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Abstract: Hyperspectral unmixing is an important technique for analyzing remote sensing images
which aims to obtain a collection of endmembers and their corresponding abundances. In recent
years, non-negative matrix factorization (NMF) has received extensive attention due to its good
adaptability for mixed data with different degrees. The majority of existing NMF-based unmixing
methods are developed by incorporating additional constraints into the standard NMF based on
the spectral and spatial information of hyperspectral images. However, they neglect to exploit the na-
ture of imbalanced pixels included in the data, which may cause the pixels mixed with imbalanced
endmembers to be ignored, and thus the imbalanced endmembers generally cannot be accurately
estimated due to the statistical property of NMF. To exploit the information of imbalanced samples
in hyperspectral data during the unmixing procedure, in this paper, a cluster-wise weighted NMF
(CW-NMF) method for the unmixing of hyperspectral images with imbalanced data is proposed.
Specifically, based on the result of clustering conducted on the hyperspectral image, we construct
a weight matrix and introduce it into the model of standard NMF. The proposed weight matrix can
provide an appropriate weight value to the reconstruction error between each original pixel and
the reconstructed pixel in the unmixing procedure. In this way, the adverse effect of imbalanced sam-
ples on the statistical accuracy of NMF is expected to be reduced by assigning larger weight values to
the pixels concerning imbalanced endmembers and giving smaller weight values to the pixels mixed
by majority endmembers. Besides, we extend the proposed CW-NMF by introducing the sparsity
constraints of abundance and graph-based regularization, respectively. The experimental results on
both synthetic and real hyperspectral data have been reported, and the effectiveness of our proposed
methods has been demonstrated by comparing them with several state-of-the-art methods.

Keywords: hyperspectral unmixing; non-negative matrix factorization; imbalanced data

1. Introduction

Hyperspectral remote sensing images (HSIs) can provide rich spectral information
and spatial distributions of ground objects simultaneously, and thus have been applied
in many fields, such as anomaly detection [1], hyperspectral classification [2,3], and im-
age segmentation [4]. However, the spectra of pixels in real HSIs may be mixtures of
several pure spectral signatures (i.e., endmembers) corresponding to different substances.
Generally, this is commonly caused by the limited spatial resolution of the sensors and
the complex distribution of land cover materials. To enhance the analysis accuracy of hy-
perspectral images in practical applications, hyperspectral unmixing (HU) [5], which aims
to decompose each mixed pixel in an HSI into a set of endmembers and their corresponding
proportions (i,e., abundances), has become a hot research topic [6,7]. To tackle the HU
problems, two types of spectral mixture model, i.e., the linear mixture model (LMM) and
nonlinear mixture model [8], are commonly used. Due to its simplicity and interpretability,
LMM is widely adopted in practical applications [9].
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In the past decades, many HU methods have been proposed based on the LMM
model. Specifically, it can be divided into two categories: geometry-based methods and
statistic-based methods. The geometry-based approaches are commonly developed by
using geometric properties of HSIs, by which the problem of finding endmembers is trans-
formed into searching the vertices of a simplex enclosed by all the pixels of the target
HSI in the geometric space. Classical geometry-based methods include Pure Pixel Index
(PPI) [10], N-FINDR [11], Vertex Component Analysis (VCA) [12], Simplex Growing Algo-
rithm (SGA) [13], etc. These methods usually can provide better unmixing performance
when the assumption that pure pixels must present in HSIs holds. However, the appli-
cations of these methods are limited because this assumption is hardly satisfied in many
real unmixing tasks on highly mixed HSIs [14–16]. To overcome such disadvantages,
the statistic-based unmixing methods treat HU as a blind source separation problem [17],
so that they can exploit the statistical characteristics of the data. The representative methods
are commonly developed based on the framework of independent component analysis [18]
and non-negative matrix factorization (NMF) [19]. Recently, NMF has received increasing
attention in the studies of HU [7,15,16,20,21]. Nevertheless, the standard NMF is easy to
fall into local minima owing to the non-convexity of the objective function [14,15,20] and
suffers from the issues of non-unique solutions when used for the unmixing of HSIs [22].

To improve the unmixing performance of standard NMF, many NMF variants have
been proposed by adding a variety of constraints into the model of standard NMF based
on the problem-dependent information. For example, the minimum volume constrained
NMF (MVCNMF) [23] introduced the geometric information of HSIs into the model of
the standard NMF intending to minimize the volume of the simplex formed by the es-
timated endmembers. The L1/2 regularized NMF (L1/2NMF) improved the unmixing
performance of the standard NMF by incorporating the L1/2 regularizer into the objective
function, which can effectively exploit the sparsity of abundances in real HSIs [22,24]. Aim-
ing at exploiting the intrinsic manifold structure of data and sparsity of abundance jointly,
the graph regularized L1/2NMF (GLNMF) [14] was developed by introducing graph-based
regularization into L1/2NMF [22]. Similarly, by conducting super-pixel segmentation on
HSIs, the spatial group sparsity regularized NMF (SGSNMF) [21] was proposed to exploit
the structured sparsity of abundance. Besides, some constraints based on the spatial in-
formation of HSIs have also been incorporated into the NMF model, such as substance
dependence [15], abundance separation [25], and piecewise smooth [26] constraints.

