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Abstract: Given the high financial and institutional cost of collecting and processing accurate topog-
raphy data, many large-scale flood hazard assessments continue to rely instead on freely-available
global Digital Elevation Models, despite the significant vertical biases known to affect them. To pre-
dict (and thereby reduce) these biases, we apply a fully-convolutional neural network (FCN), a form
of artificial neural network originally developed for image segmentation which is capable of learning
from multi-variate spatial patterns at different scales. We assess its potential by training such a
model on a wide variety of remote-sensed input data (primarily multi-spectral imagery), using
high-resolution, LiDAR-derived Digital Terrain Models published by the New Zealand government
as the reference topography data. In parallel, two more widely used machine learning models are
also trained, in order to provide benchmarks against which the novel FCN may be assessed. We find
that the FCN outperforms the other models (reducing root mean square error in the testing dataset
by 71%), likely due to its ability to learn from spatial patterns at multiple scales, rather than only a
pixel-by-pixel basis. Significantly for flood hazard modelling applications, corrections were found
to be especially effective along rivers and their floodplains. However, our results also suggest that
models are likely to be biased towards the land cover and relief conditions most prevalent in their
training data, with further work required to assess the importance of limiting training data inputs to
those most representative of the intended application area(s).

Keywords: DEM; DTM; topography; flood modelling; machine learning; artificial neural networks;
convolutional neural networks; random forests

1. Introduction

The most recent Global Assessment Report on Disaster Risk Reduction [1] highlights
that low- and middle-income countries continue to be disproportionately impacted by
natural hazards, in terms of both fatalities and economic losses relative to GDP. While there
are many complex and inter-connected reasons for this [2], the research presented here
addresses one in particular–data scarcity. Understanding the spatial and temporal variation
in the intensity of a given hazard, as well as the potential impacts on communities and
economic assets exposed to it, requires access to high-resolution and reliable data. Disaster
risk assessments in lower-income countries often face significant constraints in this regard,
given the high financial costs and long-term institutional capacity necessary for collecting,
processing and storing high-quality datasets describing the relevant hazards [1].

We focus on flood hazards in particular, which accounted for almost a quarter of all
disaster-related economic losses over the past decade [3] and continue to pose a significant
threat to life, particularly in low- and middle-income countries [1]. Looking ahead, these
negative impacts are likely to worsen due to rising sea levels and the increasing hydro-
meteorological variability associated with climate change [4], as well as increasing exposure
related to fast-growing cities in low-income countries, most of which are located along the
coast or a major river [2].
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For any quantitative assessment of likely flood hazards (and related phenomena,
such as tsunami inundation and the effects of sea level rise), one of the most critical data
requirements is a reliable digital elevation model (DEM) [4–7]. This is essentially a grid of
topography data, in which the value of each grid cell (or pixel) describes a height above a
specified datum [8]. While these were historically developed based on ground surveys or
by digitising hardcopy topography maps, they are now almost exclusively generated using
remote-sensing techniques, including photogrammetry, Interferometric Synthetic Aperture
Radar (InSAR) and Light Detection and Ranging (LiDAR) [8].

Of these techniques, airborne LiDAR is widely recognised as providing the highest
quality topography data, due to its higher horizontal resolution, lower vertical errors
(generally < 1 m), and ability to differentiate between vegetation, buildings and the actual
ground surface [8,9]. However, while open-access LiDAR coverage is growing, it is still
very limited—recently estimated as covering 0.005% of the Earth’s land area [8]—and
found almost exclusively in high-income countries, due to the high costs associated with
collecting and processing it [4].

Where LiDAR data are unavailable and prohibitively expensive to collect, flood
hazard assessments often rely instead on one of the free, global (or near-global) DEM
products available, despite their known limitations [10–12]. Of these, the DEM developed
by the Shuttle Radar Topography Mission (SRTM) [13] is generally considered the most
suitable for flood modelling applications [9,14], although its derivation from spaceborne
Interferometric Synthetic Aperture Radar (InSAR) data implies a number of issues [14],
discussed further below. Another widely-used free DEM is the ASTER DEM (derived from
stereo-pair images) [15], for which an updated version has recently been released [16],
apparently correcting at least some of the errors for which previous versions have been
criticised [9]. More recently developed options, such as the AW3D30 [17] product, have
received less attention in the literature so far [14] and will be considered here.

Regardless of the specific DEM used, there are a number of known issues affecting
these free global products, with the most important being vertical offset errors, random
noise, and vegetation/building biases [18]. Using SRTM to illustrate the issue of vertical
offset errors, it is noteworthy that the mission specifications for LE90 (the linear errors
at the 90% confidence interval) were for 20 m, which provides an indication of expected
accuracy [13]. Furthermore, it is important to note that this vertical error has been shown to
have a positive bias [19], which is particularly significant for inundation modelling along
the coast, with one recent study suggesting it has resulted in systematic underestimates of
population exposure by up to 60% [20].

The second major limitation of free global DEMs with respect to flood hazard appli-
cations is that they are digital surface models (DSMs) rather than digital terrain models
(DTMs), a distinction illustrated in Figure 1. In the case of InSAR-derived DEMs, this is
because the radar signal registers buildings in built-up areas and penetrates vegetation to
varying degrees (dependent on the wavelength used and vegetation density), recording an
elevation in between the actual ground surface and the top of the canopy [21].

Remote Sens. 2021, 13, x FOR PEER REVIEW 2 of 28 
 

 

exposure related to fast-growing cities in low-income countries, most of which are located 
along the coast or a major river [2]. 

For any quantitative assessment of likely flood hazards (and related phenomena, 
such as tsunami inundation and the effects of sea level rise), one of the most critical data 
requirements is a reliable digital elevation model (DEM) [4–7]. This is essentially a grid of 
topography data, in which the value of each grid cell (or pixel) describes a height above a 
specified datum [8]. While these were historically developed based on ground surveys or 
by digitising hardcopy topography maps, they are now almost exclusively generated us-
ing remote-sensing techniques, including photogrammetry, Interferometric Synthetic Ap-
erture Radar (InSAR) and Light Detection and Ranging (LiDAR) [8]. 

Of these techniques, airborne LiDAR is widely recognised as providing the highest 
quality topography data, due to its higher horizontal resolution, lower vertical errors 
(generally < 1 m), and ability to differentiate between vegetation, buildings and the actual 
ground surface [8,9]. However, while open-access LiDAR coverage is growing, it is still 
very limited—recently estimated as covering 0.005% of the Earth’s land area [8]—and 
found almost exclusively in high-income countries, due to the high costs associated with 
collecting and processing it [4]. 

