
 
 

 

 
Remote Sens. 2021, 13, 272. https://doi.org/10.3390/rs13020272 www.mdpi.com/journal/remotesensing 

Article 

Integrated Drought Monitoring and Evaluation through  
Multi-Sensor Satellite-Based Statistical Simulation 
Jong-Suk Kim 1, Seo-Yeon Park 2,*, Joo-Heon Lee 2, Jie Chen 1, Si Chen 3 and Tae-Woong Kim 4 

1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,  
Wuhan 430072, China; jongsuk@whu.edu.cn (J.-S.K.); jchen@whu.edu.cn (J.C.) 

2 Department of Civil Engineering, Joongbu University, Gyeonggi-do 10279, Korea; leejh@joongbu.ac.kr 
3 School of Resources and Environment, Hubei University, Wuhan 430062, China; kathryncs123@hotmail.com 
4 Department of Civil and Environmental Engineering, Hanyang University (ERICA), Gyeonggi-do 15588, 

Korea; twkim72@hanyang.ac.kr 
* Correspondence: sypark276@gmail.com 

Abstract: To proactively respond to changes in droughts, technologies are needed to properly diag-
nose and predict the magnitude of droughts. Drought monitoring using satellite data is essential 
when local hydrogeological information is not available. The characteristics of meteorological, agri-
cultural, and hydrological droughts can be monitored with an accurate spatial resolution. In this 
study, a remote sensing-based integrated drought index was extracted from 849 sub-basins in Ko-
rea’s five major river basins using multi-sensor collaborative approaches and multivariate dimen-
sional reduction models that were calculated using monthly satellite data from 2001 to 2019. 
Droughts that occurred in 2001 and 2014, which are representative years of severe drought since the 
2000s, were evaluated using the integrated drought index. The Bayesian principal component anal-
ysis (BPCA)-based integrated drought index proposed in this study was analyzed to reflect the tim-
ing, severity, and evolutionary pattern of meteorological, agricultural, and hydrological droughts, 
thereby enabling a comprehensive delivery of drought information. 

Keywords: remote sensing; integrated drought monitoring; meteorological drought; hydrological 
drought; agricultural drought; Bayesian principal component analysis (BPCA); statistical simula-
tion 
 

1. Introduction 
Droughts, along with floods, are some of the most common and inevitable natural 

disasters faced by human beings [1–4]. Therefore, many researchers have been trying to 
monitor and predict droughts accurately, and the development of drought monitoring 
techniques based on satellite remote sensing (RS) data (as a representative method) has 
garnered special interest in recent years [4–9]. The onset and magnitude of drought in the 
region is still a challenge for researchers because of a lack of ground meteorological ob-
servatories [4]. However, satellite-based RS data partially solve the problem by providing 
information in a fast and cost-effective way. The advantage of RS-based monitoring using 
satellite data is that it is possible to monitor droughts in large areas and ungauged basins, 
and we can utilize multiple satellite imagery data to have accurate results; therefore, mon-
itoring drought by using satellites has proven to be an efficient and reliable tool [6,10–13]. 

There are four kinds of droughts in the academic sense: meteorological, agricultural, 
hydrological droughts, and their socioeconomic impacts [2,14–16]. A meteorological 
drought is caused by a deficit through the shortage of rainfall and is mainly a short-term 
drought event [6]. An agricultural drought is determined based on the vitality of vegeta-
tion and the pattern of quantitative changes in soil moisture; it indicates short or medium-
term drought situations [6,13]. A hydrological drought is commonly a mid or long-term 
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drought condition; this drought identification is made based on a shortage of water re-
sources required by human-environmental systems, such as river discharge, efficient wa-
ter levels of dams, and reservoir storage [17]. A socioeconomic drought consists of a wide 
range that takes meteorological, agricultural, and hydrological droughts into account and 
is characterized by the temporal and spatial processes of water demand and supply [18].  

A variety of drought indicators that help prevent disasters and reduce and allocate 
water resources have been developed to quantify different drought conditions, such as 
severity, duration, and frequency [3,5,17,19–25]. The standardized precipitation index 
(SPI; [19]) and the Palmer drought severity index (PDSI; [26]) are the most commonly used 
meteorological drought indices. The SPI standardization concept was also applied to other 
drought indices, such as the standardized runoff index (SRI; [20]) and standardized soil 
moisture index (SSI [22]). 