Recently, some NMF variants are developed to tackle the unmixing tasks with imbal-
anced pixels. In fact, the HSI data are dominated by a subset of the endmembers in most
real-world scenarios [22], and thus it is hard to accurately estimate the complete set of
endmembers with the least-squares fitting model of the standard NMF due to the statistical
characteristic of NMF. To cope with unmixing tasks on HSIs with imbalanced samples,
some existing approaches improved the NMF-based unmixing model by roughly identify-
ing the pixels that contain the rare endmembers or minimize the residual across all patches.
In detail, Ravel et al. [27] proposed an NMF-based unmixing method for HSIs with rare
endmembers. This method first determines the abundant endmembers by the standard
NMF, then isolates the pixels concerning rare endmembers, and finally estimates the rare
endmembers and corresponding abundances based on them. Besides, Marrinan et al. [28]
developed a patch-based minimax NMF model to unmix HSIs with rare endmembers,
where the patches of the target HSI data were processed by a collection of NMF which
can minimize the residual across all patches. Other works improve the unmixing perfor-
mance of NMF-based methods by conducting resampling to the original data. For example,
Fossati et al. [29] proposed an unmixing approach to tackles the impact of imbalanced pix-
els by conducting a bootstrap resampling on pixels including rare endmembers. Based on
this bootstrap resampling step, this approach aims to artificially increase the proportion
of pixels corresponding to the rare endmembers, and then unmix the resampling data
using the NMF method. Although these methods have improved the performance of the
NMF-based unmixing method on HSIs with imbalanced samples to some extent, how to
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determine the pixels containing rare endmembers and accurately estimate the rare and
abundant endmembers simultaneously by designing an effective NMF-based unmixing
model via this information remains a challenging problem.

To exploit the information of imbalanced pixels in hyperspectral data during the un-
mixing procedure, in this paper, a cluster-wise weighted NMF (CW-NMF) method for
the unmixing of hyperspectral images with imbalanced data is proposed by introducing
a weight matrix into the model of the standard NMF. In practice, it is often the case that
the numbers of samples including different endmembers are unequal, even with a tremen-
dous difference. We focus on improving the unmixing accuracy of the standard NMF on
sample number related imbalanced data, in which the endmembers included by a relatively
small number of pixels are named imbalanced endmembers, and the ones included by
a large number of pixels are named majority endmembers. In this paper, we capture the in-
formation of imbalanced pixels in HSIs by conducting clustering analysis via K-means on
the target HSI data. Then, a weight matrix is designed based on the result of clustering,
which is introduced into the model of standard NMF to assign appropriate value for each
pixel, so that it can well adjust the weight of each sample in the NMF-based unmixing
procedure. With this strategy, we aim to enhance the impacts of the pixels concerning
imbalanced endmembers by providing them larger weight values, whereas the impacts
of the pixels mixed by majority endmembers are reduced with smaller weight values.
This can reduce the negative influence of imbalanced samples on the statistical accuracy of
NMF as much as possible. As a result, the estimated matrices are expected to provide more
accurate results for all the endmembers and the corresponding abundances. Furthermore,
the proposed method provides a general framework for unmixing HSIs with imbalanced
pixels, which is demonstrated by extending it to other NMF-based HU methods, such as
the L1/2NMF and GLNMF methods. Both synthetic data and real HSIs are used to test
the performance of the proposed methods, and their superiority is verified by comparing
them with several state-of-the-art methods. For the sake of clarity, the major contributions
of this paper are highlighted as follows.

• We propose a novel NMF method for hyperspectral unmixing by exploiting the infor-
mation of imbalance samples included in HSIs. Based on the clustering results of all
the pixels, a weight matrix is generated to balance the impacts of each class of pixels
to the reconstruction error of the standard NMF. This can reduce the adverse effect of
imbalance samples to the estimation of endmembers that are only present in the pixels
in a relatively small number, and thus improve the accuracy of the unmixing results.

• Our method provides a general framework for unmixing HSIs with imbalance pixels,
and thus has good extensibility for incorporating additional constraints and regular-
ization terms into the NMF-based unmixing model. Here, we extend the proposed
method to other NMF-based unmixing approaches by adding the sparsity constraint
of abundance and graph-based regularization, respectively.

• The performance of our methods is tested on both synthetic data and real-world HSIs.
The experimental results show that our methods can achieve superior performance
by comparing them with several state-of-the-art methods.

2. Related Work

In this paper, boldface uppercase letters are used to denote matrices, and the boldface
lowercase letters are employed to represent vectors. Giving a matrix Y = [y1, y2, ..., yN ] ∈
RL×N , we use Yln to represent the entry of Y in the l-th row and n-th column and Y> to
indicate the transpose of the matrix. Using the symbol Y:n, we represent the n-th column
vector of the matrix Y. For n ∈ N, 1l is used to represent an all-one n× 1 vector. Besides,
‖ · ‖F denotes the Frobenius norm of matrices, and the symbols “·∗“ and “·/” represent
the element-wise matrix multiplication and division, respectively.

Next, we will briefly introduce some basic concepts about LMM, NMF, and two
representative variants of NMF.
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2.1. Linear Mixing Model

Due to its simplicity and effectiveness, LMM has been adopted by many HU studies.
In LMM, the observed spectrum of each pixel is regarded as a linear combination of a set of
endmember signatures weighted by their abundance fractions. Mathematically, LMM can
be expressed as

y = As + e, (1)

where y ∈ RL×1 is a vector denoting the observed pixel spectrum, A = [a1, a2, a3, . . . , aP] ∈
RL×P denotes the non-negative endmember matrix with each column representing an
endmember signature, vector s ∈ RP×1 stands for the abundance corresponding to y,
and e ∈ RP×1 represents an additive noise vector. Besides, to make the model to be physi-
cally meaningful, all components of the abundance vector must satisfy with abundance
non-negative constraint (ANC) and abundance sum-to-one constraint (ASC) [30], which are
expressed as follows,

ANC : sj ≥ 0, j = 1, . . . , P, (2)

ASC :
P

∑
j=1

sj = 1. (3)

From the point of matrix operation, LMM can be rewritten as a compact formula-
tion, i.e.,

Y = AS + E, (4)

where S = [s1, s2, s3, . . . , sN ] ∈ RP×N is the abundance matrix consisting of N abundance
vectors, E ∈ RL×N denotes the addition noise matrix, and L and P represent the number
of band and endmember of the target HSI, respectively. Generally, only the observed
hyperspectral data Y are known in the unmixing tasks, whereas the other two matrices A
and S need to be estimated under constraint conditions ANC and ASC.