Where LiDAR data are unavailable and prohibitively expensive to collect, flood haz-
ard assessments often rely instead on one of the free, global (or near-global) DEM prod-
ucts available, despite their known limitations [10–12]. Of these, the DEM developed by 
the Shuttle Radar Topography Mission (SRTM) [13] is generally considered the most suit-
able for flood modelling applications [9,14], although its derivation from spaceborne In-
terferometric Synthetic Aperture Radar (InSAR) data implies a number of issues [14], dis-
cussed further below. Another widely-used free DEM is the ASTER DEM (derived from 
stereo-pair images) [15], for which an updated version has recently been released [16], 
apparently correcting at least some of the errors for which previous versions have been 
criticised [9]. More recently developed options, such as the AW3D30 [17] product, have 
received less attention in the literature so far [14] and will be considered here. 

Regardless of the specific DEM used, there are a number of known issues affecting 
these free global products, with the most important being vertical offset errors, random 
noise, and vegetation/building biases [18]. Using SRTM to illustrate the issue of vertical 
offset errors, it is noteworthy that the mission specifications for LE90 (the linear errors at 
the 90% confidence interval) were for 20 m, which provides an indication of expected ac-
curacy [13]. Furthermore, it is important to note that this vertical error has been shown to 
have a positive bias [19], which is particularly significant for inundation modelling along 
the coast, with one recent study suggesting it has resulted in systematic underestimates 
of population exposure by up to 60% [20]. 

The second major limitation of free global DEMs with respect to flood hazard appli-
cations is that they are digital surface models (DSMs) rather than digital terrain models 
(DTMs), a distinction illustrated in Figure 1. In the case of InSAR-derived DEMs, this is 
because the radar signal registers buildings in built-up areas and penetrates vegetation to 
varying degrees (dependent on the wavelength used and vegetation density), recording 
an elevation in between the actual ground surface and the top of the canopy [21]. 

 
Figure 1. Distinction between a digital terrain model (DTM, solid line) and a digital surface model (DSM, dashed line). Figure 1. Distinction between a digital terrain model (DTM, solid line) and a digital surface model (DSM, dashed line).



Remote Sens. 2021, 13, 275 3 of 28

The third known issue affecting the accuracy and utility of free global DEMs (particu-
larly those based on InSAR data, such as SRTM) is the random “speckle” noise known to be
present [22]. Significant efforts have been made to find ways to remove this speckle noise
without over-smoothing the data and removing/softening sharp topographic features,
which are often significant for applications in flood hazard modelling [23,24].

Importantly, the errors and biases listed above impact not only the DEM itself but
also propagate on into a wide variety of potential derivatives and applications, especially
those involving the analysis of multiple neighbouring DEM grid cells, such as inundation
mapping, delineated catchment areas, slope, drainage channels, and landslide assess-
ments [8,24]. There is clear evidence that this has negatively impacted the reliability of
flood risk assessments which used this kind of DEM, particularly in terms of inundation
extents and flood wave propagation rates [6].

A wide variety of approaches have so far been taken to correct for these errors, broadly
grouped into either manual or systematic editing [8]. The former involves directly editing
a DEM based on supplementary data or expert judgement, such as using surveyed em-
bankment levels to define the value of underlying DEM grid cells. The latter approach uses
filters or explicit algorithms (sometimes involving additional datasets) to target known
errors across the whole DEM, such as the application of spatial filters to remove “speckle”
noise [22,24], algorithms to correct for vegetation biases [5,25–27], and topographical manip-
ulations to make DEMs better suited to hydrological applications (filling local depressions
and “burning” known flow-paths into the grid) [28].

The research presented here is motivated by the observation that current machine
learning techniques are well positioned to contribute further improvements, based on
their ability to uncover complex and non-linear relationships between a large number
of variables [5] and to handle the increasingly large volumes of remote sensing data
available, as spatial and temporal resolutions gradually increase [29]. In general, machine
learning involves employing algorithms to achieve a specific outcome (usually regression
or classification) without being explicitly told how to do so and instead drawing inferences
from perceived patterns in the available data [30].

A number of recent publications have explored the increasingly widespread applica-
tion of machine learning techniques within the field of natural hazard and disaster risk
assessment [2,30,31]. These reviews suggest that it has been particularly useful for gen-
erating or gap-filling input datasets for the disaster risk modelling process (i.e., hazards,
exposure, vulnerability and impacts), as well as for the prioritisation of resources during
disaster response and recovery [30].

Of direct relevance to the research presented here, two studies have already demon-
strated the potential that machine learning has with regards to improving freely-available
DEMs [5,21], in both cases employing a class of algorithm known as artificial neural
networks (ANN). In 2016, Wendi et al. [21] fed SRTM topography data and Landsat-8
multi-spectral imagery (11 bands) into a relatively simple ANN consisting of a single hid-
den layer (with 10 neurons), in order to predict differences between the SRTM elevations
and a high-accuracy reference topography dataset. Kulp and Strauss [5] developed this
approach further in 2018 by employing a deeper neural network (with three hidden layers,
consisting of 10, 20 and 10 neurons, respectively) and providing a wider range of inputs
(including vegetation indices, population density maps, and the elevations of each grid
cell’s neighbours), achieving RMSE reductions ranging between 41–55% (for two different
test sites).

The research presented here not only continues this trend (by using larger neural
networks learning from a wider range of inputs) but also trials a new type of neural
network–fully-convolutional networks. While, to our knowledge, these have not yet been
applied to the problem of correcting DEMs, they appear to be especially well-suited to
geospatial applications such as this, where spatial context is important [32–35].

To evaluate the potential value of this new approach with reference to other, more
widely-used methods, we compare the performance of three algorithms: random forests,
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densely-connected neural networks, and fully-convolutional neural networks. Random
forests are an ensemble approach, comprising numerous decision trees developed using
random bootstrap samples of the available training data, and have proven effective at
modelling non-linear relationships in numerous contexts while also minimising variance.

Densely-connected neural networks (DCNs; also known as multi-layer perceptrons)
are the most common form of artificial neural network, consisting of a sequence of layers of
neurons, with all neurons in each layer being connected to all neurons in the layers before
and after it. Like random forests, they operate primarily at the grid cell level, in that each
cell is considered largely independently from those surrounding it (with the exception of
neighbourhood derivatives such as slope, which do provide aggregated information about
each cell’s neighbourhood). For geospatial applications, this is likely to be a significant
limitation.

Originally developed for image segmentation, fully-convolutional neural networks
(FCNs) seek to address this limitation by learning from intact images (rather than individual
pixels), thus benefitting from information about spatial context. We use a modified version
of a specific architecture called a U-net [36], which combines information at different spatial
scales in order to learn from both local detail and the wider context [37].