Because RS technology provides an alternative approach for analyzing drought 
events across a wide range of regions, many studies have introduced RS-based drought 
indices [5,7,23,24,27]. Zhang and Jia [27] proposed the microwave integrated drought in-
dex (MIDI) to monitor meteorological drought over semi-arid regions and the continental 
United States of America. Cunha et al. [23] calculated the normalized differences vegeta-
tion index (NDVI) and land surface temperature (LST) data to monitor the effects of 
drought on vegetation in real-time. Sur et al. [24] analyzed Korea’s drought conditions 
through a comparative analysis of the existing drought indices (SPI and PDSI) based on a 
satellite image-based drought index from 2004 to 2013. It was confirmed that the results 
of the evaporative stress index (ESI), and the energy-based water definition index (EWDI) 
showed high applicability for severe drought situations since 2010. Cong et al. [5] selected 
three widely used satellite drought indices as indicators suitable for drought monitoring 
in northeastern China and investigated the spatiotemporal patterns and trends of rainfall 
and drought; the indices were normalized monthly precipitation anomaly percentage 
(NPA), vegetation health index (VHI), and normalized vegetation supply water index 
(NVSWI). Zhang et al. [28] combined the global land data assimilation system version 2 
(GLDAS-2) soil moisture data and NDVI with crop phenology data and assessed drought 
evolution and crop growth. Sur et al. [7] developed a new agricultural drought index 
called the agricultural dry condition index (ADCI) by combining various hydrometeoro-
logical variables and verified the applicability of the ADCI on the yield of paddy and ar-
able crops in Korea.  

Through the review of previous studies, we can assume that information can be in-
tegrated from multi-sensor satellite data and multivariate analyses to effectively achieve 
comprehensive drought assessment goals. In addition to providing information based on 
different drought conditions (meteorological, agricultural, and hydrological), it is neces-
sary to develop and apply an integrated drought index that considers complex factors that 
can provide comprehensive information about droughts and the required proactive re-
sponse to drought situations. Inspired by this idea, our study seeks to diagnose complex 
droughts by using multi-sensor collaborative approaches and multivariate dimensional 
reduction models. In this study, we proposed an integrated drought assessment method 
to comprehensively convey drought information to the public and conducted statistical 
simulations to determine spatial sensitivity to various types of droughts to provide tai-
lored information on local drought responses in a changing climate. 

2. Materials and Methods  
2.1. Multi-Sensor Drought Indices 
2.1.1. Standardized Precipitation Index (SPI) 

The SPI is a drought index developed with the idea that it is initiated by a decrease 
in precipitation, thereby causing water shortage (compared to the relative water demand). 
In other words, it was developed from the above assumption that decreased precipitation 
has different effects on groundwater, reservoir storage, soil moisture, and river runoff. 
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The SPI is an efficient way to calculate the impact of individual water sources on droughts 
by setting time units accumulated over a given period of time (over 1, 3, 6, and 12 months), 
and calculating the drought index by using the amount of precipitation on a time basis 
[19,28]. The SPI is also recommended by the World Meteorological Organization (WMO) 
for tracking meteorological droughts [21,25]. 

2.1.2. Agricultural Dry Condition Index (ADCI) 
The ADCI is an agricultural drought index that takes into account the vegetation con-

ditions, soil moisture, and LST of the affected region. First, the vegetation condition index 
(VCI) is applied for vegetation analysis. Sur et al. [7] proposed the ADCI as a new agricul-
tural drought index, which is a combination of the three indices mentioned above (SMSI, 
VCI, and TCI). The cause of the agricultural drought was developed based on the concept 
of reducing the vitality of vegetation due to the lack of soil moisture and overheating of 
the surface temperature caused by high temperatures, developing into agricultural 
drought as this phenomenon continues. The ADCI can be calculated by using the Equa-
tion (1) given below: ADCI =  0.6 ∗ 𝑆𝑀𝑆𝐼 + 0.2 ∗ 𝑉𝐶𝐼 + 0.2 ∗ 𝑇𝐶𝐼. (1)

