 1.55 1.62 1.22 0.94 1.03 1.15 1.20
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Figure 11. The precision-recall curves (PRCs) of the proposed method and other compared methods. (a) Airplane; (b) Ship;
(c) Storage tank; (d) Baseball diamond; (e) Tennis court; (f) Basketball court; (g) Ground track field; (h) Harbor; (i) Bridge;
(j) Vehicle.

3.4. Target Detection Results of the Collected Dataset

Some heat maps of the collected dataset are displayed in Figure 12, where the first
row and the second row denote the original image and the corresponding heat map,
respectively. For the target of airplane, it can be seen that both the target and the parking
apron are emphasized. For the target of ship, the urban area and the sea surface are clearly
demarcated. For the target of car, the urban area and the runway area are divided by the
proposed DCIFF-CNN, showing that the proposed DCIFF-CNN integrating contextual
information through AMIM and ORSG is robust for complicated scene clutter.
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Table 4 shows the AC value and PR value of the collected dataset. It can be seen from
Table 4 that the proposed DCIFF-CNN obtains better detection results than other methods.
For the target of airplane, the DCIFF-CNN achieves 2.85% better AC and 5.25% better PR
than the YOLO4. Furthermore, the proposed method obtains a value of 90% in both AC
and PR, demonstrating that the proposed DCIFF-CNN can maintain a low false alarm rate
with a high recall rate. For the target of ship, there are two different backgrounds, and
the number of targets is more than that of other targets. In this situation, the proposed
DCIFF-CNN is superior to other methods, showing that the proposed ORSG and AMIM
are robust to various complex backgrounds. For the target of car, the AC value obtained
by YOLO4 is slightly higher than that of the proposed method. However, the proposed
method achieves the highest PR value. This demonstrates that the proposed DCIFF-CNN is
stable for detecting small and dense targets, due to the efficient use of context information
by the added ORSG and AMIM.

Table 4. Performance comparisons of various methods on the collected dataset.

Target Index FRCNN-ZF FRCNN-VGG YOLO4 DCIFF-CNN

Airplane
AC 76.93%

(1154/1500)
85.00%

(1275/1500)
87.20%

(1308/1500)
90.05%

(1358/1500)

PR 76.88%
(1154/1501)

85.40%
(1275/1493)

87.32%
(1308/1498)

92.57%
(1358/1467)

Ship
AC 78.55%

(1571/2000)
81.05%

(1621/2000)
83.60%

(1672/2000)
88.60%

(1772/2000)

PR 76.90%
(1571/2043)

84.25%
(1621/1924)

84.32%
(1672/1983)

91.10%
(1772/1945)

Car
AC 76.13%

(1142/1500)
83.07%

(1246/1500)
89.40%

(1341/1500)
89.07%

(1336/1500)

PR 70.06%
(1142/1630)

83.01%
(1246/1501)

89.88%
(1341/1492)

92.27%
(1336/1488)
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Figure 13 shows the AP value of different methods. The results in Figure 13 indicate
that the proposed DCIFF-CNN achieves better detection performance than other methods,
owing to the explicit modeling of the target context. For the target of airplane, the YOLO-
based methods obtain better AP value than the FRCNN-based method, reflecting that the
YOLO-based method is more suitable for detecting small targets. However, the proposed
DCIFF-CNN obtains the highest AP value, which indicates that the proposed explicit
context model can effectively utilize the information around the target to improve the
target detection accuracy. For the target of ship, FRCNN-ZF obtains the lowest AP value,
and YOLO4 and DCIFF-CNN obtain high AP values. This demonstrates that the detection
performance is improved with the depth of the model. For the target of car, YOLO4 gets a
slightly higher AP value than the proposed DCIFF-CNN since the background and context
information for the target of ship is more complex than that of other targets. In particular,
the context information of the ship outside the harbor may contain complex environments,
such as cities. This leads to a slight decrease in the performance of our proposed method.
However, compared with YOLO4, the proposed DCIFF-CNN still achieves better target
detection results than the other two types of targets. This indicates that the proposed
method can process a variety of contextual information in a balanced manner, and obtain
relatively good detection accuracy in various environments. Overall, according to the AP
value, the proposed DCIFF-CNN achieves better robustness and effectiveness in target
detection than other methods.
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4. Discussion
4.1. Analysis of Multi-Scale Feature Settings