While the literature clearly demonstrates the potential value of applying machine
learning techniques to big data within disaster risk applications, it is also obvious that it is
not a panacea appropriate for every challenge but can introduce its own set of inherent
biases and ethical implications. Of particular relevance here is the authority that big data
(and its machine learning derivatives) may command in many settings, on the basis of
their perceived objectivity and neutrality. As Jasanoff ([38], p. 12) argues, this obscures the
particular “observational stand-points and associated political choices that accompany any
compilation of authoritative information”. As an illustrative example, the raw data used to
develop the SRTM product (funded by government agencies in the USA) were collected
during the northern hemisphere winter, when vegetation bias was likely to be as low as
possible there. With this in mind, it is important to consider the possible biases/limitations
of any given dataset or derivative, in part to counter its potential misuse, which may be an
especially concerning possibility in low-income countries (where ethical guidelines and
civil liberties may not be clearly defined) [2].

In summary, we investigate here the use of three different machine learning algorithms
to correct for vertical biases in free, globally-available remotely-sensed DEMs, in order to
improve their utility for flood hazard assessment. Maximising the widespread applicability
of any methods developed is a guiding principle throughout, particularly in terms of
using only freely-available datasets with global (or near-global) spatial coverage, free
software (ideally open-source), and processing workflows which do not require expensive
computational resources.

2. Data

In order to train a machine learning model to predict the vertical bias in a free, global
DEM, the most important data requirement is for high-accuracy topography data, to provide
a reference from which the model can learn. As noted previously, such data are not widely
available, so the selection of study sites is based primarily on where suitable reference
topography data can be found.

Since 2016, the New Zealand government mapping agency, Land Information New
Zealand (LINZ), has published online a growing collection of 1 m resolution DTMs derived
from airborne LiDAR topography surveys, providing ideal reference data for our purposes.
Of the available surveys, three of the most recent were selected, comprising a total surveyed
area of approximately 1560 km2 spread across eight survey sites in the Marlborough and
Tasman regions (in the north of New Zealand’s South Island). These survey sites are mapped
in Figure 2, with reference to their underlying land cover classes.
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A wide variety of datasets covering these study sites was collected and processed for
input to the machine learning models, comprising topography data from three different
global products, supplemented by free, globally-available datasets of potential relevance to
the vertical biases targeted here (primarily describing vegetation and built-up areas). While
not all were eventually used (for reasons noted in Section 3.2), they are each presented
briefly in the following sections, with Table S1 (Supplementary Materials) listing which
were found to be useful model inputs.

The SRTM product was selected as the base DEM to be corrected (for reasons outlined
in Section 2.1.3), so all other spatial inputs (including the reference topography data)
were resampled so as to match the SRTM grid resolution and alignment over the study
sites. All spatial processing was run using Geospatial Data Abstraction Library (GDAL)
command-line utilities (version 3.0.2), applying median resampling for higher-resolution
continuous data (reference topography data), cubic splines for all other continuous data
(e.g., multi-spectral imagery), and nearest-neighbour resampling for categorical data (e.g.,
land cover classes).

Given that the raw data collection periods for the various topography datasets are so
far apart in time (with raw data for SRTM collected during 11–22 February 2000, while the
LiDAR surveys were flown at various times between December 2016 and September 2018),
we have filtered input data to reflect conditions at the time of each survey (where possible).

2.1. Topography Data

Regardless of the machine learning algorithm used, the model must be provided with
both the DEM to be corrected (input topography) and a higher-quality DEM that provides
the target for that corrective process (reference topography). As noted above, we used
LiDAR-derived DTMs published by LINZ as the reference data. A range of free, global
DEM products was considered for the input data, with SRTM eventually selected as the
primary input.
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2.1.1. Reference Topography Data

All high-resolution DTMs published by LINZ were reviewed to find the most suitable
surveys for this study, with the main criteria being a high LiDAR point density (considered
more likely to penetrate vegetation and record the true ground elevation), a satisfactory
vertical accuracy verification (noting that these were not available for all surveys), highly
heterogeneous landscapes (especially in terms of elevations and land cover classes), and
flood susceptibility (assessed based on hazard maps published by the National Institute of
Water and Atmospheric Research [39]).

Based on these criteria, the DTMs derived from three of the most recent LiDAR
surveys (2016–2018) were sourced from the LINZ Data Service (https://data.linz.govt.nz;
CC-BY-4.0 license), and processed for inclusion in the modelling. These comprise eight
different sites, for which the point density specification ranged between 2–3 points/m2,
and independent verifications of vertical accuracy reported differences of 0.026–0.073 m for
each site (in terms of root mean square error), based on 2130 field survey test points [40–43].
As shown in Figure 3, the eight sites available include coastal and inland areas, covering
elevations ranging from 0 to 1242 metres above mean sea level.
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It is noted that the topography data published by LINZ are provided with reference to
the NZVD2016 vertical datum (based on the NZ Geoid 2016 model). In order to be consis-
tent with the other topography datasets, these were transformed to the Earth Gravitational
Model 1996 (EGM96) during the resampling step.

2.1.2. Input Topography Data

As summarised in Table 1, the three freely-available, global DEMs considered in
this study all have a horizontal resolution of 1 arc-second (approximately 23 m at these
latitudes) and differ primarily in terms of their data collection period and the method used
to develop them.

https://data.linz.govt.nz
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Table 1. Summary of the free, global Digital Elevation Models (DEMs) considered in this study.

DEM Agency Method Horizontal Resolution Data Collection Period

SRTM NASA/NGA InSAR 1 arc-second 11–22 February 2000
ASTER NASA/METI Stereography 1 arc-second Since December 1999

AW3D30 JAXA Stereography 1 arc-second 2006–2011

For each DEM, a range of derivatives was also prepared, comprising slope, aspect,
roughness, Topographic Position Index (the difference between a given grid cell and the
mean of its surrounding cells) [44], and Terrain Ruggedness Index (the mean difference
between a given grid cell and its surrounding cells) [44], as a way of incorporating some
information about each cell’s neighbourhood.

2.1.3. Selection of Base DEM

While all of the free DEMs listed above were used for the modelling, it was necessary
to select one as the “base” DEM, with all other datasets resampled to match its resolution
and grid alignment, in order to develop spatially-consistent inputs for the machine learning
models. To assess which DEM was most suitable for this, the reference topography data
were resampled to match each of the three DEMs and then used to calculate the distribution
of errors for each.

As shown by the histograms presented in Figure 4, the ASTER DEM had the widest
distribution of errors across these areas, while the SRTM and AW3D30 DEMs were com-
parable (SRTM showing a smaller mean error but a wider spread of error values than
AW3D30). We decided to use SRTM as the base DEM, primarily due to the relatively
narrow temporal period during which its raw data were collected, which allows for the
targeting of input data (especially multi-spectral imagery) to describe conditions on the
ground at that particular point in time.
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2.2. Multi-Spectral Imagery

Multi-spectral imagery from three different sources were processed in order to describe
the prevailing land cover conditions in the study sites at the time of both the SRTM data
capture (using Landsat 7 imagery) and each LiDAR survey (using Landsat 8 and Sentinel-2
imagery). This is visualised in Figure 5, showing the availability of multi-spectral imagery
from each mission at the time of each topography data capture.
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The three multi-spectral imagery sources considered in this study are briefly sum-
marised in Table 2, generally showing a trend of increases (over time) in both the number of
spectral bands available and the spatial (horizontal) resolution of each satellite’s imagery.