The VCI is a suitable index for agricultural drought monitoring, such as temporal 
and spatial vegetation changes and the onset and intensity of drought [29,30]. Kogan [29] 
developed the VCI, which was standardized using the maximum and minimum values of 
the NDVI developed based on the notion that droughts do not provide normal water sup-
ply to plants (Equation (2)). VCI =  𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼 , (2)

where 𝑁𝐷𝑉𝐼  and 𝑁𝐷𝑉𝐼  represent the minimum and maximum values of NDVI for 
the entire period of the pixel. The following is the LST-related index, called the tempera-
ture condition index (TCI), which is an index developed by Kogan [29] based on the fact 
that LST affects the stress of vegetation and is one of the drought factors that affect soil 
moisture. The TCI is a standard LST that uses the maximum and minimum LST values 
and as shown in the following equation (Equation (3)).  TCI =  𝐿𝑆𝑇 − 𝐿𝑆𝑇𝐿𝑆𝑇 − 𝐿𝑆𝑇  (3)

Finally, soil moisture needs to be considered for determining the ADCI. The soil 
moisture saturation index (SMSI) assumes that soil moisture is directly proportional to 
thermal inertia (TI). One of TI’s simple approximations is the apparent thermal inertia 
(ATI), which can be derived in Equation (4); note that we assume that the solar energy is 
uniform. ATI =  (1 − 𝛼)𝐿𝑆𝑇 − 𝐿𝑆𝑇 , (4)

where 𝛼 is the land surface albedo and 𝐿𝑆𝑇  and 𝐿𝑆𝑇  are the surface tempera-
tures during day and night, respectively. The SMSI can be calculated using the ATI, as 
shown in the following equation (Equation (5)). SMSI =  𝐴𝑇𝐼 − 𝐴𝑇𝐼𝐴𝑇𝐼 − 𝐴𝑇𝐼  (5)

2.1.3. Water Budget-Based Drought Index (WBDI) 
The water budget-based drought index (WBDI), which was proposed by Sur et al. 

[18], was developed by adopting the water balance perspective and by using precipitation 
and evaporation as input variables. The evaporation of water balance is caused primarily 
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by changing the state of water, which is achieved by changing the temperature [31]. The 
WBDI is defined as the difference between precipitation and evaporation as surface runoff 
and sub-surface runoff in the water budget equation, as given below (Equation (6)): 𝑃 − 𝐸 = 𝑑𝑆 + 𝑅, (6)

where P is the precipitation (mm), E is actual evaporation (mm), dS is soil moisture change 
(mm), and R is the potential runoff (mm). The above results are treated as possible runoff 
in the basin and expressed in an index, as given below (Equation (6)): WBDI = 𝑧(𝑃 − 𝐸), (7)

where z denotes the standardization. Instead of monitoring the current precipitation and 
drought conditions through evaporation, the WBDI, estimated by using the water balance 
formula, defines a hydrological drought through potential (near future) runoff, thereby 
adopting a short-term prognosis approach.  

2.2. Study Area and Remote Sensing Data 
In this study, we used the moderate resolution imaging spectroradiometer (MODIS), 

precipitation estimation from remotely sensed information using an artificial neural net-
work climate data record (PERSIANN-CDR), and global precipitation measurement (GPM) 
integrated multi-satellite retrievals for GPM (GPM IMERG) to calculate various drought in-
dices. Through the MODIS satellite, the LST (MOD11A1), NDVI (MOD13A3), actual evap-
otranspiration (AET; MOD16A2), and albedo (MCD43B2) data from 2001 to 2019 were col-
lected (Table 1). To obtain the precipitation data, we used the PERSIANN-CDR data from 
1983 to 1997 that was generated by the center for hydrometeorology and remote sensing 
(CHRS) at the University of California in Irvine; the data were obtained before the tropical 
rainfall measuring mission (TRMM). The TRMM data from 1998 were utilized, and among 
many data, the gridded TRMM3B42 data were collected until 2014 (at the end of TRMM’s 
life), which was provided by the National Aeronautics and Space Administration (NASA) 
[32]. Following 2014, we used data from GPM IMERG that obtained data until 2019 to cal-
culate the meteorological drought index [33]. Among the GPM IMERG data, the data after 
the last four months of the calibration were used to enhance the reliability of the precipita-
tion data. Due to the different spatial and time resolutions of the collected data, the spatial 
resolution was set at 1 × 1 km and the time resolution was considered to be monthly, which 
is consistently reprocessed. The main areas of this study were the five major rivers of the 
Korean Peninsula, and we analyzed 849 sub-basins (Figure 1). 

