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Abstract: This paper considers a non-cooperative passive localization system wherein widely dis-
tributed receivers are used to localize a transmitter radiating a periodical pulse pair signal. Two pos-
sible pulse modulation models, noncoherent and coherent pulses, are fully considered for practical
application, and are effectively unified as a general model for the algorithm design. To achieve highly
accurate and robust localization performance, an enhanced direct position determination (DPD)
algorithm based on waveform estimation (WE) is devised to jointly estimate the transmitter position
and the waveform profile. The optimal objective function based on a least square (LS) principle is first
derived to directly determine the position of the transmitter. Due to the complete lack of knowledge
on the transmitted signal, the processing center calculates the objective function at each searched
grid of interest by using estimated pulses instead of the real ones, while extraction of pulse samples
and estimation of waveform are executed. Theoretical derivation gives the solution to estimate
the non-parameterized waveform with a structure of maximum Rayleigh quotient. Additionally,
simulation results verify the effectiveness of the proposed algorithm for many common waveform
types in the cases of transmitting noncoherent and coherent pulses, and also show the excellent
advantage over the classical DPD algorithm at low signal-to-noise ratio (SNR).

Keywords: non-cooperative passive localization; direct localization; waveform estimation

1. Introduction

As a fundamental demand of many applications, localization technology has been
attracting great attention from radar [1–4], sonar [5–7], wireless sensor network [8–11],
global navigation satellite systems (GNSS) [12–14] and so on. Generally, according to
different demands of practical applications, localization systems are designed and classified
into two main categories: active and passive systems. Overall, the active localization system
with transmitters has better performance in accuracy and robustness than the passive one
owing to its full control of transmitted signals. The passive system has the advantage
of lower costs of procurement and maintenance, as well as covert operation, due to no
equipment of transmitters, and thus has received significant interest in the academic
community. This paper mainly considers a non-cooperative localization problem for an
emitter by multiple widely distributed passive receiver stations.

The localization methods contain two main categories of indirect localization and di-
rect localization, or sometimes called two-step and one-step localization. Common indirect
localization algorithms are implemented based on some intermediate parameters, time of
arrival (TOA), time difference of arrival (TDOA), direct of arrival (DOA) and Doppler
shift [15–21], which need to be estimated from received signals in advance as inputs of
the algorithms. The indirect algorithms can achieve excellent accuracy only when all
the intermediate parameters are high-reliable. However, they always suffer from great
performance degradation when some of intermediate parameters can not be estimated
or obtained reliably from received signals, often happening in lower signal-to-noise ratio
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(SNR) environment. Considering the information loss that the use of intermediate param-
eters incurs, many direct localization algorithms are proposed to determine the position
only using many raw received signals regardless of the intermediate parameters [22–35].
Compared with the indirect localization methods, the direct approaches have higher accu-
racy and better robustness for localization at lower SNR [22–25], as well as the inherent
capability of easily localizing multiple targets [31–35].

Many passive direct localization algorithms have been developed to enhance per-
formance of passive localization system, since Weiss first proposed the direct position
determination (DPD) approach in [22]. Considering the use of Doppler frequency shift,
Ref. [23] applied the DPD idea to multiple moving platforms for localization of a stationary
emitter. In [24], a novel DPD algorithm based on cyclostationary signals was proposed
to address the localization of narrowband radio transmitters in the presence of narrow
interference for high robustness. For further improvement of localization accuracy at low
SNR, Ref. [28] fully considered the prior knowledge about the model of a transmitted
signal, and proposed a joint estimation of location and signal parameters to localize an
emitter radiating linear frequency modulation (LFM) signals. Furthermore, owing to the
inherent advantage of multi-target localization, some passive localization algorithms for
multiple targets have evolved from the classical DPD. Ref. [31] first proposed the DPD al-
gorithm based on multiple signals classification (MUSIC) technique for multiple unknown
noncoherent signals, followed by a high resolution DPD algorithm based on minimum
variance distortionless response (MVDR) [33]. To handle the invalidity for coherent signal
scenario in [31,33,34] considered combining the iterative adaptive approach with DPD
to localize many coherent signals. Overall, the approaches of DPD greatly promote the
development of passive localization algorithms in various application scenario.

From the perspective of improving accuracy, Ref. [28] provided a novel idea to enhance
the performance of the classical DPD for a passive non-cooperative localization system.
Based on the assumption that transmitting signals belonged to the family of LMF, this paper
first selected short time Fourier transform (STFT) technique to extract the valid spectrum
fragment of the transmitting signals, and then adopted a joint estimation strategy of signal
and position parameters to directly determine an emitter. The algorithm, called DPD-STFT,
fully exploits the waveform profile information that the classical DPD ignores, and therefore
gains better accuracy than the DPD-unknown algorithm (The DPD algorithms used in
the two cases of unknown and known signal waveform are referred to as DPD-unknown
and DPD-known respectively for distinction). In essence, DPD-STFT can be viewed as an
attempt to approximate the optimal algorithms like DPD-known or maximum likelihood
(ML) based localization algorithm. However, the premise of the known waveform model
inevitably results in the practical application constraint.

In this paper, we still devote our effort to enhancing performance of DPD-unknown for
better accuracy and robustness in the non-cooperative localization system. A joint estima-
tion strategy of waveform and position is proposed to directly localize a non-cooperative
emitter. Here, the restriction on the waveform model of LFM in DPD-STFT is relaxed in the
proposed algorithm. Specifically, we do not make any assumption about the transmitted
waveform. The proposed algorithm builds a modified position estimator for localization
by replacing the true waveform with an estimated waveform, which is recovered by using
a non-parameterized estimation way. Various simulation results are also given to show
the performance of the proposed algorithm. The main contributions of this paper are
summarized as follows:

• The proposed algorithm extends the application range of DPD-STFT algorithm due to
no limitation on the waveform types of the transmitted signal.

• The proposed algorithm further considers a transmitted signal that contains periodical
pulses for extension of non-cooperative passive localization, where a unified process-
ing framework is proposed to deal with the noncoherent and coherent modulated
transmitted signal.
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• The proposed algorithm has the performance advantage over the classical unknown-
DPD algorithm due to full exploration of waveform information.

The rest of this paper is organized as follows. A unified model for received signals with
two different modulation cases is presented in Section 2. Section 3 states the localization
problem formulated in a least square (LS) estimation paradigm. The proposed algorithm
is presented in detail in Section 4, followed by numerical simulation results in Section 5.
Finally, conclusions are drawn in Section 6.