2.2. Non-Negative Matrix Factorization

As an effective blind source separation tool, NMF has attracted wide attention and
received many successful applications in scientific and engineering fields. NMF aims
to decompose a given non-negative matrix into two non-negative factor matrices with
low ranks, so that the minimum error between the product of these factor matrices and
the original matrix is minimized [31]. Formally, the standard NMF can be written as

min
A,S
‖Y−AS‖2

F, s.t. A, S ≥ 0, (5)

where Y denotes the original matrix, A and S are two non-negative factor matrices,
and the operator ‖ · ‖F denotes the Frobenius norm of matrices, whereas “≥” indicates
the element-wise great than or equal to relationship between two matrices.

Because the objective function in Equation (5) is non-convex w.r.t the two factor
matrices A and S simultaneously, the multiplication update rule (MUR) [19] based on
the alternating optimization technique is commonly used to minimize A and S. With MUR,
each one of A and S is optimized with another being fixed in the algorithm iteration,
and the corresponding update rules of them can be represented as follows,

A← A· ∗ YS>·/ASS>, (6)

S← S· ∗A>Y·/A>AS. (7)

It is worth noting that the standard NMF suffers from the problems of being prone
to trap into the local minimum and non-uniqueness of the solutions. One of the effective
methods to tackle these problems is to introduce additional constraints or penalty terms
into its objective function, so that the obtained solutions are more satisfied with the need
for particular applications.



Remote Sens. 2021, 13, 268 5 of 19

Considering the property of abundance sparseness of real HSIs, an unmixing method
based on sparsity constrained NMF method, named L1/2NMF, is proposed in [22], which
adds the sparsity constraint of abundance into the standard NMF and leads to more
satisfactory results than other sparse NMF methods. The objective function of L1/2NMF is
given by

f (A, S) =
1
2
‖Y−AS‖2

F + λ‖S‖ 1
2
, (8)

where λ is the regularization parameter used to weight the contribution of ‖S‖ 1
2
, which is

expressed as follows,

‖S‖ 1
2
=

P

∑
p=1

N

∑
n=1

(Spn)
1
2 . (9)

However, L1/2NMF often leads to quite different solutions giving different initial val-
ues. Moreover, the results obtained by L1/2NMF are prone to noise interference. Therefore,
it is necessary to exploit the structure of data to stabilize the sparse decomposition. In-
spired by recent studies in manifold learning and sparse NMF, graph-regularized L1/2NMF
(GLNMF) [14] is proposed for HU. The objective function of GLNMF is expressed as fol-
lows,

f (A, S) =
1
2
‖Y−AS‖2

F + λ‖S‖ 1
2
+

µ

2
Tr(SŁS>), (10)

where λ and µ are regularization parameters; Tr(·) represents the trace of matrices; the reg-
ularization term Tr(SŁS>) plays the role of manifold constraint, in which Ł = D−W is
a Laplacian matrix; and D is a diagonal matrix with Dii = ∑j Wij, while W is the weight
matrix of the graph constructed based on the HSI data. Given that yj is one of the k-nearest
neighbors of yi according to the spectral distance, the weight matrix W of the graph is
given via heat kernel as

Wij = e−
‖yi−yj‖

2

σ . (11)

As the GLNMF algorithm incorporates sparsity constraint and graph regularization
simultaneously, it leads to a more desired unmixing performance. However, both L1/2NMF
and GLNMF neglect the imbalanced samples in real hyperspectral data, which restricts
their performance.

3. Methodology
3.1. CW-NMF

In previous studies, most NMF-based unmixing methods have neglected the imbal-
anced samples included in many real hyperspectral images. In these data, there may be
a large difference in the number of samples related to different endmembers, which is
mainly caused by the imbalanced nature of the target distribution. For example, in a
typical urban scenario, the dirt road only occupies a small number of areas compared with
the asphalt road. As a result, endmembers with fewer samples are easy to be ignored due
to the statistical characteristic of NMF, which causes the corresponding endmembers to
be estimated with lower accuracy. Therefore, it is necessary to capture such imbalanced
sample information to guide the NMF-based unmixing process. In this paper, we focus
on the HU issue in the presence of imbalanced samples. To do so, we design a weight-
ing mechanism that assigns appropriate weight value to each sample in the NMF-based
unmixing procedure. With this strategy, the pixels that include imbalanced endmembers
are assigned larger weight values, while the pixels mixed with majority endmembers are
given smaller weight values. Consequently, the pixels with imbalanced endmembers have
a significant impact on data reconstruction in the NMF-based model.
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In our proposed unmixing model, we introduce a weight matrix into the objective
function of the standard NMF, and the obtained objective function can be formally ex-
pressed as

f (A, S) =
1
2
‖(Y−AS)B‖2

F, (12)

where B ∈ RN×N is the diagonal weight matrix given by

B =


b11

b22
. . .

bNN

. (13)

According to Equation (12), the diagonal element bii of B plays the role of the weight
of reconstruction error Y:i − (AS):i. In this way, we aim to enhance the impact of the pixel
Y:i in the data reconstruction if it contains imbalanced endmembers. On the contrary, if Y:i
is mixed with majority endmembers, the impact of Y:i is reduced in the data reconstruction
by a smaller value of bii. Based on this analysis, the proposed unmixing model is given
as follows,

min
A,S

f (A, S) =
1
2
‖(Y−AS)B‖2

F, s.t. A, S ≥ 0. (14)

It is worth noting that our proposed unmixing model has good extensibility for incor-
porating additional constraints and regularization terms, such as the sparsity constraint of
abundance and graph-based regularization, which is demonstrated in Section 4.