Table 1. Remote sensing (RS) data used in this study. 

Product Resolution Data Period 

MODIS 

MOD11A1 Land Surface Temperature 1 km, daily 

2001–2019 
MOD13A3 Vegetation Indices 1 km, monthly 
MOD16A2 Evapotranspiration 0.5 km, 8 days 
MCD43B2 Albedo 1 km, 8 days 

PERSIANN-CDR PERSIANN-CDR Precipitation 25°, daily 1983–1997 
TRMM TRMM3B42 Precipitation 25°, 3 h 1998–2014 
GPM GPM IMERG Precipitation 10°, 30 min 2015–2019 
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Figure 1. Geographical location of the five major river basins and the 849 sub-basins in Korea. 

2.3. Integrated Drought Monitoring with Multi-Sensor Based Statistical Simulations 
The types of RS data, mainly used for drought monitoring, depend on the type of 

satellite used; however, data such as precipitation, vegetation, surface temperature, soil 
moisture, and evaporation are mostly used. The data can be used individually. However, 
drought phenomena may not be sufficient for drought analysis based on a single indicator 
because it is related to a number of variables [34]. However, it may be more useful to 
combine information in the form of an appropriate drought index for more accurate mon-
itoring of complex drought phenomena. 

Hao and AghKouchak [23,34] proposed the multivariate standardized drought index 
(MSDI) based on a copula distribution or nonparametric joint distribution for a bivariate 
model of precipitation and soil moisture. However, with recent advances in technology, 
the size and complexity of data tend to increase. Such complexity makes it difficult to 
detect the dependence between the response variable and covariates because of the enor-
mous number of available covariates [35]. To resolve these problems, an approach to re-
ducing the number of covariates (through dimension reduction) is being used. Principal 
component analysis (PCA) is a tool that is commonly used for dimension reduction [36] 
and is a feature transformation method that directly transforms the variables (in di-
mension reduction methods) without losing much of the data’s inherent attribution 
information. In this study, for the three different multi-variables acquired from the sat-
ellite data, an integrated drought index is calculated through the application of the 
Bayesian PCA (BPCA; [37,38]) and intentionally biased bootstrap (IBB; [39]) simulation 
for characterizing three aspects of meteorological (using SPI), agricultural (using 
ADCI), and hydrological (using WBDI) droughts. The BPCA approach can estimate the 
intrinsic dimensionality of the multi-dimensional dataset with missing data, which is 
suitable for application to satellite data, and has been evaluated as an accurate and 
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robust model [37,38,40]. The BPCA analysis is performed by using the following three 
procedures: principal component (PC) regression, Bayesian estimation, and an expec-
tation-maximization (EM)-like repetitive algorithm [38]. 

The IBB applied for statistical simulation of drought indices is a kind of weighted 
bootstrap that follows constraints that are designed to select resampling probabilities and 
conditionally applied to data; this helps to improve the statistical performance and mini-
mizes the distance of weighted distributions [39,41]. This study employed the IBB to eval-
uate regional drought changes in meteorological (SPI), agricultural (ADCI), and hydro-
logical (WBDI) droughts and analyzed the relative sensitivity of each drought index to the 
RS-based integrated drought index (RSIDI) calculated by using the BPCA (Figure 2). The 
IBB applied in this study is described as follows. 

 
Figure 2. Procedure of intentionally biased bootstrap (IBB) analysis for integrated drought management. 