2. Signal Model

Consider a localization system consisting of L receiving stations widely distributed in a
two-dimensional Cartesian coordinate system, and the stations are located at
pl = (xl , yl), l = 1, 2, . . . , L, respectively. Extension of a three-dimensional case is straight-
forward by increasing the dimensions of position state. The receivers are allowed to work
synchronously with same reference time and phase by oscillators. They can transfer elec-
tromagnetic signals intercepted from free space to a processing center. In the surveillance
region, a stationary transmitter located at p = (x, y) radiates a periodical pulse pair signal
with a fixed pulse repetition interval (PRI) Tr. It is assumed that the PRI is larger than
the maximum time difference of arrival of the transmitting signal to the stations (This
assumption means that the first received pulses of all stations correspond to the same
transmitting pulse. It is a reasonable and practical assumption for simplifying the analysis).
The periodical baseband signal x(t) comprises of M waveforms s(t) with the time width
Tp, and is expressed as

x(t) =
M−1

∑
m=0

s(t−mTr), (1)

where s(t) denotes the waveform embedded in each pulse duration of x(t), and satisfies
s(t) = 0 for any t 6∈ [0, Tp]. As a modulation signal, x(t) is modulated by multiplication
with a transmitted carrier signal in a noncoherent or coherent way. Figure 1 illustrates the
difference of these signals visually.

sin 2 cf
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Figure 1. Illustration of the concept of a coherent transmitting signal. (a) Modulation pulse pair x(t).
(b) Carrier Signal. (c) Coherent transmitting signal.
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2.1. Noncoherent Pulse Pair Model

Firstly, we consider the case that the transmitter radiates a noncoherent pulse pair.
For the transmitter, after noncoherent modulation to the baseband pulse pair in (1),
the transmitting signal can be expressed as

x̃nc(t) =
M−1

∑
m=0

s(t−mTr)ejφm ejωct, (2)

where the term φm, m = 0, . . . , M− 1, is starting phase of the mth modulated pulse with its
value selected randomly uniformly in [0, 2π], and ωc = 2π fc is the angular frequency form
corresponding to the carrier frequency fc of the transmitting signal.

The received signal of the receiver l can be denoted by

r̃nc,l(t) = αl

Ml−1

∑
m=0

s(t− t0 − τl(p)−mTr)ejφm ejωc(t−t0−τl(p)) + nl(t), 0 < t < T, (3)

where αl is the complex attenuation coefficient corresponding to the path from the trans-
mitter to the receiver l and it is seen as a definite unknown quantity during the observation
T (Assume that the wireless channel varies slowly during the observation). The term Ml
denotes the number of pulses that the receiver l intercepts, and the numbers of intercepted
pulses from different receivers are probably unequal due to operating state of the receivers
and demand of practical application. The term t0 is the transmitting time of the signal
from the transmitter. The term nl(t) is additive white noise, and is mutually independent
between different receiving/transmitting paths. The term τl(p) is the delay of signal
propagation from the transmitter to the receiver l, denoted by

τl(p) =
‖p− pl‖

c
,

with ‖ • ‖ representing the Euclidean norm and c denoting electromagnetic wave propaga-
tion speed. Define τ̃l(p, t0) = τl(p) + t0, and (3) can be written concisely as

r̃nc,l(t) = αl

Ml−1

∑
m=0

s(t− τ̃l(p, t0)−mTr)ejφm ejωc(t−τ̃l(p,t0)) + nl(t), 0 < t < T. (4)

Notice that, for simplifying notation, the dependence on transimitter location p and/or
work time t0 is dropped so that τl and τ̃l are used in place of τl(p) and τ̃l(p, t0) in the
remaining part of this paper.

After processing the received signal by a down-conversion mixer, we can obtain the
baseband form of the received signal, expressed as

rnc,l(t) = αl

Ml−1

∑
m=0

s(t− τ̃l −mTr)ej(φm−ωc τ̃l)ejω0t + nl(t), 0 < t < T, (5)

where ω0 = ωc −ωd, and ωd is the angular frequency of the down-conversion mixer in the
receiver, known to all receivers.

2.2. Coherent Pulse Pair Model

For the case of transmitting coherent pulse pair, the transmitting signal can be ex-
pressed as

x̃c(t) =
M−1

∑
m=0

s(t−mTr)ejωct. (6)

The coherent modulation for these M pulses in the transmitter means that they have a
common reference phase in time [36]. This often implies that enough information about
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the transmitting signal, such as reference time and phase as well as signal frequency, is
necessary for the receivers to achieve coherent signal processing; however, for this case
of non-cooperative localization discussed in this paper, it is too difficult, even impossible,
to obtain such prior information.

For the coherent transmitted signal, the received signal of the receiver l can be de-
noted as

r̃c,l(t) = αl

Ml−1

∑
m=0

s(t− τ̃l −mTr)ejωc(t−τ̃l) + nl(t), 0 < t < T. (7)

Similarly, after down-conversion processing, the baseband form of the received signal
that the receiver l intercepts can be expressed as

rc,l(t) = αl

Ml−1

∑
m=0

s(t− τ̃l −mTr)e−jwc τ̃l ejω0t + nl(t), 0 < t < T. (8)

2.3. Unified Signal Model

For non-cooperative localization system, the information about a transmitter, such as
accurate carrier frequency, signal transmitting time and modulation method, is impossi-
ble to attain for receivers. Therefore, noncoherent processing approach is employed for
designing localization algorithm. For the above noncoherent and coherent pair models,
the received signal can be reconstructed in a unified model for localization due to the lack
of phase information between pulses. For the noncoherent pulse pair, the Equation (5) can
be rewritten as

rnc,l(t) = αl

Ml−1

∑
m=0

s(t− τ̃l −mTr)ejξm ejω0(t−τ̃l−mTr) + nl(t), 0 < t < T (9)

with ξm = φm −ωcτ̃l + ω0(τ̃l + mTr) still distributed uniformly in [0, 2π].
For the coherent pulse pair, we can get the similar signal form

rc,l(t) = αl

Ml−1

∑
m=0

s(t− τ̃l −mTr)ejϑm ejω0(t−τ̃l−mTr) + nl(t), 0 < t < T, (10)

where the phase ϑm = ω0(τ̃l + mTr)− wcτ̃l can be regarded reasonably as an unknown
variable distributed uniformly in [0, 2π] because of the lack of any prior information
about the transmitter. It is worth noting that the above converted angular frequency
ω0 is unknown to all receivers due to no precise real carrier frequency information of
the transmitter.

Thus, we can unify the noncoherent and coherent received baseband signal models
into the following expression

rl(t) = αl

Ml−1

∑
m=0

ejϕm u(t− τ̃l −mTr) + nl(t), 0 < t < T, (11)

where
u(t) = s(t)ejω0t,

and ϕm, starting phase of each pulse, can be regarded as a determinate unknown variable
in [0, 2π] during the observation T. Based on this unified signal model, next, we will derive
the objective function that is used to estimate the position of the transmitter.

3. Problem Formulation

In order to determine the transmitter position from the unified signal model (11),
we can usually choose two approaches, the weighted least square (WLS) estimation for
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unknown noise distribution or the ML estimation for known exact one. As a matter of fact,
they are equivalent when noise is independent white Gaussian form [37]. In this section,
considering lack of the exact distribution information, an LS approach, belonging to the
WLS family, is employed to estimate the position of the transmitter.

Define βml = αlejϕm , and (11) can be rewritten as

rl(t) =
Ml−1

∑
m=0

βmlu(t− τ̃l −mTr) + nl(t), (12)

where βml can be regarded as unknown independent variables each other since αl and ϕm
are independent.