Although the proposed CW-NMF model provides a general framework for unmixing
HSIs with imbalanced samples, how to obtain the weight value related to each pixel remains
a challenging work. To tackle this problem, as shown in Figure 1, we first conduct clustering
analysis on the HSI matrix Y via K-means, so that different types of imbalanced samples
are founded. Note that the number of clusters K is equal to the number of endmembers
P for the sake of simplicity. Based on the clustering results C = (C1, C2, . . . , CK), where
Ck, (k = 1, 2, . . . , K) denotes a cluster, the number of pixels nk within each cluster Ck is
counted. Then, we compute the weight value wk associate with each cluster Ck by

wk =
log( N

nk
)

max(log(N
v ))

, (15)

where v = [n1, n2, . . . , nK] is a count vector, max(x) denotes a function used to obtain
the maximum element in vector x. In Equation (15), the numerator log( N

nk
) is designed to

give the basic weight information for each cluster Ck, which can not only provide distinct
weight information for the clusters with different number pixels, but can also avoid a
huge difference between them. As for the dominator max(log(N

v )), we aim to restrict
the weight value wk of each cluster in the interval [0,1]. Note that all the pixels in the same
cluster are assigned to the same weight value which equals to wk for the pixels in cluster
Ck. For the convenience of representation, the symbol bii that corresponds to the diagonal
element of the matrix B is introduced to denote the weight values corresponding to pixel
yi. In other words, if yi ∈ Ck, then bii = wk. In this way, the pixels include imbalanced
endmembers that have larger weight values and increase the impact of data reconstruction
in the unmixing process.
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Figure 1. Flow chart of the construction process of the weight matrix. First, the hyperspectral data cube is unfolded into
a 2D matrix with each column denoting a pixel. Then, the K-means method is applied to generate K clusters where K equals
to the number of endmembers P (here, P = 5). Based on the clustering results C = (C1, C2, C3, C4, C5), we count the number
pixels nk in each cluster Ck, where k = 1, 2, . . . , 5. Next, we obtain the weight value wk, (k = 1, 2, . . . , 5) for cluster Ck with
Equation (15). Finally, to assign a weight value bii to each pixel yi in cluster Ck, we construct a weight matrix by designating
bii as its diagonal elements.

3.2. Updating Rules

In the previous section, we have discussed the MUR of the standard NMF. Similar to
the case of the standard NMF, the objective function described in Equation (12) is non-
convex w.r.t factor matrices A and S simultaneously. Thus, it is hard to find the global
minimum of them. Here, the alternating optimization technique is used to update A
and S. Specifically, let Ψlp > 0 and Φpn > 0 be the corresponding Lagrange multipliers,
the Lagrange function L corresponding to f in Equation (12) can be expressed as

L =
1
2
‖(Y−AS)B‖2

F + Tr(ΨA>) + Tr(ΦS>)

=
1
2

Tr(YBB>Y>) + Tr(YBB>S>A>) +
1
2

Tr(ASBB>S>A>) + Tr(ΨA>) + Tr(ΦS>),
(16)

where the definition of Frobenius norm ‖A‖F = (Tr(A>A))1/2 and two properties of trace
Tr(AS) = Tr(SA), Tr(A) = Tr(A>) are utilized to get the second equation. Then, by finding
the partial derivative of A and S, we can get

∂L
∂A

= −YBB>S> + ASBB>S> + Ψ,

∂L
∂S

= −A>YBB> + A>ASBB> + Φ.

Resorting to the KKT conditions ΨlpAlp = 0 and ΦpnSpn = 0, it follows that

(−YBB>S> + ASBB>S>)· ∗A = 0,

(−A>YBB> + A>ASBB>)· ∗ S = 0.
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Therefore, the updating rules for A and S can be obtained as

A← A· ∗ YBB>S>· /ASBB>S>, (17)

S← S· ∗A>YBB>·/A>ASBB>. (18)

3.3. Implementation Issues

Here, several implementation issues for the proposed algorithm will be discussed
in detail.

The first issue concerning the initialization strategies of the factor matrices A and S. As
the non-convex function Equation (14) is prone to obtain a local minimum, different initial-
ization values of A and S will significantly affect the unmixing performance. In this paper,
we adopt two initialization strategies: random initialization and VCA-FCLS initialization.
To test the unmixing performance under general conditions, random initialization was em-
ployed in the experiments on synthetic data, where each entry of A and S was randomly set
in the interval [0,1]. The VCA-FCLS initialization was used in the experiments on real HSIs,
by which the VCA algorithm provides effective initial values for A, then the FCLS method
initializes S based on the results given by VCA. In this way, the promising initial values are
expected to be obtained, which is favorable for enhancing the unmixing performance.

The second issue is to guarantee the ANC and ASC in LMM. The updated formula
indicated by Equations (17) and (18) can implicitly guarantee the ANC constraint when
the initial values of A and S are non-negative. To ensure the ASC constraint, following
the measure in [22], we augment matrices Y and A by appending a row with all-one
vector, respectively. Based on this strategy, the matrices Y and A in Equation (18) will be
substituted by Ȳ and Ā, which is given by

Ȳ =

[
Y

δ1>N

]
, Ā =

[
A

δ1>P

]
, (19)

where δ is a parameter to adjust the impact of ASC. Note that the higher δ can lead to
a more satisfied ASC constraint but will cause a slower convergence rate [14]. To balance
these two factors, we set the parameter δ = 20 in our experiment.