Table 2. Summary of the multi-spectral imagery sources used in this study.

Mission Agency Bands Resolution

Landsat 7 NASA 8 bands 15–60 m
Landsat 8 NASA 11 bands 15–100 m
Sentinel-2 ESA 12 bands 10–60 m

For each set of multi-spectral imagery, cloud-free composites were developed for each
band by collecting a stack of overlapping images covering each study site (from multiple
overpass dates), masking out any pixels judged to be problematic (on the basis of the
quality assessment raster provided with each input image, usually relating to clouds or
cloud shadows), and extracting the medians of the valid pixels available. For the two
Landsat collections, an input window of four months (centred on the relevant topography
data acquisition period) was selected, as this ensured sufficient cloud-free pixels for a clear
image while still representing conditions on the ground during each period of interest.
However, significant artefacts were found in the Sentinel-2 composites regardless of the
input window used (a known issue relating to the scene classification mask currently
used [45]), so Sentinel-2 products were excluded from the subsequent modelling.

In addition to these sets of cloud-free composite images (for each band of the Landsat
collections), 11 spectral index products were also derived, comprising the Normalised Dif-
ference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Advanced Vegetation
Index (AVI), Soil Adjusted Vegetation Index (SAVI), Modified Soil Adjusted Vegetation
Index (MSAVI), Bare Soil Index (BSI), Shadow Index (SI), Normalised Difference Moisture
Index (NDMI), Modified Normalised Difference Water Index (MNDWI) [46], Automated
Water Extraction Index (AWEI) [47] and Normalised Difference Built-up Index (NDBI) [48].
It was anticipated that the vegetation and built-up indices would help to predict the two
largest expected causes of bias (vegetation and buildings), while the water indices may
help with further refinements (for example, a grid cell found to be wet very often is likely
to be at least slightly lower than its drier neighbours).

2.3. Night-Time Light

Night-time light imagery covering the two primary periods of interest was also
included, based on its identified value as a proxy for economic and/or urban develop-
ment [49–51], which may be relevant to building biases. Conditions at the time of the SRTM
data capture are represented using imagery from the Defense Meteorological Satellite Pro-
gram’s Operational Linescan System (DMSP/OLS), while those representing the general
period of the LiDAR surveys are based on imagery from the Suomi National Polar-orbiting
Partnership’s Visible Infrared Imaging Radiometer Suite (Suomi NPP/VIIRS).
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2.4. OpenStreetMap Derivatives

The potential value of digitised features derived from the OpenStreetMap project was
explored, although it was later found that they did not contribute significantly, at least
in the study areas considered here. Building footprints and primary road networks were
downloaded using the OSMnx Python package (version 0.11.1) [52], and rasterised for
input to the modelling workflow.

Given the significant impact that bridges often have when using free DEMs for hy-
drological applications [53,54], we attempted to explicitly identify these by extracting
lines wherever major roads were found to intersect river banks, and then rasterising these
features based on the same grid resolution and alignment used for the other inputs.

2.5. Other Global Data Products

Three other potentially-relevant datasets were identified which satisfied the require-
ments of being both freely available and also having global (or near-global) coverage: a
forest canopy height map (30 arc-second resolution, approximately 695 m at these lati-
tudes) [55], a vegetation density map (1 arc-second resolution, approximately 23 m) [56],
and a map of surface water occurrence percentage (1 arc-second resolution, approximately
23 m) [57]. All three products are based on data collected in (or shortly prior to) the year
2000, meaning they are more relevant to conditions at the time of the SRTM data collection
(rather than the more recent LiDAR surveys).

3. Method

The datasets discussed above were processed (in particular, resampling each to match
the geographic projection, horizontal resolution and grid alignment of the SRTM DEM)
and then divided into training, validation and testing sets. A preliminary random forest
model was used to filter out unhelpful features using Sequential Forward Floating Selection
(SFFS), reducing the initial set of 66 features to a more manageable 23, which reduced both
model variance and training times.

Three different types of machine learning model were then trained, including some
hyperparameter tuning for each (adjusting those model parameters which aren’t learnt
during training but must be manually defined when the model is initialised). It is likely
that further improvements are possible with extended hyperparameter tuning efforts.
Importantly, the same training/validation/testing datasets were used throughout (in each
case including only the 23 selected features), to ensure comparability between the three
sets of results.

All data processing, model development and result visualisation was coded using the
Python programming language (version 3.7), with particularly important packages noted
in the sections below and all code fragments shared in the online repository listed under
Supplementary Materials. The maps presented in Figure 2, Figure 3, Figure 6 and Figure 9
were prepared using ArcGIS 10.4.1 (ESRI, Redlands, CA, USA).

3.1. Allocation of Available Data to Training, Validation and Testing Sets

Regardless of the machine learning algorithm used, it is important to set aside some of
the available data before training, in order to test how well each trained model performs on
data that it hasn’t yet encountered (in other words, whether the model generalises well by
learning genuine relationships, rather than simply memorising the training data provided
to it). It is also useful to set aside a validation (or development) dataset, which is used
when tuning the hyperparameters (model parameters which aren’t learnt during training
but must be manually defined).

As shown in Figure 6, we split up the available data by first allocating three floodplain
areas for testing purposes (red patches, 5%), since this is the primary application intended,
while the remaining survey zones were pooled and then randomly divided into training
(blue, 90%) and validation (green, 5%) “patches” (grids of neighbouring pixels). The use
of these patches reflects the input requirements of the FCN model (since it learns from
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intact images, rather than individual pixels). In order to ensure comparability, the same
data allocation was used for the RF and DCN models, with each set of patches flattened to
vectors before being fed into those models.
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3.2. Feature Selection Using Sequential Forward Floating Selection (SFFS)

Considering all datasets processed and the additional derivatives prepared, a total of
66 features/variables were available for input to the machine learning models. At least
some of these are likely to be irrelevant (i.e., having no relation to the vertical biases we are
trying to predict) and will result in “over-fitting” if retained (where the model fits to random
noise in the training data, limiting its ability to generalise to new data). In addition, having
many input features slows down the training process, which is particularly significant
during the iterative process of hyperparameter tuning.