Using the LS approach, we can construct a cost function about the transmitter’s
position as follows

C(p, t0, β) =
L

∑
l=1

Cl(p, t0, βml), (13)

where

Cl(p, t0, βml) =
∫

T

∣∣∣∣∣rl(t)−
Ml−1

∑
m=0

βmlu(t− τ̃l −mTr)

∣∣∣∣∣
2

dt,

and β = [β11, . . . , β1M1 , . . . , βL1, . . . , βLML ]
>. The superscript [·]> represents the transpose

operator. The position to be estimated exactly corresponds to the value of p that minimizes
the cost function together with the parameter vector β. The minimum value of the function
can be determined by making their partial derivative equal to zero for these arguments.
After a series of mathematical derivation, seen in Appendix A, we can estimate the position
of the transmitter by maximizing the following objective function

J0(p, t0) =
L

∑
l=1

Ml−1

∑
m=0

∣∣∫
T r∗l (t)u(t− τ̃l −mTr)dt

∣∣2∫
T |u(t− τ̃l −mTr)|2dt

. (14)

For the periodical pulse pair signal, we denote the energy of single pulse by

Es ,
∫

T
|s(t)|2dt =

∫
T
|u(t− τ̃l −mTr)|2dt. (15)

Since the energy term is a definite constant unrelated to the transmitter position p,
the objective function in (14) can be converted to another equivalent objective function
given by

J(p, t0) =
L

∑
l=1

Ml−1

∑
m=0

∣∣∣∣∫T
r∗l (t)u(t− τ̃l −mTr)dt

∣∣∣∣2. (16)

The position of the transmitter can be determined easily by searching the maximum
value of (16) in three-dimensional space (p and t0) when the receivers have complete
information of the transmitted signal, including waveform profile, pulse width and PRI.
However, in the case of non-cooperative localization, the information about the transmitter
is difficult, even impossible, to acquire. No such information means that estimating the
transmitter’s position needs to solve the optimization problem

p̂ = arg max
p,t0,S

J(p, t0,S) = arg max
p,t0,S

L

∑
l=1

Ml−1

∑
m=0

∣∣∣∣∫T
r∗l (t)u(t− τ̃l −mTr)dt

∣∣∣∣2, (17)
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where the defined symbol S = {s(t, Tp), Tr, ω0} includes all information about the trans-
mitted signal. Since the modulation waveform s(t, Tp) is unknown, meaning u(t) is also
unknown, the problem (17) can not be esaily solved only by extending the search dimen-
sionality of parameters.

For this case of an unknown transmitted signal, the predominant challenge of solving
(17) is how to treat the waveform profile. In order to avoid processing the unknown
waveform directly, the DPD-unknown algorithm in [22] provided a general method of
uncoupling the position parameter from the transmitted signal to determine the transmitter
for passive localization. The key of this algorithm is that the Fourier transform processing
of the received signals ensures the position parameter separated from the waveform profile.
According to this idea and the mentioned received signal model, there is an alternative
approach to solve the non-cooperative localization problem we care about. To be precise,
the position can be determined by maximizing the objective function

Q(p) ,
x̄H D(p)x̄

x̄H x̄
, (18)

where x̄, not containing the position p, denotes the frequency samples of the transmitted
signal, and D(p) is a function matrix only related to the position p. Then, the transmitter
position can be obtained by determining the maximum Rayleigh quotient of (18), and the
detailed explanation can be seen in Appendix B.

However, for the widely-used pulse pair signal, especially in radar application,
the DPD approach will suffer from a certain performance loss. Generally, two main
factors should be responsible for the performance loss. Firstly, the pulse class signal usually
contains massive pure noise parts without useful waveform signals, which interferes the
estimation of the true transmitted signal in the DPD-unknown algorithm, and further
impacts negatively on the localization accuracy. Additionally, regardless of the inner period
constraint between each pulse of the pulse pair signal, localizing the transmitter by simply
employing the DPD-unknown algorithm is often not an appropriate approach for the high-
accuracy position determination in low SNR. Based on the above arguments, we propose a
novel algorithm that sufficiently excavates the property of a periodical signal to improve
the localization accuracy for the non-cooperative localization system.

4. The Localization Algorithm Based on Waveform Estimation

Although the unknown waveform u(t) plagues the application of the estimator in (17)
for determining the transmitter position, we can still consider to approximate the estimator
via replacing the true waveform u(t) with an estimated û(t). It is because extracting the
waveform samples from received signals is available theoretically and practically according
to time sequence relation of delays. On the other hand, these received periodical pulses
can provide abundant waveform samples to guarantee high accuracy of the estimation.
This means that we can accomplish the localization in (17) by building the processing
procedure of extraction, estimation and reconstruction for the waveform u(t).

For the ability to handle signals in the digital processing system, we can rewrite the
estimator as the discrete version

p̂ = arg max
p,t0,S

L

∑
l=1

Ml−1

∑
m=0

∣∣∣rH
l uml(p, t0,S)

∣∣∣2, (19)

where

rl , [rl(0), rl(1), . . . , rl(Ns − 1)]>,

uml(p, t0,S) , [uml(0), uml(1), . . . , uml(Ns − 1)]>,

rl(k) , rl(kTs), uml(k) , u(kTs − τ̃l −mTr).

Ts and Ns are the sample interval and number of the samples respectively.
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Now, the basic problem we face is how to estimate the transmitter position p by
employing the estimator in (19) under the condition of no knowledge about the transmitted
signal S and the transmitting time t0. Here, a grid search computation method is still
employed in the estimator (19) due to no analytical solution to the position p. According to
the idea mentioned above, what we need to do firstly is to extract the samples of u(t),
which is incorporated in the each pulse of the received signals by the determinate time
sequence relationship of delay and PRI. Therefore, interception of true waveforms can be
achieved by searching for potential delay, PRI and t0.

For notational convenience, we define the search parameter set θ , (p, t0, Tp, Tr),
and it can uniquely determine the results of extracted waveform samples. After obtaining
the samples, we can employ an LS-based approach to estimate the waveform u(t), and fur-
ther reconstruct the signal Ŝ(θ) to replace the true one S . Finally, substituting the true
pulse uml(p, t0,S) in (19) with the estimated one ûml(p, t0, Ŝ(θ)), namely ûml(θ), we can
determine the transmitter position by

p̂ = arg max
θ

L

∑
l=1

Ml−1

∑
m=0

∣∣∣rH
l ûml(θ)

∣∣∣2, (20)

where ûml(θ) is the pulse signal reconstructed by the estimated waveform û(t, θ) and the
time sequence relationship that the searched t0 and p determines. The true parameter θ
means completely exact extraction and estimation for the waveform profile, which implies
considerably large objective function value. Therefore, the transmitter position can be
obtained by searching for θ that maximizes the approximate objective function below

J̃(θ) =
L

∑
l=1

Ml−1

∑
m=0

∣∣∣rH
l ûml(θ)

∣∣∣2. (21)

The brief flowchart of the estimation for the transmitter position is shown in Figure 2.
Since this localization algorithm is direct for the position estimate, we call it direct position
determination based on waveform estimation (DPD-WE).