Another issue is stopping criteria. In general, the most commonly used method is to
set the error tolerance or maximum iteration number. In our work, if the error tolerance of
objective function f (A, S) in successive iteration does not exceed the predefined threshold
value for ten times, our algorithm will terminate. At the same time, the iteration number of
our algorithms is limited by the predefined maximum iteration number. In the experiments,
we set the maximum iteration number to 3000.

The last one is how to determine the number of endmembers. Recently, two ef-
fective methods, i.e., virtual dimensionality [32] and hyperspectral signal identification
by minimum error (HySime) [33] are frequently used to estimate the number of end-
members. However, we assumed the number of endmembers is known a priori in our
experiments [14,21,22].

Based on the above method, the proposed CW-NMF algorithm is given in Algorithm 1.
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Algorithm 1 CW-NMF Algorithm For HU

Input: HSI matrix Y ≡ [y1, y2, . . . , yN ] ∈ RL×N ;
The number of endmembers P;
The number of clusters K;
And the maximum number of algorithm iterations MaxIter.

Output: Endmember matrix A and abundance matrix S.
1 Initialize endmember matrix A and abundance matrix S;
2 Conduct clustering analysis on Y via K-means algorithm;
3 Calculate the weight values wk, k = 1, 2, ..., K by Equation (15);
4 Construct the weight matrix B according to Equation (13);
5 Augment Y to obtain Ȳ by Equation (19);
6 while the stopping criteria are not satisfied do
7 Update A by Equation (17);
8 Augment A to obtain Ā by Equation (19);
9 Update S by Equation (18);

10 end

3.4. Computational Complexity Analysis

Here, the computational complexity of the proposed CW-NMF method will be dis-
cussed. For ease of calculation, the time of floating-point calculation is counted for each
iteration to analyze the computational complexity. As shown in Algorithm 1, the main com-
putation cost involves updates A and S in Equations (17) and (18), respectively. By referring
to Equations (17) and (18) corresponding to MURs of CW-NMF, as well as Equations (6)
and (7) representing MURs of standard NMF, we can see that the only difference between
the CW-NMF and standard NMF method is the existence of the weight matrix B. Conse-
quently, we analyze the computation cost of the CW-NMF based on the standard NMF
results. First, the computational complexity of the standard NMF is O(LNP) [14]. As for
the update of A, it is noted that the order of the matrix multiplication is important [34],
such as (YB)B> and Y(BB>), leads to different computational costs under different order.
The former needs O(2LN2), whereas the latter costs O(N3 + N2L) times. As L � N,
the O(2LN2) � O(N3 + N2L), which means that Y(BB>) is much more complex than
(YB)B>. Besides, the weight matrix B given in the proposed CW-NMF algorithm is a diago-
nal matrix, i.e., there is only one nonzero element in each row of the matrix B. The (YB)B>

costs about O(LN2) times under this condition. Therefore, the process of the update A
costs O(LN2) for one iteration. Similarly, the cost of computing S is O(LN2). Taking all
factors into consideration, the total cost of CW-NMF is O(mLN2) when the iteration stops
after m steps.

4. Method Extension

The proposed CW-NMF method provides a general framework for making use of
the information on imbalanced data in real HSIs. Thus, it is natural to consider extend-
ing it to other NMF-based unmixing methods, such as L1/2NMF and GLNMF methods,
which will be discussed in this section.

4.1. CW-L1/2NMF

As aforementioned, the L1/2NMF algorithm improves the unmixing performance by
incorporating the sparsity constraint of abundance into the unmixing model. However,
L1/2NMF only considers the sparseness of the data, which leads to unstable decomposition
results and poor noise robustness. To tackle this issue, we introduced the proposed weight
matrix into L1/2NMF, so that we can simultaneously exploit the information of imbalanced
samples and the sparsity property of abundances. Specifically, the weight matrix B is
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extended to L1/2NMF (named CW-L1/2NMF), and the obtained objective function can be
expressed as

f (A, S) =
1
2
‖(Y−AS)B‖2

F + λ1‖S‖ 1
2
, (20)

where B is the weight matrix calculated by Equation (15). It is easy to see that MUR of A
in Equation (20) is the same as Equation (17). According to the deduction of MUR about S
in [22] and Equation (18), MUR of S in Equation (20) are obtained and presented as

S← S· ∗A>YBB>·/(A>ASBB> +
1
2

λ1S−
1
2 ). (21)

4.2. CW-GLNMF

As has been mentioned in Section 2.2, GLNMF aims to improve the performance of
L1/2NMF by assuming that the samples are distributed on a low-dimensional manifold
in a high-dimensional Euclidean space and exploiting the manifold structure of data via
the graph-based regularization. To effectively utilize the prior information of imbalanced
samples in the data during the unmixing procedure of GLNMF, we have introduced
the weight matrix into the objective function of GLNMF, and the obtained cluster-wise
weighted GLNMF (named CW-GLNMF) unmixing model is given as

f (A, S) =
1
2
‖(Y−AS)B‖2

F + λ2‖S‖ 1
2
+

µ

2
Tr(SŁS>), (22)

where λ2 and µ are regularization parameters used to adjust the impact of sparsity con-
straint imposed on S and the graph-based regularization, respectively; B is the introduced
weight matrix that is constructed according to Equation (15). By referring to the deduc-
tion procedure of Equation (18) and MUR of S in GLNMF [14], we can get MUR of S
in CW-GLNMF as

S← S· ∗ (A>YBB> + µSW)·/(A>ASBB> +
1
2

λ2S−
1
2 + µSD), (23)

whereas MUR of A remains the same as the CW-NMF solution, i.e., it is identical to
Equation (17).