To filter out unhelpful features, the mlxtend Python package (version 0.17.2) was used
to run a Sequential Forward Floating Selection (SFFS), using small random forest models
(10 trees) and a random sample of the training dataset (10%) in order to make the search
tractable. In an iterative process considering an increasing number of allowed features, a
sequence of random forest models were trained, each searching for the optimal feature
subset given the prescribed size (using a greedy search algorithm that can both add and
drop features, based on a cross-validation score). As shown in Figure S1 (Supplementary
Material), only marginal improvements were found beyond a feature subset size of 23
(out of 66), at the cost of increasing training times and model variance. For each type
of machine learning model considered here, these same 23 features were used for all
subsequent modelling, enabling direct comparisons between each model type. A full list of
all 66 features considered is provided in Table S1 (Supplementary Materials), indicating
the 23 features selected.
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3.3. Hyperparameter Tuning Using Sequential Model-Based Optimisation (SMBO)

In addition to those machine learning model parameters which are adjusted during the
training process, there are other parameters–known as “hyperparameters”–which are not
learnt during training and must instead by defined beforehand by the modeller. Finding
the optimal configuration for these hyperparameters can be a difficult and time-consuming
task, becoming exponentially more so as the number of hyperparameters and/or their
parameter spaces increase.

For the models trialled here, hyperparameters were tuned using the sequential model-
based optimisation (SMBO) approach implemented in the optuna Python package (version
1.3.0) [58]. This is a Bayesian optimisation technique which uses information from past
trials to decide which hyperparameter values to try next, making it more efficient than
the more common grid or randomised search approaches. For each trial in this sequential
process, a new model was initialised with a different set of hyperparameter values, fitted
to the training data and then evaluated in terms of its performance on the validation data
(as presented in Section 3.5).

3.4. Machine Learning Algorithms Tested

Three machine learning algorithms were tested: a random forest (a well-established
and widely-used approach to non-linear regression, intended as a baseline against which
the other approaches will be assessed), a densely-connected neural network (similar to those
used in the most recent research efforts on this problem [5,21]), and a fully-convolutional
neural network (an innovative approach not yet applied to this task, which is capable of
analysing intact images and learning from spatial context at various scales).

The following sections provide a brief overview of the three models developed (in-
cluding their performance on the validation dataset, as part of the hyperparameter tuning
process), with a more detailed summary of model architecture and hyperparameters avail-
able in Section S2 of the Supplementary Materials. In Section 4, each of the final trained
models is assessed based on its performance on the test dataset, which was kept aside dur-
ing training (i.e., completely unseen data), as an indication of how well each can generalise
to new data.

3.4.1. Random Forests (RF)

Random forest regression is an ensemble approach, in which multiple classifying
decision trees are trained using bootstrap samples of the available training data (of the
same size as the available dataset but resampled with replacement for each tree) and
final predictions are simply the average of predictions made by each decision tree within
the forest.

Models were built using the scikit-learn Python package (version 0.22), with hyper-
parameters tuned so as to minimise the validation error while avoiding over-fitting. A
relatively small model (consisting of 250 trees) was found to perform best, with the maxi-
mum number of features considered for each individual tree limited to 11 (slightly more
than the default recommendation for random forest regression, which is a third of all
available features [59]).

3.4.2. Densely-Connected Neural Networks (DCN)

The second machine learning algorithm tested here is of the same type used in the
two most recent studies exploring this issue [5,21]–a densely-connected neural network,
sometimes referred to as a multi-layer perceptron. This type of model consists of an input
layer (with 23 neurons in this case, corresponding to pixel values from each of the selected
input features), an output layer (one neuron, the prediction of the correction required for
that particular pixel), and a variable number of hidden layers in between, with each neuron
connected to every neuron in the two layers immediately preceding and succeeding it (as
suggested by the name).
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As shown in Figure 7, three hidden layers were selected for this model, respectively
containing 3074, 4089 and 1222 neurons (the optimal values found during hyperparameter
tuning). Each of the hidden layers uses batch normalisation (normalising the values of
each layer’s neurons before activation) and dropout (randomly switching off a certain
proportion of a layer’s neurons) to combat overfitting and speed up learning [60]. All neural
network models (including the convolutional networks described in Section 3.4.3) were
developed using the tensorflow Python package (version 2.1.0) and run using a NVIDIA
GeForce GTX 1080 GPU.
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3.4.3. Fully-Convolutional Neural Networks (FCN)

Convolutional neural networks are a distinct subset of neural network developed
specifically for image processing and computer vision tasks, designed to learn from spatial
patterns in the input imagery (regardless of where in the image those patterns appear), at a
variety of different scales [61–63]. In other words, they learn not only from the input features
available for a given pixel or grid cell, but also from those of its neighbours, accounting for
potential spatial relationships in that neighbourhood. This has made them very successful in
image classification and segmentation tasks [36,37], including some applications involving
satellite imagery [64–66]. However, to the best of our knowledge they have not yet been
applied to the task of topography bias correction. The main contribution of the research
presented here is therefore to explore their potential and benchmark their performance
against two other, more commonly used machine learning approaches.

We base our convolutional network on the U-net model architecture developed by
Ronneberger et al. [36] for image segmentation, which uses approximately symmetric con-
tracting (down-sampling) and expanding (up-sampling) convolutional stages, with results
at each spatial scale combined so as to learn patterns at a variety of scales. The network
architecture used here is presented in Figure 8, involving one fewer contraction/expansion
step than in the original U-net model, based on the assumption that the present task does
not require quite as much spatial context as the original segmentation application (given
the coarse horizontal resolution of our input data).
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Importantly, while most convolutional neural networks include a densely-connected
layer right at the end (usually for classification purposes), the U-net model does not involve
any densely-connected layers at all (hence the “fully-convolutional” label). This allows the
network to handle different input image sizes and to generate intact images (rather than
single values or labels). As was the case for the DCN model, both batch normalisation and
dropout are used for regularisation (reducing over-fitting) and to speed up learning [60],
with Gaussian dropout found to be slightly more effective for the FCN [67].