Waveform 
Sample 

Extraction

Waveform 
Profile 

Estimation

Pulse 
Pair 

Construction

Objective 
Function 

Computation

Received 
Signals

Search 
Region

Position

Grid Computation

( )0, , ,p rt T Tθ p

Search Grid

Figure 2. A flow graph for direct position determination (DPD)-waveform estimation (WE) algorithm
Based on grid computation.

Next, we will introduce and discuss this algorithm in detail from three component
parts: extraction of waveform samples, and estimation of waveform, as well as design and
analysis of DPD-WE algorithm.
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4.1. Extraction of Waveform Samples

As shown in the process of Figure 2, one of the crucial procedures is how to extract
many waveform samples from the all received pulse pair signals. The exact extraction
of samples is an essential prerequisite for correct estimation of the waveform. Here,
the extraction method is based on the fact that these pulses reappear periodically with a
fixed interval in received signal. Extraction of pulse samples is implemented according to
their delay relationship in the pair signals in every parameter search.

For a specific search parameter θ, where p, t0, Tp and Tr are all fixed, we define the
starting and terminal time of the mth extracted pulse in the observed signal rl(t) as

ts
l,m(θ), τl(p) + t0 + (m− 1)Tr, (22)

te
l,m(θ), τl(p) + t0 + Tp + (m− 1)Tr. (23)

The above time is determined completely by the searched position coordinate p,
transmitting time t0, pulse width Tp and PRI Tr. From (22) and (23), it is known that the
width of every extracted pulse is consistent, equal to Tp. The discrete sample indexes of the
starting and terminal time can be computed respectively as

ns
l,m(θ) =

⌈
ts
l,m(θ)

Ts

⌉
, (24)

ne
l,m(θ) =

⌊
te
l,m(θ)

Ts

⌋
, (25)

where d·e, b·c represent the operations of rounding towards plus infinity and minus infinity
respectively. The length of the sample is obtained by

Nl,m(θ) =

⌊
ts
l,m(θ)− te

l,m(θ)

Ts

⌋
=

⌊
Tp

Ts

⌋
, (26)

or computed by Nl,m(θ) = ns
l,m(θ) − ne

l,m(θ). It is noted that the length of all extracted
pulses for all receivers is identical in one parameter search, and it only depends on the
parameter Tp. Thus, Nl,m(θ) can be denoted by N(Tp) directly.

According to the time above, the mth extracted waveform from the received signal rl
can be denoted by the below vector

rs
l,m(θ) = rl

[
ns

l,m(θ) : ne
l,m(θ)

]
, m = 1, 2, · · · , Ml(θ), (27)

where rl [A : B] is the operation of extracting the elements from the A-th to B-th indexes in
the vector rl , and rs

l,m(θ) ∈ CN(Tp)×1. Ml(θ) stands for the number of the extracted wave-
forms. The number is computed according to the observing time T and searched period Tr.
After fully considering integrity of extracted pulses, the number can be expressed by

Ml(θ) ,

{
pl(θ), ql(θ) < d
pl(θ) + 1, ql(θ) ≥ d

(28)

with

d ,
Tp

Tr

and

pl(θ) ,
⌊

T−τl(p)−t0
Tr

⌋
, ql(θ) ,

T−τl(p)− t0

Tr
− pl(θ).
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Note that Tp < Tr < T. pl(θ) and ql(θ) stand for the number of the captured integral
pulse signal and the remaining non-integral part normalized by Tr respectively. pl(θ) and
d are defined together to judge whether the last extracted pulse is complete. The number
of extracted samples is treated as pl(θ) + 1 if the remaining non-integral part is more than
the width of the intercepted pulse, otherwise it is equal to pl(θ). It is worth noting that the
waveform sample is extracted in a multi-pulse signal as if it were in a single pulse signal,
when the search value of Tr is selected as the observing time T.

The indexes ns
l,m(θ), ne

l,m(θ) and the sample number Ml(θ) are related to θ, and hence
the extracted sample group rs

l,m(θ) varies in size and number with different searched pulse
width and PRI. But, the length of all samples for L received pulse pair signals still remains
identical for the certain search parameter. It is easily known that all the extracted samples
will contain complete signal waveform without loss if the hypothetical θ responds to the
true transmitter position p, transmitting time t0, pulse width Tp and repetition period Tr.
With regard to a correct hypothetical θ, the process of extracting samples is illustrated on
Figure 3.
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Figure 3. The extraction process of samples in a received pulse pair signal measurement at the correct
hypothetical θ with Tp = 20µs and Tr = 150µs. (a) Received signal contaminated by noise with
signal-to-noise ratio (SNR) 10 dB. (b) Extracted samples of the first pulse by (27) at the hypothetical θ.

Considering all L receivers, the total amount of the extracted waveform samples is

M(θ) =
L

∑
l=1

Ml(θ).

We assemble all M(η) extracted samples in a signal sample matrix as,

S(θ) ,
[
rs

1,1(θ), · · · , rs
l,m(θ), · · · , rs

L,ML(θ)
(θ)
]
. (29)

For compact representation, S(θ) is written as

S(θ) = [rs
1(θ), · · · , rs

M(θ)(θ)],

where S(θ) ∈ CN(Tp)×M(θ). Note that the size of the matrix S(θ) depends on θ. As for the
correct θ, the whole waveform information about the transmitting signal is embodied in
this matrix. For the purpose of completely determining the modified function J̃(θ), we still
need to estimate the waveform û(t, θ) based on the sample matrix S(θ) next.

4.2. Estimation of Waveform Based on the LS Approach

In order to obtain J̃(θ), this subsection will describe how to estimate the waveform
û(t, θ) in detail. Since completely no knowledge about the parameter model of the wave-
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form can be utilized, we need to build a non-parameterized signal model for the estimation.
According to the sample group S(θ), the extracted signal model can be built as

rs
m(θ) = αm(θ)u(θ) + νm(θ), m = 1, · · · , M(θ), (30)

where u(θ) is an implicit mathematical model corresponding to samples of the waveform
extracted at θ. It is necessarily noted that the model u(θ) varies with the search parameter
θ, which means that the signal model can keep consistent with all extracted samples
only when the search parameter θ better tallies with the true ones. Such consistency can
guarantee correct estimation for the waveform, and on the contrary inconsistent one can
not achieve it. That could be seen in the next simulation illustration. Moreover, αm(θ) is an
unknown determinate complex coefficient corresponding to u(θ), and νm(θ) represents
noise term contained in the samples. For conciseness of writing, θ in rs

m(θ), αm(θ), u(θ),
and νm(θ) will be dropped without impact of understanding.