5. Experimental Results

In this section, a series of experiments on synthetic and real hyperspectral data sets are
conducted to evaluate the performance of the proposed methods: CW-NMF, CW-L1/2NMF,
and CW-GLNMF. For the experiments on synthetic data sets, our methods are compared
with NMF, L1/2NMF, and GLNMF. When our methods are tested on real hyperspectral
data, they are compared with four representative algorithms, i.e., NMF, L1/2NMF, GLNMF,
SGSNMF, and VCA followed by FCLS (VCA-FCLS), in which the first four are NMF-based
unmixing methods, whereas VCA is a famous geometry-based method for endmember
extraction. As VCA can only extract endmember from data, we estimate the correspond-
ing abundances by the FCLS method based on the results given by VCA. Note that all
the algorithms are tested 20 times and the average performance is reported. In the ex-
periment, spectral angle distance (SAD) and root mean square error (RMSE), which have
been widely adopted in the existing works, are used to measure the accuracy of estimated
endmembers, as well as their corresponding abundances, respectively. Specifically, for the
p-th endmember, the SAD between the reference signature Ap and the estimated one Âp is
defined as

SADp = arccos

(
Âp
>Ap

‖Âp‖‖Ap‖

)
, (24)
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where ‖·‖ represents the Euclidean norm of vectors. To evaluate the difference between
the reference abundances Sp corresponding to the p-th endmember and the estimated
abundances Ŝp, the RMSE criterion is adopted and defined as

RMSEp =

(
1
N
|Ŝp − Sp|2

) 1
2
. (25)

5.1. Experiments on Synthetic Data

To generate the synthetic data set, five real spectral signatures are randomly chosen
from the United States Geological Survey (USGS) digital spectral library. These selected
signatures contain 224 spectral bands with wavelengths from 0.38 to 2.5 µm. Based on them,
the synthetic data sets are generated by the modified process in [22]: (1) an image of size 64
× 64 pixels is divided into 8 × 8 blocks and all blocks are of the same size; (2) ten blocks
among 64 blocks are randomly selected. Then, five blocks of the chosen blocks are covered
by the same type of designated endmembers, and the rest five blocks are also filled with
a kind of specified endmember. The remaining blocks are filled by the randomly selected
endmembers from another three types of endmembers so that each block is covered with
only one type of material; (3) a 9 × 9 low-pass filter is applied to the image to get mixed
pixels, and the abundance vector corresponding to each pixel is obtained; (4) to adjust
the mixing degree of the synthetic data, the pixel whose abundance is larger than a preset
parameter θ will be replaced with a mixture of three randomly selected endmembers with
equal ratio; and (5) to test the robustness of our methods to noise interference, we add
zero-mean white Gaussian noise of different signal-to-noise ration (SNR) to the obtained
synthetic data set. Here, SNR is defined as

SNR = 10 log10
E[y>y]
E[e>e]

, (26)

where y and e represent the observation vector and noise vector of a pixel, respectively;
E[·] denotes the expectation operator. As an example of the synthetic data, Figure 2a–f
shows the abundance maps and the 188th band of a 64 × 64 synthetic data with SNR of
25 dB, respectively, and Figure 2g gives the curves of the selected endmembers.
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Figure 2. Example of the synthetic data. (a–e) Abundance maps. (f) the 188th band of a 64 × 64 synthetic data with
signal-to-noise ration (SNR) of 25 dB. (g) Endmembers used to create synthetic data sets.
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Experiment 1 (select the algorithm parameters): In this section, several experiments
are designed to determine the optimal values of parameters λ1, λ2, and µ with the synthetic
data generated under the condition that SNR = 25 dB, P = 5, and θ = 0.7. Note that
parameter λ1 is the regularization parameter of the method CW-L1/2NMF, while λ2 and
µ are the regularization parameters of CW-GLNMF. To decrease the influence of random
initialization, the same initial A and S are used in both CW-L1/2NMF and CW-GLNMF
throughout the experiments. First, the parameter λ1 in the extended algorithm CW-
L1/2NMF is tested. Figure 3a shows the performance of CW-L1/2NMF when the value λ1
is changed from 0 to 0.4 with an interval of 0.02. As shown in Figure 3a, the SAD decreased
in the interval [0, 0.12], whereas increased in the interval [0.14, 0.4]. The CW-L1/2NMF
shows better performance when parameter λ1 varies from 0.12 to 0.14. As for the RMSE
values, they are stable in the interval [0, 0.16] and increase in the interval [0.16, 0.4],
indicating the worse performance of CW-L1/2NMF. On the whole, CW-L1/2NMF obtained
better performance in the interval [0.12, 0.14], and we set λ1 = 0.12 in the experiments.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

SAD
RMSE

(a) Parameter λ1
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Figure 3. Algorithm parameter analysis about λ1, λ2, and µ.

Next, we select the optimal value of the parameter µ of the proposed CW-GLNMF
method when λ2 is set to 0.1. We test the performance of CW-GLNMF by altering the value
µ from 0 to 0.4 with a step size of 0.02. The obtained SAD and RMSE results are given
in Figure 3c. As can be seen from Figure 3c, the values of the SAD decreased when µ
varies in the interval [0, 0.14], and it increased with µ changing from 0.16 to 0.22. It is
easy to see that better SAD performances of CW-GLNMF can be achieved in the interval
[0.14, 0.18]. Besides, the RMSE values decrease in the case of µ in the interval [0, 0.14],
and it remains stable and better values under the condition that µ changes from 0.14 to 0.4.
Overall, CW-GLNMF can provide better SAD and RMSE performance when µ varies from
0.14 to 0.16. Thus, the average value of µ = 0.15 can be selected as a better parameter.