The IBB simulation re-samples the observations Xi to n replacement (e.g., bootstrap-
ping) by intentionally increasing or decreasing the data by as much as δμ. The data Xi are 
increasingly ordered by assigning different weights Wi,n according to the magnitudes of 
the observations, as given below: 𝑊 , = 𝑖/𝑛, (8)

where i = 1, 2, 3, …, n, and the data matrix is rearranged in the same order as the ordered 
Xi. The assigned weight Wi,n represents the probability of selection for Xi data in the IBB 
simulation. The intentional change of increase or decrease (δ ) can be calculated as given 
in Equation (9).  
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δ = 𝜇 − �̂� = 1𝜓 𝑊 , 𝑋 − 1𝑛 𝑋 , (9)

𝜓 = 𝑊 , . (10)

Equation (9) can be generalized with a weight order (r) as Equation (11). 

𝛿 (𝑟) = 𝜇(𝑟) − �̂� = 1𝜓 𝑊 , 𝑋 − 1𝑛 𝑋  (11)

The selection of the weight order (r) can be performed by using the self-organizing 
migrating algorithm (SOMA; [42]) with the following objective function (Equation (12)): 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛿 −𝛿 (𝑟) . (12)

Note that if r < 0, then δμ (r) < 0, which implies a drier state, and if r > 0, then δμ (r) > 0, 
which implies a wetter state. When r < 0, lower values indicating the dry state are 
resampled more frequently than higher values indicating the humid state, causing δμ (r) 
to decrease. In addition, to objectively determine the accuracy of drought monitoring us-
ing three satellite-based drought indices, this study conducted a receiver operation char-
acteristics (ROC) analysis. The ROC analysis was performed to evaluate the validity of the 
RSIDI calculations using the three drought indices (SPI, ADCI, and WBDI). The range of 
drought indices used in this study is given in Table 2. 

Table 2. Range of the drought indices used in this study. 

Drought condition SPI ADCI WBDI RSIDI 
Normal >0 >40 >0 >0 

Attention −1.0–0 30–40 0–−0.5 −1.0–0 
Caution −1.0–−1.5 20–30 −0.5–−1.0 −1.0–−1.5 

Alert −1.5–−2.0 10–20 −1.0–−1.5 −1.5–−2.0 
Serious <−2.0 0~10 <−1.5 <−2.0 

3. Results 
In this study, the RSIDI was extracted for 849 sub-basins over the five major Korean 

river basins using a BPCA-based combination model for the three drought indices for 
2001–2019. As a result of the evaluation of the proportion of variation (POV) of the three 
drought indices by region, the BPCA-based RSIDI explained the average POV (68.9%) of 
the 849 sub-basins (Han River basin: 68.1%, Nakdong River basin: 68.7%, Geum River ba-
sin: 71.3%, Youngsang River basin: 71.7%, and Sumjin River basin: 71.0%), showing a high 
POV, especially in the southern part of the country. In addition, the calculated RSIDI 
showed a relatively high correlation with SPI (median: 0.96) and WBDI (median: 0.96). In 
the case of the ADCI (maximum: 0.91, median: 0.53), the correlation with RSIDI was broad 
in the region and showed a relatively weak correlation in some areas of the Han and Nad-
kong River basins; however, on an average, the correlation was 0.53 (p-value < 0.001) in 
849 sub-basins, indicating that the RSIDI can provide robust and comprehensive inte-
grated drought information by maintaining the inherent characteristics of the three 
drought indices (Figure 3). By resolving the system equations for each drought index, it 
has been shown that the relative contribution of the RSIDI to each time-series can be as-
sessed. Figure 4 illustrates the relative contribution of each drought index to the Gojicheon 
stream (#10011) of the Han River basin. 

In the following section, the droughts in 2001 and 2014, which are the representative 
severe drought years of severe droughts that have occurred since the 2000s, were assessed 
using the RSIDI produced by multi-sensor satellite data and multivariate analysis. The 
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application of integrated drought monitoring based on satellite data was evaluated 
through spatial-temporal variability analysis between the RSIDI and other drought indi-
ces using the ROC analysis to test the accuracy of the models. In addition, the onset, in-
tensity, and evolution patterns of droughts were compared to each drought index, and 
the applicability of the RSIDI was evaluated through an IBB simulation.  