Define some matrices as follows,

R =
[
rs

1, · · · , rs
M(θ)

]
,

V =
[
ν1, · · · , νM(θ)

]
,

α =
[
α1, · · · , αM(θ)

]>
,

and (30) can be represented as
R = uα> + V . (31)

To estimate the non-parameterized waveform u without any distribution knowledge
of the noise term as well, the LS approach is employed. The waveform can be estimated by
solving the following optimization problem

min
u,α

∥∥∥R− uα>
∥∥∥2

F
, (32)

where ‖ • ‖F represents the Frobenius norm. Using the relationship between trace and
Frobenius norm of matrix, the optimization problem in (32) is equivalent to

min
u,α

tr[(R− uα>)H(R− uα>)], (33)

where tr(•) represents trace operation of matrix. The detailed derivation of the analytic
solution to the problem (33) is shown in Appendix C, where the estimate of the waveform
is given by

û = max
u

uH RRHu
‖u‖2 . (34)

This is a classical problem of maximum Rayleigh quotient. Thus, we can obtain the
estimated waveform

û = vλmax(RRH), (35)

where vλmax(RRH) denotes the eigenvector corresponding to the maximum eigenvalue
of RRH .

An example of waveform estimation is given in Figure 4, where the estimation is im-
plemented according to 8 extracted pulse samples. As proposed above, extracted samples
have two different cases: one is that all samples follow an identical signal model (consistent
samples) and the other is that they come from different signal models (inconsistent samples).
The former estimation provides the foundation for accurately estimating the waveform,
shown in Figure 4b, while the latter, corresponding to an incorrect search parameter θ,
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results in terrible extraction and estimation, shown in Figure 4c,d respectively. Therefore,
a correct search parameter can guarantee samples consistent in model, and exactly based
on that, we can construct the true pulse uml(θ) by the accurate estimated waveform û(t, θ).
Next, we will discuss how to utilize the objective function J̃(θ) to estimate the position of
the transmitter.
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Figure 4. The estimation results of the transmitted Gaussian waveform at the completely correct hypothetical θ and a wrong
hypothetical θ for all pulse pair signals with Tp = 20µs and Tr = 150µs. (a) All received signal measurements with two
pulses at SNR 5 dB. (b) Estimate of the waveform at the correct hypothetical θ. (c) All intercepted pulses corresponding to a
wrong hypothetical θ. (d) Estimate of the waveform at the wrong hypothetical θ.

4.3. Design and Analysis of DPD-WE Algorithm

In the above subsection, we obtain the waveform estimate û(t, θ) by the LS approach
conditioned at θ, and thus the pulse uml(θ) can be reconstructed as the estimate form
ûml(θ) according to the searched starting and terminal time ts

l,m(θ) and ts
l,m(θ). Using the

pulse ûml(θ), the position of the transmitter can be determined by maximizing the function
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J̃(θ). On the other hand, ûml(θ) has a non-zero value only in the part of pulse duration,
and therefore J̃(θ) in (21) can be further simplified in computation as

J̃(θ) =
L

∑
l=1

Ml−1

∑
m=0

∣∣∣rH
l,m(θ)ûml(θ)

∣∣∣2, (36)

where rl,m(θ) is an intercepted segment of rl in time, corresponding to the non-zero part of
the mth pulse ûml(θ) at the lth receiver.

Additionally, it can be seen from (36) that a wider searched width obviously causes a
larger function value, which can affect the estimation performance of the position. The rea-
son is that the intercepted signal will contain pure noise part besides the waveform when
the searched width is larger than the true one. It will further result in the inclusion of the
noise part in the estimated waveform. Eventually, J̃(θ) will obtain a larger value owing
to the contribution of noise energy. In order to solve this problem, a power coefficient is
defined by

P(θ) ,
‖ ûml(θ) ‖2

Tp
, (37)

where ‖ ûml(θ) ‖2 is energy of the estimated waveform ûml(θ) during searched Tp.
The power coefficient is a function of θ, and is expected to yield a larger value at cor-
rect Tp than at other longer searched pulse width since the waveform signal has more
power than noise.

Considering the contribution of the power coefficient, we can modify the objective
function J̃(θ) using

J̃mod(θ) , P(θ) J̃(θ). (38)

Hence, the estimator of the transmitter position is given by

θ̂ = arg max
θ

J̃mod(θ). (39)

A complete realization of DPD-WE algorithm is given by Algorithm 1. Furthermore,
the analysis of robustness and computation load for the proposed algorithm is discussed
as follows.

Algorithm 1: Realization of DPD-WE Algorithm
Input: the observed signals r1, · · · , rL, parameter space of interest Θ, and an initial value function J(Θ).
Output: transmitter position p̂.

1 forall θ ∈ Θ do
2 Compute ts

l,m(θ) and te
l,m(θ) using (22) and (23) according to θ.

3 Determine sample indexes ns
l,m(θ) and ne

l,m(θ) of the pulses to be extracted using (24) and (25).
4 Compute amount Ml(θ) of the pulses contained within the received signal using (28).
5 Extract pulse samples rs

l,m(θ) from rl using (27).
6 Produce signal matrix S(θ) using (29).
7 Estimate waveform û(t, θ) using (35).
8 Construct pulse signal ûml(θ) according to û(t, θ) and searched p, Tp and Tr.
9 Compute J̃(θ) using (36).

10 Compute power coefficient P(θ) using (37).
11 Update J(θ)← J̃mod(θ) using (38).
12 end
13 Find the parameter θ̂ corresponding to the maximum J(Θ).
14 Output the estimated position p̂

Tolerance to Searched Pulse Width From the basic idea of DPD-WE, it can be seen that
the algorithm mainly contains two essential parts: extraction and estimation of waveforms,
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where the extracted results are determined completely by search parameters. In the
extraction procedure, the consistency of samples highly relies on the search parameters t0,
p and Tr, where Tr mainly determines the number of extracted waveform samples from
one received signal. Tp only impacts on the pulse width of extracted samples. Actually,
the consistency is the key to accurately estimate and reconstruct waveform for successful
localization, and thus t0, p and Tr play more crucial roles than Tp in correctness assurance
for the localization. It can be explained from the perspective of geometrical localization.
With regard to Tp, whether the width matches the true one or not, the localization can be
completed effectively as long as the width ensures enough SNR of the intercepted signal.
In fact, to a certain extent, it can affect the localization performance by controlling signal
processing gain, where an intercepted pulse width determines how much proportion of
signal and noise energy is obtained. It is this property that makes the DPD-WE algorithm
have strong tolerance to non-accurate searched pulse width; this conclusion will be verified
in next simulation experiments.