Here, we test another parameter, λ2, of the CW-GLNMF algorithm by fixing µ = 0.15.
Similarly, the value of λ2 is set to change between 0 and 0.4 with an interval of 0.02.
Figure 3b shows the unmixing performance of CW-GLNMF w.r.t. SAD and RMSE criteria.
From Figure 3b, we can see the SAD value is decrease when λ2 locates in the interval
[0, 0.1], and the least value is obtained in the case of λ2 = 0.1. Concerning the RMSE
criterion, it has stable and small values when λ2 varies from 0 to 0.1, whereas its values get
larger in the interval [0.1, 0.4]. In general, our CW-GLNMF method provides its minima
when parameter λ2 = 0.1. To sum up, the following experiments are implemented based
on λ1 = 0.12, λ2 = 0.1 and µ = 0.15.

Experiment 2 (robustness of the algorithm under different noises): This experiment is
designed to test the robustness of the six NMF-based algorithms on synthetic data with
different noises. In our experiment, we only change the value of SNR from infinity (noise-
free) to 15 dB with an interval of 10 dB. Figure 4 provides the average performance of six
algorithms when they are tested on the data with different SNR. From Figure 4, we can see
that the performance of these methods become worse when the value of SNR decreases.
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According to SAD values, Figure 4a shows that the CW-NMF has an obvious advantage
by providing smaller values than the NMF method when SNR varies. CW-L1/2NMF also
gives slightly better SAD values when compared with L1/2NMF. Meanwhile, CW-GLNMF
obtains the smallest SAD values than GLNMF, indicating that CW-GLNMF can achieve
more accurate endmembers. As for the RMSE values shown in Figure 4b, CW-NMF is
superior to NMF as it has been given a smaller RMSE value, and CW-L1/2NMF has better
performance than L1/2NMF on the data with different SNR. It is easy to see that the CW-
GLNMF not only has smaller RMSE values than GLNMF, but also provides the best RMSE
values on the data with SNR changing from infinity to 35 dB. Generally, our proposed
algorithms outperform the other three representative methods at alterative, respectively,
which verifies the robustness to the noise of our proposed algorithms.
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Figure 4. Results on synthetic data: (a) SAD and (b) RMSE as a function of SNR.

Experiment 3 (convergence analysis): In this experiment, we analyze the convergence
of our proposed methods and the other three methods. We test all six methods on the syn-
thetic data that are generated under the condition that SNR = 25 dB, P = 5, and θ = 0.7.
The approximation errors between the original and reconstruction data by product of
the matrix given by all the methods are plotted in Figure 5. As shown in Figure 5, the plots
of appropriation error decrease as the iteration number varies from 0 to 2000, and then
keep stable when the iteration number in the interval [2000, 3000], indicating those curves
are convergence. Moreover, CW-NMF has a similar reconstruct error, but achieves a better
convergence rate at the early stages of the optimization process. As for CW-L1/2NMF and
L1/2NMF, we can see that CW-L1/2NMF has a better reconstruct error. By comparing with
the GLNMF algorithm, CW-GLNMF shows obvious superiority in the convergence rate.
Consequently, our methods can reach faster convergence within 3000 times, and obtain
similar error with another three methods.
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Figure 5. The convergence comparison of our proposed methods and other methods.

Experiment 4 (factor exploration): Here, some visual results are shown to provide an
intuitive evaluation of the effectiveness of our proposed weight matrix B. By conducting
clustering analysis via the K-means method on the synthetic data with five endmembers,
we obtained the matrix B according to Algorithm 1, whose diagonal elements are composed
of wk, (k = 1, 2, 3, 4, 5). Figure 6 gives five visual images of the weight matrix B, where
each image is represented by a manner of the heat map, and non-zero pixels in the k-th
image has the value of wk. Note that the pixel with high color temperature indicates a large
weight of the corresponding pixel. By comparing Figure 2a–e with 6a–e, respectively,
the weight matrix B has a good similarity to the reference abundances of synthetic data.
Thus, it reveals that the introduction of weight matrix B is reasonable and effective both on
theoretical analysis and experimental verification.
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Figure 6. Visual demonstration of the proposed weight matrix. (a–e) Visual images of the weight
matrix B, where each image is represented by a manner of the heat map, and non-zero pixels
in the k-th image has the value of wk.

5.2. Experiments on Real Hyperspectral Data

To validate the performance of the proposed methods, we conduct several experiments
on the real-world hyperspectral data. Here, the Washington DC Mall hyperspectral data
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acquired by the Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor
is applied to compare the proposed methods with VCA-FCLS, NMF, L1/2NMF, GLNMF,
and SGSNMF [21].

The original Washington DC Mall hyperspectral data consists of 210 spectral bands
with wavelengths from 0.4 to 2.5 µm. In our experiments, a sub-image with a size of
150 × 150 pixels is extracted from the original image, which contains five ground-truth ma-
terials of interest: Tree, Grass, Street, Roof, and Water. Before unmixing, we removed
the low SNR and water vapor absorption bands (including bands 103–106, 138–148,
and 207–210) from the data, leaving 191 bands. Note that each type of reference end-
member of the HYDICE Washington DC Mall data is generated by first manually choosing
15 pixels from the original data cube, then computing the average value of the selected
pixels. Figure 7 shows the 3D cube of Washington DC Mall data, in which the yellow circles
indicate the position where the pixels used to generate the reference endmembers are
chosen. According to the distribution proportion of the interesting materials in the scene
shown in Figure 7, we assume that the street corresponds to the imbalanced endmember.

Figure 7. The 3D cube of Washington DC Mall data. This data is selected from the original hyper-
spectral image and has 150 × 150 pixels. There are five types of endmembers in the scene including
Tree, Grass, Street, Roof, and Water.