Given that FCNs learn from intact images rather than individual pixels, their input
requirements are quite different to those of the RF and DCN models. We addressed this
by generating contiguous “patches” of target data (the elevation corrections required)
consisting of 12 × 12 grid cells, as well as sets of corresponding feature patches (for all
23 selected features) with a larger spatial extent (100 × 100 grid cells), to ensure that all
grid cells in each target patch could learn from an equally large neighbourhood (even those
along the edges of a target patch). Figure 9 presents an example of such a target patch and
its corresponding feature patch from the Wairau Valley survey zone.
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Although the FCN’s capacity to learn from intact images is likely to be an advantage
in terms of the spatial patterns it can learn, all input image patches must be complete (i.e.,
no missing pixels). This means that a significant number of pixels along the boundaries
of each LiDAR survey zone (those not part of a complete patch) are not used by the FCN
model. We explored the use of data augmentation to supplement the training data that
remained [33,63], applying horizontal and vertical flips as well as 90◦ rotations to each
feature and target patch in the training data (but not to the validation or testing datasets).
An example of the flips explored for a particular feature patch is presented in Figure 10,
showing how it might allow the model to learn from different orientations of the spatial
patterns present in the available data. However, no improvements were found (even if we
excluded input features explicitly related to direction, such as topographical aspect) and
data augmentation was eventually not used at all.
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3.5. Evaluating Model Architecture and Hyperparameter Values Using the Validation Dataset

Throughout the hyperparameter tuning process described in Section 3.3, a wide variety
of model architectures and hyperparameter values was explored, with each new model
configuration trained on the same set of training data (90% of all data available) and then
evaluated in terms of how well it predicted the validation dataset (5%). Targeting validation
(rather than training) performance helps to avoid overly complex models which would
go beyond the genuine relationships present and fit to random noise in the training data.
As shown in Figure 11, the initial root mean square error (RMSE) present in the validation
dataset (8.57 m) was reduced somewhat (13%) by what we’ve termed the baseline correction
(simply subtracting the mean vertical bias observed in the training data from each SRTM
grid cell), while all of the machine learning models explored achieved significantly higher
improvements (ranging between 54–76%). As might be expected, the FCN’s capacity
to learn patterns at the neighbourhood as well as the pixel scale seemed to enable it to
outperform the other models.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 28 
 

 

 
Figure 10. An example of the flip data augmentation approaches explored to expand the available 
training data, involving horizontal and/or vertical flips. 

3.5. Evaluating Model Architecture and Hyperparameter Values Using the Validation Dataset 
Throughout the hyperparameter tuning process described in Section 3.3, a wide va-

riety of model architectures and hyperparameter values was explored, with each new 
model configuration trained on the same set of training data (90% of all data available) 
and then evaluated in terms of how well it predicted the validation dataset (5%). Targeting 
validation (rather than training) performance helps to avoid overly complex models 
which would go beyond the genuine relationships present and fit to random noise in the 
training data. As shown in Figure 11, the initial root mean square error (RMSE) present in 
the validation dataset (8.57 m) was reduced somewhat (13%) by what we’ve termed the 
baseline correction (simply subtracting the mean vertical bias observed in the training 
data from each SRTM grid cell), while all of the machine learning models explored 
achieved significantly higher improvements (ranging between 54–76%). As might be ex-
pected, the FCN’s capacity to learn patterns at the neighbourhood as well as the pixel scale 
seemed to enable it to outperform the other models. 

 
Figure 11. Root mean square error for the validation dataset, showing the initial error and the impact of corrections based 
on a simple vertical shift and the three machine learning models tested here. 

4. Results 
For a more rigorous assessment of how well each topography correction model has 

generalised (i.e., how well it performs on data not used at all during the training process), 
the following sections present results from the three test datasets (similarly sized areas 
within the Wairau Plains East, Wairau Valley and Tasman LiDAR survey zones). These 

Figure 11. Root mean square error for the validation dataset, showing the initial error and the impact of corrections based
on a simple vertical shift and the three machine learning models tested here.

4. Results

For a more rigorous assessment of how well each topography correction model has
generalised (i.e., how well it performs on data not used at all during the training process),
the following sections present results from the three test datasets (similarly sized areas
within the Wairau Plains East, Wairau Valley and Tasman LiDAR survey zones). These
were allocated as test zones (during the process outlined in Section 3.1) as they each contain
a significant river channel and extensive flood-prone areas [39], making them particularly
interesting from a flood hazard perspective.
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A variety of different metrics are used for this assessment, illustrating each model’s
overall performance (in terms of impact on root mean square error and the distribution of
residual errors, when compared with the LiDAR-derived DTM) as well as for more targeted
flood applications (looking at derived cross-sections across rivers and their floodplains).

4.1. Overall Performance

To reiterate, each of the three models trialled here was fitted to the training dataset
(learning model parameters such as weights), with the validation dataset used in an
iterative process to fine-tune the model hyperparameters (those parameters not learned
during training but pre-selected by the user). As a final assessment, each trained model
was then used to make predictions for the test dataset (as yet unseen by any of the models),
for an indication of how well each is able to generalise to new locations.

Figure 12 summarises these results in terms of root mean square error (RMSE), show-
ing the initial RMSE present in the pooled testing dataset (4.24 m), and the extent to which
this was reduced using a baseline correction (simply shifting all elevations by the mean
vertical bias observed in the training data) or the predictions generated by each model. A
similar pattern to the validation results is seen here, with the FCN (which reduced RMSE
by 71%) outperforming the DCN (60%) and RF (55%). Importantly, performance on the test
data is fairly similar (in terms of RMSE reduction) to the validation results, which suggests
that the models have not over-fitted and are generalising reasonably well.
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simple vertical shift and the three machine learning models tested here.

Figure 13 uses boxplots to visualise the distribution of residuals before and after applying
the corrections predicted by each model, filtering these according to (a) test zone and (b)
land cover class (based on the same Land Cover Database introduced earlier, resampled to
match the SRTM grid). For each of these filtered subsets, the label at the top shows which
model achieved the highest reduction in RMSE (indicated by text colour) and the percentage
reduction achieved. As shown, we found that the FCN consistently achieved the best results
(in terms of both the highest RMSE reduction and the narrowest distribution of residuals),
across all of the test zones and land cover classes considered here.

Looking at the residuals by underlying land cover class, the largest initial errors were
found in areas covered by forest, scrub or shrubland, and water bodies (likely due to the
presence of relatively thick vegetation often found along riverbanks). Of all classes, the
least effective corrections are seen for artificial surfaces (built-up areas, roads, etc.), which
likely reflects the relatively low prevalence of this class in the training (1.1%) and validation
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(1.0%) data, as well as the difficulty in estimating the height of a building based primarily
on the surface reflectance characteristics of its roof.
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Figure 13. Boxplots showing test residuals before and after corrections, filtering the pooled test data
according to (a) test zone and (b) land cover class, with the label above each set of boxplots indicating
(by colour) the best-performing model and the RMSE reduction it achieved.