Computation Complexity From the realization of DPD-WE in Algorithm 1, we can
see that the computation cost of DPD-WE is dominated by calculation of J̃(θ), which
refers to a high-dimensional grid search. It is worth noting the search ranges of θ can
be determined in advance according to prior information, such as surveillance region of
interest, a practical application for the specific type of a target and demand of localization
accuracy. For the parameter space with Nt0 emission time, NTp pulse width and NTr PRI
candidates, plus 2-D coordinates, the computation load of the algorithm is bounded by
O(Nt0 NTp NTr Nx Ny) at single receiver, where Nx, Ny denotes the amounts of grids in x
and y respectively. Considering all receivers, the proposed algorithm involves the total
computation complexity of aboutO(LNt0 NTp NTr Nx Ny). As proposed above, the algorithm
has excellent tolerance to range of Tp, and thus the computation load can be alleviated
enormously by decreasing search quantity of Tp. Therefore, practical computation load is
limited to the order of O(Nt0 NTr Nx Ny), meanwhile considering that the total amount L
of receivers is generally considerably small. Additionally, for the purpose of improving
computational efficiency, a parallel computation strategy can be applied in the process of
implementation because of the independence of different grid for computation of J̃(θ).

5. Simulation Results

In this section, we first show by numerical simulation how the searched pulse width
works on the waveform estimation and further affects the localization performance in
the proposed DPD-WE method. Then we examine its effectiveness for three kinds of
transmitted waveform signals, and meanwhile verify its superiority over the traditional
DPD approach by Monte Carlo experiments.

As a common quality criterion of parameter estimation performance, root mean square
error (RMSE) is selected to evaluate localization accuracy, defined by

RMSE =

√√√√ 1
N − 1

N

∑
i=1

(x̂i − x)2 + (ŷi − y)2,

where (x̂i, ŷi) denotes the estimated position of the transmitter in the ith localization test
with a total amount of N experiments, and (x, y) is the actual transmitter position.

5.1. Impact of Searched Pulse Width on Localization

As discussed in previous section, the proposed DPD-WE algorithm has strong toler-
ance to searched pulse width, and here we validate the impact of width on localization
performance using a numerical experiment. Three different cases of extracted pulse widths,
equal to, smaller and larger than the true width, are selected to show visually how the
widths effect waveform estimation. Then, the results of RMSE against SNR are provided to
assess the impact of different searched width.
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In this simulation, four receivers at (−10, 0) km, (10, 0) km, (0,−10) km and (0, 10) km
respectively are deployed to localize a transmitter located at (0, 0) km, which emits a
noncoherent periodical pulse pair signal at t0 = 10µs with PRI Tr = 150µs and pulse
width Tp = 5µs. During the pulses, a Gaussian profile is modulated in the carrier signal of
fc = 2 GHz, and single transmitted pulse signal is given by

s1(t) =

(
1

T2
p

) 1
4

exp

(
−πt2

T2
p

)
exp(j2π fct), 0 ≤ t ≤ Tp.

Assume that received signals can be converted down to the baseband frequency
f0 = 0.5 MHz by a down-conversion mixer according to approximate spectral knowledge
using spectrum estimation technique. The received signals in baseband are sampled at
Fs = 10 MHz, and the observing time is set as T = 1 ms.

For the Gaussian waveform, we first display the waveform estimation results in
three cases of T̂p = 3µs, T̂p = 5µs and T̂p = 10µs on the premise that the other search
parameters perfectly match the true. Figure 5a is a diagram of one pulse from a received
signal, where three kinds of colors are used to distinguish the interception schemes with
red, green and orange rectangles representing the schemes of T̂p = 3µs, T̂p = 5µs and
T̂p = 10µs respectively. Figure 5b–d show the estimated waveform profiles corresponding
to these interception scheme, where the time windows of these three plots are set as the
same range for the convenience of comparison.
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Figure 5. Illustration of a received signal and estimation results according to different inter-
cepted pulse widths. (a) A diagram of three types of interception cases in single received pulse.
(b–d) Estimated waveform corresponding to the following intercepted width of: (b) cases 1: 3µs.
(c) case 2: 5µs. (d) case 3: 10µs.

From Figure 5b, we can see that only partial waveform information can be recovered
by the waveform estimation approach when intercepted pulse width is smaller than the
true width. This intercepted scheme actually means that the transmitted signal is regarded
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as another different pulse pair signal that has shorter pulse width than the true transmitting
signal. In contrast with case 1, the estimated waveform corresponding to case 3 is wider
than the true pulse width, shown in Figure 5d, because the intercepted samples contain
pure noise signal besides complete waveform signal. Only in case 2 does the intercepted
width match the true width perfectly, and thus it can obtain most complete waveform
information, shown in Figure 5c. In fact, whether the intercepted width is equal to, smaller
or larger than the true, we can recover correct waveform information from these consistent
samples by the LS-based estimation approach, and effectively execute the localization for
the transmitter. How these three interception schemes affect localization performance is
mainly reflected in how much signal processing gain can be obtained, which is shown in
the next numerical experiment.

To verify the tolerance of DPD-WE to the pulse width we are searching for, we test the
localization performance of the algorithm for the transmitter at many SNR environments in
a wide range of searched widths. The algorithm is executed based on grid computation by
searching for t0, p and Tr of interest at different given searched pulse widths. Figure 6 shows
the RMSE of the estimated positions in 1000 independent localization experiments, in each
of which the transmitter appears randomly within the rectangle region of [−0.5, 0.5]1×2 km2.
According to the Figure 6, it is fundamentally concluded that the algorithm can achieve
considerably high accuracy at sufficient SNR, no matter what pulse widths are chosen.
However, there are still some performance differences between them at low SNRs, marked by
the green rectangle in the plot. Generally speaking, wider searched pulse width can obtain
smaller RMSE when the width is smaller than the true one. On the contrary, larger searched
width results in a large RMSE when the width is wider than the true one. This phenomenon
can be explained from the perspective of signal processing gain. Intercepting the consistent
waveform samples within the true pulse generally ensures that these samples do not contain
any part of pure noise, which means that a widely intercepted width can collect more
waveform energy than a narrow intercepted width. Therefore, the localization performance
with such searched widths improves with the width increasing, and will reach the top
when complete waveform samples not containing any pure noise is intercepted sufficiently,
exactly corresponding to the case that searched width equals to the true. On the other
hand, a searched width larger than the true width definitely causes intercepting extra pure
noise without exception. The redundant noise will reduce SNR of the estimated signal,
and further impair the localization performance. Fortunately, different searched pulse
widths only have a limited impact on the performance, which happens mainly in lower
SNR. Consequently, in practical applications, we can implement localization only by using
an appropriate searched width, which is easily selected by few tests.
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Figure 6. Root mean square errors (RMSEs) of estimated positions corresponding to different searched
width cases against SNR from −25 dB to 10 dB.
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5.2. Localization Performance Comparison

In this subsection, we further examine the localization performance by comparing
with the classical DPD approach [22] and the ML-based localization method, which is
chosen as a low bound of performance due to its asymptotic efficiency. The ML-based
algorithm is implemented under the assumption that all knowledge about the transmitted
signal, such as emission time, waveform, pulse width, PRI and so on, is perfectly known to
the receivers, and the detailed derivation about it is shown in Appendix D.