To test the accuracy of the endmember extraction of our methods quantitatively, Table 1
lists the SAD values corresponding to different endmembers, the standard deviations of the
SAD values, as well as their average values given by all of the methods. As shown in Table 1,
the proposed CW-NMF method has better performance than the NMF method by providing
three better cases and decreasing the average SAD value of 4.3% compared with the NMF
method. As for the imbalanced endmember, CW-NMF decreases the SAD value of 6.4%
than the NMF method. By comparing the SAD values given by L1/2NMF and CW-L1/2NMF,
our proposed CW-L1/2NMF method outperforms the L1/2NMF by providing lower average
SAD value and more best cases. Besides, CW-L1/2NMF method provides the second-
best SAD value about the imbalanced endmember and it reduces the SAD value of 3.6%
compared with L1/2NMF. In addition, the proposed CW-GLNMF method shows the best
performance by giving two best cases and best average SAD value. Compared with GLNMF,
CW-GLNMF decreases the SAD value of 10.3% about the imbalanced endmember. To
provide visual comparisons, Figure 8 shows color images of the estimated abundance maps
given by all the methods, where brighter pixels represent a higher abundance of the relative
endmember in the map. In addition, we plot the endmember signatures obtained by CW-
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NMF, CW-L1/2NMF, and CW-GLNMF algorithms, as well as the reference endmember
in Figure 9. We can see from Figure 9 that the estimated endmembers have good similarity
with the corresponding reference signatures, and the CW-GLNMF algorithm shows the best
consistency than the other two methods.

CW-NMF

CW-L1/2NMF

CW-GLNMF

NMF

L1/2NMF

GLNMF

SGSNMF

VCA-FCLS

(a) Tree (b) Grass (c) Street (d) Roof (e) Water

Figure 8. Abundance maps estimated by CW-NMF, CW-L1/2NMF, CW-GLNMF, NMF, L1/2NMF,
GLNMF, SGSNMF, and VCA-FCLS on Washington DC Mall data: (a) Tree, (b) Grass, (c) Street,
(d) Roof, and (e) Water.
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Figure 9. Endmembers of HYDICE Washington DC Mall estimated by CW-NMF, CW-L1/2NMF,
and CW-GLNMF methods. Black solid lines denote the reference endmembers and red double-
dashed lines denote the estimated endmembers by CW-NMF. Besides, the other two estimated
endmembers (CW-L1/2NMF, CW-GLNMF) are represented by blue dotted lines and cyan dashdot
lines, respectively.

Table 1. Performance comparison on the HYDICE Washington DC Mall data, where the red bold and blue italic fonts denote
the best and second-best results, respectively. In addition, the black bold letters represent the imbalanced endmember.

Endmembers CW-NMF CW-L1/2NMF CW-GLNMF NMF [19] L1/2NMF [22] GLNMF [14] SGSNMF [21] VCA [12]

Tree 0.2177 ± 2.66 0.1732 ± 12.48 0.1462 ± 16.26 0.2413 ± 8.01 0.1842 ± 1.18 0.1821 ± 14.30 0.1763 ± 1.03 0.2018 ± 0.67
Grass 0.2906 ± 5.61 0.1296 ± 8.98 0.1557 ± 10.44 0.2559 ± 4.68 0.2345 ± 4.11 0.2102 ± 6.67 0.1646 ± 19.78 0.2699 ± 6.56
Roof 0.1261 ± 3.82 0.1785 ± 3.21 0.1482 ± 2.48 0.1428 ± 3.57 0.1670 ± 4.43 0.1600 ± 3.61 0.3019 ± 6.79 0.1505 ± 4.10
Water 0.1738 ± 25.42 0.2437 ± 20.25 0.1857 ± 33.39 0.1936 ± 27.86 0.1734 ± 15.60 0.1402 ± 11.68 0.1226 ± 1.16 0.2144 ± 28.12
Street 0.4342 ± 18.87 0.4295 ± 13.67 0.4227 ± 16.52 0.4642 ± 14.46 0.4456 ± 12.57 0.4716 ± 15.56 0.4905 ± 28.98 0.4827 ± 11.57

Average 0.2485 ± 11.27 0.2309 ± 11.72 0.2117 ± 15.82 0.2596 ± 11.72 0.2409 ± 7.58 0.2328 ± 10.36 0.2512 ± 11.55 0.2639 ± 10.20

6. Conclusions

In this paper, we have proposed a cluster-wise weighted NMF method for hyper-
spectral unmixing by exploiting the information of imbalanced samples in hyperspectral
images. Specifically, a weight matrix constructed based on the results of clustering analy-
sis on the data is incorporated into the standard NMF model, which effectively reduces
the influence of imbalanced samples in the data to the statistical performance of NMF, so
that the unmixing results can give more accurate endmembers and abundances. Moreover,
the proposed NMF-based unmixing method provides a general framework for unmix-
ing hyperspectral data with imbalanced samples, which is demonstrated by extending
the proposed method by adding the sparsity constraints of abundance or graph-based
regularization. A series of experiments on both synthetic and real hyperspectral data has
demonstrated that the proposed methods outperformed several state-of-the-art methods.
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Abbreviations
The following abbreviations are used in this manuscript:

HSI Hyperspectral remote sensing image
HU Hyperspectral unmixing
NMF Non-negative matrix factorization
CW-NMF Cluster-wise weighted nonnegative matrix factorization
L1/2NMF L1/2 regularized NMF
GLNMF the graph regularized L1/2NMF
SGSNMF the spatial group sparsity regularized NMF
ANC Abundance non-negative constraint
ASC Abundance sum-to-one constraint
VCA Vertex component analysis
FCLS Fully constrained least squares
LMM Linear spectrum mixture model
SNR Signal-to-noise ration
SAD Spectral angle distance
RMSE Root mean square error
MUR Multiplicative update rule
USGS United States Geological Survey
HYDICE Hyperspectral Digital Imagery Collection Experiment
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