The maps presented in Figures 14–16 provide a spatial overview of the DEM cor-
rections achieved in each of the three test zones, in terms of predicted topography and
associated residuals (judged against the resampled LiDAR data). Each map also shows
the resampled LiDAR survey data (a), satellite imagery (b) and the original SRTM data,
as visual references in evaluating the corrections made. With regards to potential flood
modelling applications, it is especially interesting to see the extent to which river branches
(significantly obscured by vegetation in the original SRTM) have been resolved in each
zone. The FCN proved particularly effective at removing vegetation-related features that
would otherwise block flow across the floodplains, such as the diagonal lines visible in the
south-east of the Wairau Valley zone (wind-break planting between fields). More generally,
the corrections made by the FCN have also filtered out much of the random “speckle” noise
present in the original SRTM data.
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Figure 14. Maps of the Wairau Plains East test zone, showing (a) resampled LiDAR DTM, (b) reference satellite imagery,
(c) original SRTM topography, (d) SRTM residuals, and corrected topography and residuals based on predictions using the
RF (e,f), DCN (g,h) and FCN (i,j) models.
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Figure 15. Maps of the Wairau Valley test zone, showing (a) resampled LiDAR DTM, (b) reference satellite imagery,
(c) original SRTM topography, (d) SRTM residuals, and corrected topography and residuals based on predictions using the
RF (e,f), DCN (g,h) and FCN (i,j) models.
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Figure 16. Maps of the Takaka test zone, showing (a) resampled LiDAR DTM, (b) reference satellite imagery, (c) original
SRTM topography, (d) SRTM residuals, and corrected topography and residuals based on predictions using the RF (e,f),
DCN (g,h) and FCN (i,j) models.
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4.2. Performance on Flood-Related Objectives

While flood hazard modelling using the various corrected DEMs is beyond the scope
of this study, we made an initial assessment of performance on flood-related objectives
by looking at test residuals according to flood susceptibility zone [39] and by deriving
a map of Height Above Nearest Drainage (HAND) values [68]. As shown in Figure 17,
performance across these different flood-related classifications did not vary greatly, with
the possible exception of the lowest HAND range (grid cells for which the resampled
LiDAR topography was within a 2 m vertical distance of the nearest drainage cell), where
FCN corrections achieved a reduction in RMSE of 77% (compared to 71% more broadly).
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rected datasets. The profiles extracted suggest that all models are reducing at least some 
of the vegetation bias, with particularly effective improvements achieved for elevations in 
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sections (particularly A to C) show the FCN-corrected profile (purple line) matching very 

Figure 17. Boxplots showing test residuals before and after corrections, filtering the pooled test data
according to (a) flood susceptibility zone [39] and (b) HAND class [68], with the label above each set
of boxplots indicating (by colour) the best-performing model and the RMSE reduction achieved.

As an additional assessment of each model’s potential for flood modelling applications,
two cross-sections were extracted along the main river branch and floodplain in each test
zone, as shown in Figure 18. For each cross-section, the original SRTM elevations (black
line) are compared to the reference LiDAR DTM (red line), as well as the three corrected
datasets. The profiles extracted suggest that all models are reducing at least some of the
vegetation bias, with particularly effective improvements achieved for elevations in or
adjacent to the river. As for elevations within river beds, at least some of the cross-sections
(particularly A to C) show the FCN-corrected profile (purple line) matching very closely
with the minimum river elevation indicated by the LiDAR profile (red line), suggesting that
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this corrected topography may allow improved performance for hydrological applications
such as the automated delineation of stream networks.
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Figure 18. A comparison of elevations for two river cross-sections taken in each test zone, showing
the original SRTM, the resampled LiDAR DTM and the three corrected SRTM datasets.

5. Discussion

The results presented here suggest that machine learning techniques, in concert with
a wide variety of remote-sensed datasets, are able to predict at least some of the vertical
biases known to affect freely-available, global DEMs. Given the number of large-scale flood
hazard assessments which continue to rely on these free topography data, being able to
predict (and therefore correct) these biases would be a useful step towards more accurate
flood hazard and risk modelling.
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Of the three machine learning techniques tested here, performance was found to
improve with increasing model complexity, with the simplest model (RF) reducing test
RMSE by 55%, the more complex DCN outperforming that (60%), and the most complex
model (FCN) going even further (71%). This is likely due to its ability to learn from spatial
patterns at multiple scales, which represents a significant advantage over the other models,
which learn on a pixel-by-pixel basis including only very rudimentary information about
their spatial context (such as slope values).

Importantly, fairly similar results were observed for the validation error correction
rates (e.g., 75% for the FCN), which suggests that all models have learnt from genuine
relationships/patterns within the data that allow them to generalise reasonably well to new
locations. In the following sections, potential issues relating to class imbalances (between
training, validation and test datasets) are explored and the test results are discussed within
the wider context of other published work in the field.

5.1. Discrepancy between Model Performance on Validation and Test Datasets

To explore possible reasons for the small discrepancies observed (between valida-
tion and test correction rates), we compared the distributions of land cover classes and
topography across each of the zones (training, validation and testing). Figure 19 makes
this comparison for underlying land cover classes, showing that the training and valida-
tion zones are very similar (as expected, given that they are random subsets of the same
pooled survey zones), while the testing zones have some notable differences. The training
and validation zones include relatively high proportions of scrub, shrubland and forest,
meaning that all models will be biased towards learning how to predict errors in these
types of areas (since these are some of the most common examples from which they extract
patterns). By contrast, the testing zones have a lot more cropland and include a relatively
high proportion of artificial and bare surfaces, neither of which were as common in the
training or validation zones.
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Figure 19. Relative frequencies of each land cover class, in the (a) training, (b) validation, and (c)
testing zones, with notable differences observed between the training/validation and test zones.

A similar pattern is observed for the distribution of SRTM elevations and derived
slope values (Figure 20), with the training and validation datasets found to have much
wider distributions than that of the testing data (which tend to be low-lying and relatively
flat, reflecting the flood-prone areas selected as testing sites).
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This raises important questions about the potential significance of class imbalances
between the datasets used to develop the models and those covering their intended applica-
tion area(s). Given the specific application targeted here (flood-prone areas), would model
performance improve if the models were trained using only data from other flood-prone
areas (noting that this would be a much smaller dataset, with models therefore more
susceptible to over-fitting)? Or does exposure to a wider set of conditions (making full use
of all available data, which are often limited), allow the models to learn additional patterns
which help them generalise to new flood-prone areas?

Future work extending the research presented here might address these questions in
two ways. One would be to develop a parallel set of models which are trained only on
the subset of available training data judged to be in flood-prone areas, to assess the likely
trade-off between closer dataset alignment (effectively forcing models to focus on patterns
found in flood-prone areas) and the corresponding reduction in the training dataset size
(which would increase the risk of over-fitting and potentially require the use of less complex
model architectures).

Another approach to exploring this issue would be to set aside even more data for
testing purposes, by sampling randomly from all available patches (just as was done
for the validation dataset), as a complement to the manually-selected contiguous flood-
prone areas evaluated here. While such a random sample wouldn’t support analysis
in terms of mapping continuous coverage or extracting river cross-sections, it would
enable an assessment of the impact of class imbalances, by comparing model performance
on the randomly-sampled testing data (presumably similar in their distribution to the
training/validation data) and the manually-selected flood-prone areas.