Additionally, three different kinds of waveform profiles, Gaussian, linear frequency
modulation (LFM) and rectangle waveform, are also used to test the performance in the
cases of noncoherent and coherent modulation respectively. The simulation parameters
still remain the same as the previous ones except the waveform profiles. The transmitted
pulses with the other two waveform profiles, LFM and rectangle, are given by

s2(t) = exp
(

jπBt2

Tp

)
exp(j2π fct), 0 ≤ t ≤ Tp,

with modulated bandwidth B = 1 MHz, and by

s3(t) = exp(j2π fct), 0 ≤ t ≤ Tp,

respectively.
The Figure 7 shows the RMSEs of the ML-based localization, DPD-unknown and DPD-

WE methods against SNR for the Gaussian pulse pair signal, where Figure 7a,b correspond
to the noncoherent and coherent cases respectively. It is seen from the two plots that RMSEs
of these localization methods decrease with SNR rising, and will keep unchanged at consid-
erably low level after SNR becomes sufficiently large. It is worth noting that the low bound
of RMSE is limited by the size of grid since the grid computation is employed, and it can
be adjusted according to the demand for practical localization accuracy. Figure 7a,b show
that the proposed DPD-WE algorithm can achieve almost completely similar accuracy for
noncoherent and coherent cases and successfully localize the transmitter at sufficient SNR.
It exactly tallies with the proposed signal processing approach, where the received pulses
are processed noncoherently due to unknown knowledge about these pulses, including
modulated phases.
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Figure 7. RMSE vs. SNR for the three localization algorithms of maximum likelihood (ML), DPD-
unknown and DPD-WE with transmitting Gaussian pulses of noncoherent and coherent modulations:
(a) noncoherent modulation, (b) coherent modulation.

On the other hand, compared with the classical DPD-unknown algorithm,
DPD-WE can acquire the performance advantage of around 8 dB in moderate and low
SNR, which means that the proposed algorithm has stronger noise tolerance and higher
accuracy than the DPD-unknown. The performance gain that DPD-WE obtains mainly
results from full exploitation of waveform information by only extracting useful parts
of the received signals. Therefore, the interference of noise is reduced significantly.
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Additionally, from these two plots, we can also see that the ML localization algorithm has
most excellent performance owing to utilizing complete and exact knowledge about the
transmitted signal. The difference between the ML and DPD-WE algorithms is caused by
coherent processing gain and perfect match for the waveform profile. In fact, DPD-WE
has the potential to approach the ML algorithm in performance as well if the identical
knowledge of the transmitted signal is given.

Additionally, for the Gaussian transmitted signal, Figure 8 also shows the localization
performance of three methods in the case of only receiving a single pulse, where the
observing time is set as T = 250µs. The simulation result demonstrates that DPD-WE has
the same performance advantage over DPD-unknown, which means that DPD-WE can be
applied to the scenario of single pulse.

Finally, we further examine the localization performance for the other waveform
profiles. Figures 9 and 10 give the localization results of three algorithms in the cases of
transmitting LFM and rectangle pulses respectively. Similar localization performance with
the Gaussian pulse is also seen in these two types of waveform profiles for noncoherent
and coherent modulation. Only slight performance distinctions are expressed between
−10 dB and −5 dB due to the difference of waveform profiles. It means that the proposed
algorithm can be applied to a wide variety of waveform profiles for non-cooperative
passive localization.

-30 -25 -20 -15 -10 -5 0 5 10 15
SNR/dB

102

103

R
M

S
E

/m

ML
DPD-unknown
DPD-WE

Figure 8. RMSE vs. SNR for the three localization algorithms of ML, DPD-unknown and DPD-WE
with transmitting single Gaussian pulse.
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Figure 9. RMSE vs. SNR for the three localization algorithms of ML, DPD-unknown and DPD-WE
with transmitting LFM pulses of noncoherent and coherent modulations: (a) noncoherent modulation,
(b) coherent modulation.
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Figure 10. RMSE vs. SNR for the three localization algorithms of ML, DPD-unknown and DPD-
WE with transmitting rectangle pulses of noncoherent and coherent modulations: (a) noncoherent
modulation, (b) coherent modulation.

6. Conclusions

In this paper, a non-cooperative passive localization system with widely distributed
receivers has been discussed to determine a transmitter emitting a periodical pulse signal.
Firstly, we introduce two possible pulse models of noncoherent and coherent modulation
in detail, and then unify them as a general model for further localization. Based on the
unified model, a localization algorithm combined with waveform estimation approach
is proposed to determine the transmitter without any knowledge requirement about the
transmitted signal. Simulation results show that the proposed method can tackle the
localization problem for the noncoherent and coherent transmitted pulses, and achieve a
great advantage over the classical DPD-unknown method in accuracy and robustness at
low SNR. Extension to the scenario of multiple emitters is a worthy direction of further
study for the proposed algorithm.
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Appendix A. Derivation of the Objective Function for Noncoherent Processing

In this appendix, we give a detailed derivation of the objective function for noncoher-
ent processing case. For the sake of simplicity, the temporary term is defined as

Bm(t, τ̃l) = u(t− τ̃l −mTr) = s(t− τ̃l −mTr)ejω0(t−τ̃l−mTr). (A1)
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According to the property of the periodical pulse signal, we can know that for the
signal from the same receiver, these pulses satisfy∫

T
Bm(t, τ̃l)B∗i (t, τ̃l)dt =

∫
T

s(t− τ̃l −mTr)s∗(t− τ̃l − iTr)ejω0Tr(i−m)dt

=

{∫
T |s(t− τ̃l −mTr)|2dt i = m,

0 i 6= m.

=

{∫
T |Bm(t, τ̃l)|2dt i = m,

0 i 6= m.

(A2)

Using the definition in (A1), (13) can be expanded as the following expression

C(p, t0, β) =
L

∑
l=1

∫
T
|rl(t)|2dt−

L

∑
l=1

∫
T

rl(t)

[
Ml−1

∑
m=0

βml Bm(t, τ̃l)

]∗
dt

−
L

∑
l=1

∫
T

r∗l (t)

[
Ml−1

∑
m=0

βml Bm(t, τ̃l)

]
dt +

L

∑
l=1

∫
T

∣∣∣∣∣Ml−1

∑
m=0

βml Bm(t, τ̃l)

∣∣∣∣∣
2

dt.