 
Figure 3. Results of correlation analysis with RS-based integrated drought index (RSIDI) through Bayesian PCA (BPCA); 
(a) SPI (standardized precipitation index), (b) ADCI (agricultural dry condition index), and (c) WBDI (water budget-based 
drought index). The lower panel in the figure results from the analysis of the correlation of 849 sub-basins summarized in 
the boxplot and is illustrated by each applied drought index namely, SPI, ADCI, and WBDI. 
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Figure 4. Time series of integrated drought index (IDI) for 2001–2019 in the Gojicheon stream in the Han River basin. (a) 
IDI index and (b) relative contribution evaluation. 

3.1. Drought Impact Assessment and Drought Monitoring 
The RSIDI was evaluated for the 2001 drought (Figures 5 and 6). The severe spring 

drought in 2001 began in the fall of 2000 and lasted until the spring of 2001. In spring, 
when the agricultural water demand was the highest due to the rice planting, the supply 
of agricultural water was insufficient, causing serious agricultural damages. In most parts 
of the Korean Peninsula, less than 50% of the average annual rainfall was recorded, and 
in some areas, only 10 to 30% of the average annual rainfall resulted in the most extensive 
agricultural drought damage in June [43,44]. The drought that occurred in 2001 was 
mostly resolved after more than 150 mm of rainfall since mid-June. 

The SPI and WBDI illustrate the drought from April to May was a serious event, and 
the drought centered in the central region since September also appears to be approaching 
the serious stage (Figure 5). The ROC analysis between the RSIDI and three drought indi-
ces also showed that the WBDI had the highest with 0.90, followed by SPI at 0.78, and 
ADCI at 0.65. For ADCI, the observed indicators showed significant spatial variation com-
pared to the other drought indices, and in the 2000 drought, the effects of changes in the 
SMSI resulted in a weaker or earlier drought peak than those observed in cases of other 
drought indices (Figure 6). These features appear to be more sensitive to short-term 
droughts as the ADCI applied in this study was used only for the surface soil moisture. 
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Figure 5. Spatial change of each drought index: SPI, ADCI, WBDI, and IDI (integrated drought 
index) for the 2001 drought. 

 
Figure 6. Spatial change of each drought index: SMSI (soil moisture saturation index), VCI (vege-
tation condition index), TCI (temperature condition index), and ADCI for the 2001 drought. 
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Figures 7 and 8 show the results of the evaluation of the 2014 drought. In 2014, a 
drought occurred around the Han River basin; in the same year, the Gangwon Province 
had 70% of the average annual rainfall and the Gyeonggi Province area around Seoul had 
59%, which was less compared to the previous years’ average annual rainfall. In particu-
lar, in 2014, a dry monsoon phenomenon occurred in which a drought that began in spring 
(due to the El Niño phenomenon) continued to cause no rainfall or a significantly lower 
amount of rainfall [45]. The rainfall between June 2014 and July 2014 was 48% (compared 
to the average in the past years), and the national water storage level also dropped signif-
icantly to 64% over the previous year. In August, the average water level of multi-purpose 
dams in Korea was only 36.1%. The droughts lasted until 2015, resulting in less than 70% 
of the average rainfall, and the hydrological droughts, with reservoirs in many multipur-
pose dams, reached dangerous levels [46]. Similar to the results of 2001, the RSIDI ob-
tained could effectively describe the time and spatial occurrence patterns of the SPI and 
the WBDI, while the ADCI was analyzed to have delayed drought due to changes in SMSI. 
The ROC statistical analysis also confirmed that WBDI was highest and ADCI was rela-
tively low in 2014 (SPI: 0.81, ADCI: 0.61, WBDI: 0.88). Through evaluation of past 
droughts, the RSIDI explained the three drought characteristics (meteorological, agricul-
tural, and hydrological) well and confirmed the applicability of the integrated drought 
index through ROC analysis. 

 
Figure 7. Spatial change of each drought index: SPI (standardized precipitation index), ADCI (agricultural dry condition 
index), WBDI (water budget-based drought index), and IDI (integrated drought index) for the 2014 drought. 
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Figure 8. Spatial change of each drought index: SMSI, VCI, TCI, and ADCI for the 2014 drought. 