These results would help clarify just how important it is to use representative data
to train and validate the models (e.g., only data from other flood-prone areas), balanced
against the associated reduction in the training data available and the increased risk of
over-fitting.

5.2. Comparison of Test Results Obtained Here with Other Published Work

This section sites our results within the wider context of previous research efforts
in this field, as an indicative assessment of the potential value of the novel FCN model
presented here. However, we note that it is difficult to make direct comparisons with those
other published results, given very different study locations, reference topography sources,
intended applications, and study design (especially in terms of filters applied to the input
training and/or testing data).

In 2016, the DCN neural network developed by Wendi et al. [21] was found to reduce
RMSE by 52% (from 14.2 to 6.7 m) when tested in a new location (with similar land cover
to the training and validation datasets but a higher proportion of built-up areas and water
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bodies). By comparison, the FCN model developed here reduced test RMSE by 71%,
suggesting a notable improvement.

More recently, the deeper DCN used by Kulp and Strauss [5] to correct SRTM eleva-
tions in coastal zones (defined as areas with SRTM elevations between 1–20 m) achieved
RMSE reductions of 41% and 55% (for two different testing zones, both much larger than
those considered here). When our test dataset is filtered to only consider SRTM elevations
within that same range, the corrections made by the FCN resulted in a 67–77% reduction
in RMSE (for the two relevant test zones). It is worth noting that their model specifically
targeted low-lying coastal zones (i.e., trained only on data from those areas), whereas
all models trained in the current study learnt from a much wider variety of input data
(including elevations above 1200 m) and so should be more widely applicable.

A more direct comparison is possible for the MERIT DEM developed by Yamazaki
et al. [27], which involved the use of multiple filtering techniques to remove absolute bias,
vegetation bias, speckle noise and stripe noise to produce an improved global DEM. The
MERIT DEM has a horizontal resolution of 3 arc-seconds, so it was first resampled to match
the resolution (1 arc-second) and alignment of the datasets used here, before calculating its
vertical error in the testing zones (in terms of RMSE, with reference to the LiDAR-derived
DTM). For these particular zones, while the MERIT DEM does represent an improvement
over the original SRTM (reducing RMSE by 29%), all of the models explored here were able
to achieve significantly higher improvements (ranging from 55% for the RF model to 71%
for the FCN model).

Figure 21 compares the resampled LiDAR DTM with the resampled MERIT DEM and
the FCN-corrected SRTM, across all three test zones, with labels showing the associated
RMSE (judged against the resampled LiDAR DTM) and how this compares with that of the
raw SRTM data (as a percentage reduction). At least in these particular locations, the FCN
corrections are found to match the LiDAR DTM much more closely than the MERIT DEM,
especially in terms of resolving river channels by stripping away the thick vegetation bias
that frequently obscures them.
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those considered here). When our test dataset is filtered to only consider SRTM elevations 
within that same range, the corrections made by the FCN resulted in a 67–77% reduction 
in RMSE (for the two relevant test zones). It is worth noting that their model specifically 
targeted low-lying coastal zones (i.e., trained only on data from those areas), whereas all 
models trained in the current study learnt from a much wider variety of input data (in-
cluding elevations above 1200 m) and so should be more widely applicable. 

A more direct comparison is possible for the MERIT DEM developed by Yamazaki 
et al. [27], which involved the use of multiple filtering techniques to remove absolute bias, 
vegetation bias, speckle noise and stripe noise to produce an improved global DEM. The 
MERIT DEM has a horizontal resolution of 3 arc-seconds, so it was first resampled to 
match the resolution (1 arc-second) and alignment of the datasets used here, before calcu-
lating its vertical error in the testing zones (in terms of RMSE, with reference to the LiDAR-
derived DTM). For these particular zones, while the MERIT DEM does represent an im-
provement over the original SRTM (reducing RMSE by 29%), all of the models explored 
here were able to achieve significantly higher improvements (ranging from 55% for the 
RF model to 71% for the FCN model). 

Figure 21 compares the resampled LiDAR DTM with the resampled MERIT DEM 
and the FCN-corrected SRTM, across all three test zones, with labels showing the associ-
ated RMSE (judged against the resampled LiDAR DTM) and how this compares with that 
of the raw SRTM data (as a percentage reduction). At least in these particular locations, 
the FCN corrections are found to match the LiDAR DTM much more closely than the 
MERIT DEM, especially in terms of resolving river channels by stripping away the thick 
vegetation bias that frequently obscures them. 

 
Figure 21. A comparison of topography data across the three test sites, showing the reference LiDAR 
DTM (first row), the resampled MERIT DEM [27] (second row), and the FCN-corrected SRTM (third 
row), with labels indicating the RMSE and improvement over raw SRTM for each. 

Figure 21. A comparison of topography data across the three test sites, showing the reference LiDAR
DTM (first row), the resampled MERIT DEM [27] (second row), and the FCN-corrected SRTM (third
row), with labels indicating the RMSE and improvement over raw SRTM for each.
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6. Conclusions

The research presented here suggests that machine learning models have real poten-
tial for correcting the vegetation and building biases known to affect free global DEMs
such as SRTM. Given the number of large-scale flood hazard assessments which con-
tinue to rely on these free DEMs, being able to apply meaningful corrections could have
significant downstream value for the flood maps produced, risk metrics calculated, and
adaptation/mitigation recommendations made.

We investigated three different machine learning models, a relatively simple model
(random forest), a densely-connected neural network (as has been used to address this
task in the most recent research efforts) and a fully-convolutional neural network (a type
of neural network developed specifically for image processing tasks). Given the spatial
nature of the task at hand, it is perhaps no surprise that this latter model was found to
perform best (on both the validation and test data), most likely as a result of its capacity to
learn from spatial patterns at a variety of different scales. Over three test sites (i.e., data
unseen during previous steps), the predicted corrections reduced the overall RMSE by 71%
and were found to be especially effective at resolving river channels (which were often
obscured in the original SRTM by thick vegetation along the banks).

Our results also suggest that models are likely to be biased towards the particular
relationships/patterns most prevalent in the training data provided to them, raising ques-
tions about the importance of training models on input data which are as representative
as possible of the intended application area(s). To inform the effective future application
of the methods presented here, further work is required to assess just how important this
is, balanced against the reduction in training dataset size which such pre-filtering would
result in.

In terms of future developments of the research shared here, gradual increases in the
spatial resolution of remote-sensed imagery suggest that a natural next step would be
to increase the horizontal resolution of the input DEM at the same time as predicting its
vertical biases (similar to the use of panchromatic satellite imagery to “pansharpen” other,
coarser spectral band imagery [64]). If successful, such increases in horizontal resolution–
coupled with effective vertical bias reduction–could allow for significant improvements in
large-scale flood hazard mapping and assessment.
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