In this paper, multiple scales of features are employed to explore the inside contextual
information for region proposal. The NWPU-VHR dataset and AP (including mAP) value
are applied in this section for evaluating the robustness of multi-scale feature setting. To
demonstrate the effectiveness of these features, multi-scale features are used in the MLC-
RPN for performance comparison. Generally, with the deepening of network layers, the
feature map changes greatly, and conv4 is closer to conv5 than conv3. The distinction
between the feature maps of conv3 and the feature maps of conv5 is even more obvious; it
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will play a greater role in feature fusion. As shown in Table 5, the adding of layer conv3
and conv4 contributes to a 40.8% and 1.25% increase in mAP, respectively, confirming that
the application of multi-scale features is beneficial to target detection. Furthermore, it can
be seen from Table 5 that the increase of conv3 layer and conv4 layer with the multi-scale
features brings no further performance improvement, but more complexity of the model is
caused and more GPU memory is needed. When there are too many layers fused together
and close to each other, the increase of distinguishing features will not be too much, and
the auxiliary effect will be limited. Moreover, the amount of computation will increase
with the increase of fusion features, which is not cost-effective for experiments. Therefore,
we chose to add the conv3 according to the experiment results.

Table 5. Comparison of different multi-scale features utilized in the MLC-RPN. (The evaluation metric: AP; Dataset:
NWPU-VHR (train:20%, val:20%, test:60%)).

Multi-Scale Settings MLC-RPN (Conv5) MLC-RPN
(Conv4 + Conv5)

MLC-RPN
(Conv3 + Conv5)

MLC-RPN
(Conv3 + Conv4 + Conv5)

Airplane 0.9086 0.9083 0.9065 0.9063
Ship 0.8756 0.8754 0.8959 0.8954

Storage tank 0.8035 0.8010 0.8833 0.8866
Baseball diamond 0.9954 0.9959 0.9946 0.9946

Tennis court 0.9020 0.8992 0.9052 0.9051
Basketball court 0.8962 0.8970 0.8984 0.8984

Ground track field 0.9091 0.9972 0.9086 0.9086
Harbor 0.9047 0.9030 0.9083 0.9083
Bridge 0.8953 0.8994 0.9091 0.9091
Vehicle 0.8846 0.8791 0.8914 0.8893
mAP 0.8976 0.9056 0.9101 0.9102

4.2. Analysis of MLC-RPN

In this paper, the MLC-RPN is proposed to exploit multi-scale contextual information.
The proposed MLC-RPN is analyzed by comparing it to the multi-scale network of SSD,
which extracts feature maps of different scales for target detection. The large-scale feature
map (front feature images) is extracted to detect small targets, while the small-scale feature
map (back feature images) is used to detect large targets. Figure 14 shows the detection
results of various targets. It can be seen that the proposed MLC-RPN is robust for targets
in various scales, especially the target of bridge and tennis court. The size of bridge
in the image varies with the length of the bridge, so the target of bridge has multiple
scales in this dataset. The result in Figure 14 indicates that the proposed multi-scale
contextual information fusion method achieves better performance when the scale of a
certain target varies greatly. Meanwhile, the target of tennis court has a similar size to the
basketball court, but its local characteristics are different from those of a basketball court.
Therefore, it is necessary to fuse these multi-scale features to obtain more differentiated
feature information. The proposed multi-scale contextual information fusion method shows
advantages by integrating multiple scale information of the same target and providing
more distinguishable information for similar targets. Overall, the proposed MCL-RPN
achieves better robustness in detecting multi-class and multi-scale targets.