3.2. Drought Transition Evaluation by Statistical Simulations 
This study simulated the impact on the spatiotemporal distribution of different 

drought conditions, such as agricultural and hydrological perspectives, by altering the 
intended difference of δμ (r) (Equation (11)) of the meteorological drought index (SPI) 1000 
times to represent the changes in SPI. As δμ (r) was intentionally changed, all the sub-
basins experienced various changes in their ADCI and WBDI. Figure 9 shows that statis-
tical simulations indicate that the changes in the state of agricultural (ADCI) and hydro-
logical (WBDI) droughts correspond to the changes in meteorological drought (SPI). In 
addition, the results of the IBB simulation for up to three months of a lagged analysis were 
shown in Figure 10. Natural disasters, including droughts, are managed in four stages 
(Attention, Caution, Alert, and Serious) in Korea. In this study, the changes in other 
drought conditions were identified by intentionally changing the meteorological drought 
condition by using a IBB simulation.  

First, when the meteorological drought (SPI) conditions were simulated from a stage 
of Normal to a stage of Attention (Figures 9a and 10a), the ADCI conditions, except for 
some parts of the Han River basin, showed a stage of Attention (96.6%, 820 out of 849 sub-
basins). According to the results of the one-month delay, the ADCI status in parts of the 
Han and Nakdong River basins changed to Normal; however, 77.1% of the entire basin 
(45.8% of the two-month delay) was still in a stage of Attention. Over time, the ADCI 
conditions have shifted from a state of Attention to Normal in the southwestern part of 
the Han, Youngsang River, and Sumjin River basins. Even if the SPI conditions are simu-
lated from the Normal stage to a stage of Attention, the results of the SPI are similar to 
those of time and space, and there are many sub-basins that are converted to the Normal 
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stage over time. When the meteorological drought (SPI) conditions were simulated from 
the Normal stage to a stage of Caution (Figures 9b and 10b), excluding the parts of the 
Han River basin, more than 98.6% showed the ADCI to be in the Attention stage and 15.9% 
showed a stage of Caution. According to the results of the one-month delay, the ADCI in 
the northern parts of the Han River was still in a state of Caution; however, 88.5% of the 
entire basin was in the stage of Attention. Over time, the ADCI conditions shifted from a 
state of Attention to Normal in the southwestern parts of the Han, Youngsan, and Sumjin 
River basins. Although the mid-term drought (SPI6) was simulated from a Normal stage 
to a stage of Attention, changes in the spatiotemporal pattern of the ADCI were similar to 
the results obtained for SPI3, in which the scope of Attention conditions was reduced, and 
the number of sub-basins converted to “Normal” over time increased in the southern parts 
of the country.  

 
Figure 9. Drought condition changes in intentionally biased bootstrap (IBB) simulation. (a) Case I (SPInormal → SPIAttention) 
and (b) Case II (SPInormal → SPICaution). The simulation results for the five basin areas are provided in the boxplot, and the 
results for the change in drought conditions are indicated in color in the map. 

For WBDI, when the SPI drought conditions were simulated from Normal to a stage 
of Attention, the WBDI conditions, excluding the Han River basins, showed a stage of 
Alert (99.2%, 842 out of 849 sub-basins). As a result of the one-month delay, the WBDI 
status shifted from 75.7% of the total basin to a state of Attention, but 50.7% of the Han 
River basin and some areas of the Geum and Youngsan River basins were still in Caution 
levels. Over time, the WBDI conditions tended to shift from a state of Attention to Normal 
in the southwestern parts of the Han and Geum River basins. The SPI drought conditions 
were simulated from Normal to Caution; more than 93.8% of the total basins showed their 
WBDI in a stage of Caution. Over time, the WBDI status shifted to a Normal state around 
the southwestern Han and Geum River basins. 
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Figure 10. Drought condition changes in IBB simulation of ADCI and WBDI. (a) Case I (SPInormal → SPIAttention) and (b) 
Case II (SPInormal → SPICaution). The simulation results for the five basin areas for up to three months are colored in the map. 

