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Abstract: Being the highest and largest land mass of the earth, the Tibetan Plateau has a strong
impact on the Asian climate especially on the Asian monsoon. With high downward solar radiation,
the Tibetan Plateau is a climate sensitive region and the main water source for many rivers in South
and East Asia. Although many studies have analyzed energy fluxes in the Tibetan Plateau, a long-term
detailed spatio-temporal variability of all energy budget parameters is not clear for understanding the
dynamics of the regional climate change. In this paper, satellite remote sensing and reanalysis data
are used to quantify spatio-temporal trends of energy budget parameters, net radiation, latent heat
flux, and sensible heat flux over the Tibetan Plateau from 2001 to 2019. The validity of both data
sources is analyzed from in situ ground measurements of the FluxNet micrometeorological tower
network, which verifies that both datasets are valid and reliable. It is found that the trend of net
radiation shows a slight increase. The latent heat flux increases continuously, while the sensible
heat flux decreases continuously throughout the study period over the Tibetan Plateau. Varying
energy fluxes in the Tibetan plateau will affect the regional hydrological cycle. Satellite LE product
observation is limited to certain land covers. Thus, for larger spatial areas, reanalysis data is a more
appropriate choice. Normalized difference vegetation index proves a useful indicator to explain the
latent heat flux trend. Despite the reduction of sensible heat, the atmospheric temperature increases
continuously resulting in the warming of the Tibetan Plateau. The opposite trend of sensible heat
flux and air temperature is an interesting and explainable phenomenon. It is also concluded that
the surface evaporative cooling is not the indicator of atmospheric cooling/warming. In the future,
more work shall be done to explain the mechanism which involves the complete heat cycle in the
Tibetan Plateau.

Keywords: optical remote sensing; ERA5; surface energy budget; energy flux trends; tibetan plateau

1. Introduction

The Tibetan Plateau (TP) is one of the largest reservoirs of ice and is referred to as
the third pole of the world [1]. Due to its vast area and exceptional height (>4000 m
above mean sea level), it plays a major role in shaping the regional climate especially for
the east and south Asian monsoon [2,3]. TP is a climate-sensitive region with different
climate change behavior from the surrounding regions [4,5]. According to some studies,
the warming rate of TP is 0.3 ◦C per decade, which is more than any other part of the world.
This affects permafrost and snow melting in TP. Eventually, freshwater reservoirs deplete
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at an alarming rate. Moreover, any change in the uplifted land affects the Asian monsoon
upon which millions of people and thousands of hectares of crops depend [1,2,4,6–8].

Incoming solar radiation flux is high over TP [9], which has an important impact on
the energy budget. The surface energy budget (SEB) derives the local climate and shapes
the heat and water cycle [10]. SEB comprises mainly three parameters; (i) net radiation
(RN), (ii) latent heat flux (LE), and (iii) sensible heat flux (SH). RN, as suggested by its
name, is the radiative energy comprised of incoming and outgoing solar and thermal
radiations. Land cover changes such as deforestation or snow melting influence RN
because of the changing behavior of surface reflectivity in the form of albedo and land
surface temperature (LST) [11–15]. The aerosol optical depth and atmospheric greenhouse
gasses also influenced the RN through the atmospheric counter radiation [16,17]. LE is
the non-radiative energy flux, and transfer energy in the form of change of state of matter
(vaporization) [18]. Since vegetation cover involves largely in evapotranspiration, the
vegetation index such as Normalized Difference Vegetation Index (NDVI) is a useful tool
to analyze LE and its variability [19,20]. SH contributes to the non-radiative part of the
SEB along with LE and relates to the heat cycle [2,21]. Transfer of heat between the surface
and aloft air depends upon their temperature difference. SH is an important indicator but
may not be the only triggering force for atmospheric temperature as wind speed, wind
direction, and relative humidity also have a strong impact on air temperature.

There are plenty of great achievements that have been made in understanding climate
change over TP. Many dedicated research programs have been launched to study TP climate
such as the first, second, and third Tibetan Plateau Meteorological Science Experiment
(TIPEX); the Global Energy and Water Cycle Experiment (GEWEX) of the Asian Monsoon
Experiment in Tibet (GAME/Tibet); and the Coordinated and Enhanced Observation Period
(CEOP) of the Asian-Australian Monsoon Project in Tibet (CAMP/Tibet). These projects
provide quality of ground-based measurements [22–26]. Many recent studies observed
atmospheric and surface warming in TP during the past few decades. Many researchers
used ground station data and reanalysis data while few studies used satellite data to
observe surface temperature [8,27–29]. Duan et al. [5] discussed heterogeneity of TP
warming rates, pointing out that the northern TP had a higher warming rate than the
southern TP, suggesting the higher precipitation of the southern TP as a potential cause
of this heterogenetic behavior. Duan et al. [4] observed the weakening of the annual
temperature cycle and associated this weakening with anthropogenic activities since the
late nineteenth century. The snow melting and precipitation have a strong impact on
regional climate eventually affecting the local population and crop production [7,30]. Few
recent studies analyzed different trend analysis methods such as Mann–Kendall trend,
linear regression and innovative trend analysis while others used different data sets to
analyze annual and seasonal trends of downward solar radiation over TP [31,32].