4.3. Analysis of Structured Object-Level Relational Reasoning

The ORSG is employed in this paper to explore the positive contextual information
from the object-level relationship. Additionally, the AMIM is added in ORSG for integrat-
ing the contextual information. To demonstrate the robustness and effectiveness of the
ORC-TDN, especially the ORSG and AMIM, another two pooling methods of generating
contextual information are adopted for comparison. The NWPU-VHR dataset is applied
in this section for evaluating the robustness of ORSG and AMIM. As shown in Table 6,
the network with ORSG and AMIM achieves 4.19% better mAP than that without ORSG
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and AMIM. Compared with AMIM, the performance of integrating contextual information
by max-pooling and average pooling is reduced by 1.92% and 1.22%, respectively. These
results validate the superiority of the proposed AMIM in exploiting contextual information.
Furthermore, the ORC-TDN with ORSG and AMIM achieves at least 1.22% better perfor-
mance in mAP compared with the network without ORSG or AMIM, and the ORC-TDN
obtains the best detection results in most categories. This demonstrates the robustness and
effectiveness of the proposed ORC-TDN. The effectiveness of the attentional integration
strategy and object-level reasoning are demonstrated by the gains of AP score, as shown in
Figure 15. The results in Figure 15 indicate that the proposed method achieves balanced
results in multi-class target detection.

Figure 14. The detection results of ten categories of targets by MLC-PRN and SSD. (The evaluation metric: AP; Dataset:
NWPU-VHR (train: 20%, val: 20%, test: 60%)).

Table 6. mAP value of context fusion network using different methods. (Dataset: NWPU-VHR (train:20%, val:20%,
test:60%)).

Method Without ORSG and AMIM With ORSG and
Max-Pooling

With ORSG and
Average Pooling With ORSG and AMIM

mAP 0.8682 0.8909 0.8979 0.9101

Some feature maps of the conv5 layers from the three networks are displayed in
Figure 16. Comparing the results shown in Figure 16b–e, it can be seen that the object-
level contextual information fusion enhances the response of the target-like regions in
the feature map, demonstrating that the proposed ORSG is conducive to enhancing the
feature recognition capability of the network. For all targets, the features in Figure 16c–e
are brighter than those in Figure 16b. This indicates that the network without ORSG and
AMIM fails to distinguish the foreground features from the background features. Moreover,
the features of the target area in Figure 16e are more highlighted that that in Figure 16b–d
whereas the features of background area are weakened. This indicates that the AMIM
significantly improves the features representation. This is because the environmental
information beneficial to the target is effectively exploited by the AMIM and ORSG, which
further enhances the regional feature of the target.
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Figure 15. The AP value for different targets under various context fusion networks. (The evaluation metric: AP; Dataset:
NWPU-VHR (train: 20%, val: 20%, test: 60%)).

Figure 16. Feature maps of each conv5 in three networks. (a) Input images. (b) Without ORSG and AMIM. (c) With ORSG
and max-pooling. (d) With ORSG and average pooling. (e) With ORSG and AMIM.
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5. Conclusions

An end-to-end DCIFF-CNN target detection method for remote sensing images is
proposed in this paper. The method exploits the inside context information and object-
level relationship through MLC-RPN and ORC-TDN. The MLC-RPN fuses the multi-
scale convolution layer features to capture the candidate regions. In ORC-TDN, the
ORSG module models the explicit relationship between a set of objects by processing their
appearance feature and geometric feature, and the AMIM module integrates the message
passed from the object relational graph by designing a multi-dimensional attention model.
A large number of experiments were carried out on the NWPU-VHR dataset and the
collected dataset. The experimental results show that the proposed DCIFF-CNN method
achieves better target detection performance than the state-of-the-art methods. Moreover,
the proposed method can maintain stable performance for targets with varied scales, varied
scenes, and varied quantities.
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CNN convolutional neural network
DCIFF-CNN diversified context information fusion framework based on convolutional

neural network
MLC-RPN multi-scale local context region proposal network
ORC-TDN object-level relationships context target detection network
AMIM attentional message integrated module
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FP false positives
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