(A3)

To determine the minimum of C(p, t0, β) needs to satisfies

∂C(p, t0, β)

∂β∗ml
= 0. (A4)

According to (A3), we can get

∂C(p, t0, β)

∂β∗ml
= −

∫
T

rl(t)B∗ml(t, τ̃l)dt +
∫

T

[
Ml−1

∑
i=0

βil Bi(t, τ̃l)

]
B∗m(t, τ̃l)dt

= −
∫

T
rl(t)B∗ml(t, τ̃l)dt + βml

∫
T
|Bm(t, τ̃l)|2dt = 0,

(A5)

and further obtain

βml =

∫
T rl(t)B∗ml(t, τ̃l)dt∫

T |Bm(t, τ̃l)|2dt
. (A6)

Substituting (A6) into (A3), we can get the cost function without β

C(p, t0) =
L

∑
l=1

∫
T
|rl(t)|2dt−

L

∑
l=1

Ml−1

∑
m=0

|
∫

T r∗l (t)Bml(t, τ̃l)dt|2∫
T |Bml(t, τ̃l)|2dt

. (A7)

To minimize the cost function (A7) is equivalent to maximizing the objective function

J0(p) =
L

∑
l=1

Ml−1

∑
m=0

|
∫

T r∗l (t)Bml(t, τ̃l)dt|2∫
T |Bml(t, τ̃l)|2dt

=
L

∑
l=1

Ml−1

∑
m=0

∣∣∫
T r∗l (t)u(t− τ̃l −mTr)dt

∣∣2∫
T |u(t− τ̃l −mTr)|2dt

. (A8)

Appendix B. Derivation of DPD-Unknown Algorithm

Denote the unified transmitted signal model with carrier by x̃(t), and the received
signal at the receiver l can be expressed by

rl(t) = αl x̃(t− τl(p)− t0) + nl(t), 0 < t < T. (A9)

First, we determine the discrete Fourier transform of the received signal in discrete form

rl(k) = αl x̃(k)e−jωk(τl(p)+t0) + nl(k), (A10)
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with

ωk ,
2πk
NsTs

, 0 ≤ k ≤ Ns − 1.

Referring to the algorithm in [22], we can easily obtain the eventual objective function
only related to the parameter p below as

Q(p) =
x̄H D(p)x̄

x̄H x̄
(A11)

with

x̄ , [x̃(0)e−jω0t0 , . . . , x̃(Ns − 1)e−jωNs−1t0 ]>,

D(p) =
L

∑
l=1

dld
H
l ,

dl , [rl(0)ejω0τl(p), . . . , rl(Ns − 1)ejωNs−1τl(p)]>.

Appendix C. Derivation of Waveform Estimation

We derive the expression of the estimated waveform in (34), and rewrite the objective
function in optimization problem (33) as

f (u, α) = tr(RH R− RHuα> − α∗uH R + α∗uHuα>). (A12)

Minimizing f (u, α) satisfies that the gradients of the function f (u, α) at point α are
equal to zeros, expressed as

∇α f (u, α) |α=α̂= 0. (A13)

According to the matrix theory, for the given scalar function g(Z, Z∗): Cm×n ×Cm×n → C,
if differential of a scale function g(Z, Z∗) can be written as

dg(Z, Z∗) = tr(AdZ + BdZ∗),

the gradient of g(Z, Z∗) for variable Z is obtained from

∇Zg(Z, Z∗) = A>.

Using an operation rule between trace and differential of matrix, the differential of
f (u, α) at point α is derived as

d f (u, α) = d[tr(RH R− RHuα> − α∗uH R + α∗uHuα>)]

= tr[−RHud(α>)− d(α∗)uH R + d(α∗)uHuα> + α∗uHud(α>)]

= tr[−u>R∗dα− uH Rdα∗ + uHuα>dα∗ + u>u∗αHdα]

= tr[(u>u∗αH − u>R∗)dα + (uHuα> − uH R)dα∗].

(A14)

Thus, we can get the gradient of f (u, α) at point α from (A14), expressed as

∇α f (u, α) = α∗uHu− RHu. (A15)

Combining (A13) and (A15), we can obtain the expression of the estimated α̂ as

α̂∗ =
RHu
‖u‖2 . (A16)
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In order to estimate u, we can solve the below optimization problem about u by
substituting α̂ into (33)

û = min
u

tr(RH R− RHuα̂> − α̂∗uH R + α̂∗uHuα̂>)

= max
u

tr(
RHuuH R
‖u‖2 ) = max

u
tr(

uH RRHu
‖u‖2 ) = max

u

uH RRHu
‖u‖2 .

(A17)

Appendix D. Derivation of ML-Based Localization Algorithm

In this appendix, we derive the position estimator of the transmitter by ML-based
method, where the phases of transmitted pulses are assumed to be deterministic for
ensuring optimal theory performance. Since the transmitted signal is perfectly known to
all receivers, we can use the signal model (7) as a representative to derive the estimator,
and rewrite (7) as

r̃c,l(t) = αl

Ml−1

∑
m=0

s(t− τ̃l −mTr)ejωc(t−τ̃l) + nl(t), 0 < t < T. (A18)

After perfectly converting down, the baseband signal can be denoted by

rc,l(t) = αl

Ml−1

∑
m=0

s(t− τ̃l −mTr)e−jωc τ̃l + nl(t), 0 < t < T. (A19)

According to ML principle, we can build the cost function

CML(p, α) =
L

∑
l=1

∫
T

∣∣∣∣∣rc,l(t)− αl

Ml−1

∑
m=0

s(t− τ̃l −mTr)e−jωc τ̃l

∣∣∣∣∣
2

dt (A20)

with α = [α1, . . . , αL]
>. Minimizing CML(p, α) makes the parameter α satisfy

∂CML(p, α)

∂α∗l
= 0. (A21)

For brevity, define

A(t, τ̃l) =
Ml−1

∑
m=0

s(t− τ̃l −mTr)e−jωc τ̃l ,

and we can expand the expression of CML(p, α) as

CML(p, α) =
L

∑
l=1

∫
T
|rc,l(t)|2dt−

L

∑
l=1

α∗l

∫
T

rc,l(t)A∗(t, τ̃l)dt

−
L

∑
l=1

αl

∫
T

r∗c,l(t)A(t, τ̃l)dt +
L

∑
l=1
|αl |2

∫
T
|A(t, τ̃l)|2dt.

(A22)

According to (A21), we can get

−
∫

T
rc,l(t)A∗(t, τ̃l)dt + αl

∫
T
|A(t, τ̃l)|2dt = 0,

and further obtain

αl =

∫
T rc,l(t)A∗(t, τ̃l)dt∫

T |A(t, τ̃l)|2dt
. (A23)
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Substituting (A23) into (A22), we can get a cost function only related to the position pa-
rameter

CML(p) =
L

∑
l=1

∫
T
|rc,l(t)|2dt−

L

∑
l=1

|
∫

T r∗c,l(t)A(t, τ̃l)dt|2∫
T |A(t, τ̃l)|2dt

. (A24)

To determine the position point that minimizes (A24), it can be achieved by equiva-
lently maximizing the objective function below

JML(p) =
L

∑
l=1

|
∫

T r∗c,l(t)A(t, τ̃l)dt|2∫
T |A(t, τ̃l)|2dt

. (A25)

Therefore, the position estimator is obtained as

p̂ = arg max
p

L

∑
l=1

∣∣∣∣∣∫T r∗c,l(t)
Ml−1

∑
m=0

s(t− τ̃l −mTr)e−jwc τ̃l dt

∣∣∣∣∣
2

∫
T

∣∣∣∣∣Ml−1
∑

m=0
s(t− τ̃l −mTr)e−jwc τ̃l

∣∣∣∣∣
2

dt

. (A26)

From (A26), the estimator can obtain coherent signal processing gain, and thus it is
expected that it has better localization performance than DPD-WE and DPD-unknown.
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