When the drought conditions of the RSIDI were simulated from Normal to Attention 
(Figure 11a), in all three drought indices (SPI, ADCI, and WBDI), the drought conditions 
shifted to a state of Attention, confirming that the RSIDI expressed the overall drought in 
space effectively. If drought conditions were simulated from Normal to Caution, the SPI 
results showed that 78.6% of the total basins were in the same state as drought conditions 
in the RSIDI. However, we inferred that the Han River basin was relatively insensitive 
due to its status of Attention. Compared to the drought conditions of the SPI, the drought 
conditions of the ADCI and WBDI were shown to be mitigated by one level in the Han 
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River and some areas of the Nakdong River, and the spatial conditions changed in the two 
drought indices (ADCI and WBDI) were similar. 

 
Figure 11. Drought condition changes in IBB simulation. (a) Case I (IDInormal → IDIAttention) and (b) Case II (IDInormal → 
IDICaution). The simulation results for the five basin areas for up to three months are colored in the map. 

4. Discussion and Conclusions 
As climate change accelerates due to global warming, changes in hydrological cycles 

occur significantly, and water use and prediction of water resources may become difficult. 
In particular, in Korea, chronic drought has occurred continuously since the 1990s during 
the transition from winter to spring [47]. To cope with these droughts, technologies to 
identify and predict the magnitude of spatiotemporal droughts are required. Drought 
monitoring using satellite data will be essential to secure spatial resolution for accurate 
and spatial droughts when ground-based hydrometeorological data are not available, as 
well as monitoring the different characteristics of meteorological, agricultural, and hydro-
logical droughts.  

Korea’s drought-related affairs are mainly handled by the Korea Meteorological Ad-
ministration (KMA), Ministry of Agriculture, Food and Rural Affairs (MAFRA), Ministry 
of Environment (MOE), Ministry of Land, Infrastructure, and Transport (MOLIT), and the 
Ministry of Public Safety and Security (MPSS) [48]. The KMA diagnoses precipitation and 
drought in drought areas by assessing the SPI and PDSI and provides this information to 
the local governments. The MAFRA analyzes agricultural water through the soil moisture 
index (SMI), reservoir drought index (RDI), and integrated agricultural drought index. 
The MOLIT monitors dam water; the MOE monitors emergency water resources and wa-
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ter quality according to the drought stage and implements the appropriate countermeas-
ures. The MPSS oversees the drought situation when it becomes extreme. However, some 
point out that the current drought measurement indices of different agencies are different 
in drought management, causing confusion and making it difficult to respond to drought 
proactively. Different ministries have different standards for determining the degree of 
drought. Additionally, it is not sufficient for a single drought indicator to characterize all 
the complex drought evolution processes [23]. The development and application of an 
integrated drought index are necessary to take into account the complex factors related to 
water use, such as the meteorological, agricultural, and hydrological perspectives. Thus, 
this study proposed an RS-based integrated drought index that was extracted from 849 
sub-basins in Korea’s five major river basins using multi-sensor collaborative approaches 
and multivariate dimensional reduction models, calculated through monthly satellite 
data. Droughts in 2001 and 2014, representative years of severe drought since the 2000s, 
were evaluated using the integrated drought index, and statistical simulations were used 
to diagnose the sensitivity and transition of drought. The BPCA-based integrated drought 
index proposed in this study was analyzed to reflect the timing, severity, and evolutionary 
pattern of meteorological, agricultural and hydrological droughts, enabling comprehen-
sive delivery of drought information. Although the results relied on limited observations, 
it is expected that drought hotspot analyses and statistical simulations using IBB and 
BPCA-based RSIDI will identify the drought characteristics of the sub-basin, thereby pro-
moting their use in preemptive drought response through drought prediction and early 
warning. 

Drought monitoring and accurate drought forecasting are still the main challenges in 
a relatively changing environment that has a long lead-time and natural and artificial fac-
tors. Therefore, future works to improve drought monitoring and prediction require fur-
ther research, such as high-quality data assimilation, improving model development 
through major processes related to droughts, selecting or predicting optimal ensembles, 
and hybrid drought forecasting. 
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