Shen et al. [20] observed evaporative cooling using multiple data sources including
satellite remote sensing and meteorological station data and established a strong link be-
tween NDVI and evaporative cooling in TP. SH trends especially in summer seasons were
widely studied using reanalysis data sets and ground-based measurements. A decreasing
trend for SH over TP was observed from many recent studies [2,33,34]. Many interesting
recent studies observed SH and LE over TP using reanalysis data and ground measure-
ments [3,35]. Xie et al. [6] observed the different trends for SH and LE from three different
reanalysis data sets including ERA-Interim, JRA-55, and MERRA. Xin et al. [25] studied
SEB ratio over TP from 10 ground-based measurements for July–October 2014 and analyzed
the impact of atmospheric stability, friction velocity, turbulent temperature scale, and wind
direction on SEB ratio.

Although TP has been widely studied for the SEB, there is still a gap for the detailed
study of the trends of all major SEB parameters over a broader spatial and temporal
coverage. Many factors such as land cover change, anthropogenic activities, altitude, lat-
itudinal association, and local climatic conditions influence the spatio-temporal pattern
of SEB [36–38]. This multidimensional phenomenon demands vast spatial and temporal
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coverage. Satellite remote sensing is an important tool to study long term SEB trends [39].
An alternative appropriate choice is the global climatic reanalysis data sets which are
available for a longer historical duration on the global scale. In the current study, the trends
of SEB over TP from satellite remote sensing data are analyzed and compared with reanal-
ysis data for the period of 2001 to 2019. Moderate Resolution Imaging Spectroradiometer
(MODIS) and Clouds and Earth’s Radiant Energy System (CERES) are used as satellite data
sources, while ERA5 product released by European Centre for Medium-range Weather
Forecasts (ECMWF) is used as the reanalysis data source. The main objectives of this study
are to study (i) how the SEB varied in TP over the past two decades and (ii) the difference
in SEB trends between satellite observations and reanalysis data. This approach verifies
not only our obtained results but also validates the methods from both data sets.

2. Study Area

TP is located in East Asia, with almost the whole region belongs to China, yet some
parts of TP are included in Pakistan, Nepal, India, and Tajikistan [40]. Along with many
populated cities like Lhasa, Xining, Qamdo, and Nagchu, TP is the home of millions of
people. With an average elevation of more than 4000 m above mean sea level and a total area
of 2.3 × 106 km2, it is the highest and largest plateau in the world [41]. TP is surrounded
by many mountainous ranges, amongst, Himalayas is the most famous and important
range. TP is the origin of Asia’s five major rivers: Indus, Ganges, Brahmaputra, Yagtzee,
and Yellow river. The life and food security of more than 1.4 billion people depend upon
these rivers [7]. Precipitation over TP is small in amount and highly heterogeneous which
decreases from southeast (700 mm) to northwest (50 mm) with a mean annual precipitation
of approximately 37 to 296 mm [9,40,42]. The major land cover of TP is grasslands which
cover approximately two-thirds of the total TP followed by deserted barren lands which
cover approximately 14% of TP [40].

Being an enormous uplifted land parcel, TP has a huge impact on Asian monsoon
and local climatic conditions. The area is highly affected by climate change and high solar
radiation activity [4,9]. Thus, the SEB analysis is an important study to understand its
regional climatic phenomena. Figure 1 shows the elevation, land cover, and administrative
map of TP.

Figure 1. Administrative and land cover map of the Tibetan Plateau (TP). The boundary of TP
is obtained from Yili [43] (DOI:10.3974/geodb.2014.01.12.V1). The land cover map is prepared
from MODIS mcd12c1 data; 17 IGBP land cover classes are reclassified and merged into 7 major
land covers in TP; insight shows the elevation map of TP using SRTM30 data set (download from
https://earthexplorer.usgs.gov/) and locations of FluxNet tower sites.

https://earthexplorer.usgs.gov/
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3. Data and Methods
3.1. CERES Radiation Product

CERES sensors mounted on Terra and Aqua satellites measure top of the atmosphere
radiances in three channels; SW (0.3 to 0.5 µm), window (8 to 12 µm) and total (0.3 to
200 µm). These radiances are converted into fluxes using scene type dependent angular
distribution models. To provide scene type information, aerosol properties and cloud cover
areas, MODIS data is used along with CERES radiances [44,45]. In this study, the CERES
Energy Balance and Filled (EBAF) ED4.1 product under clear sky conditions was used for
downward shortwave (SW) and longwave (LW) flux at 1-degree spatial resolution. Surface
fluxes are computed from CERES_EBAF_TOA flux using Langly Fu-Liou radiative transfer
model [45,46]. Uncertainties in the computed downward SW and LW fluxes under clear-sky
conditions are 4 Wm−2 and 6 Wm−2, respectively [47]. These data were obtained from the
NASA Langley Research Center CERES ordering tool at https://ceres.larc.nasa.gov/.

3.2. MODIS Products

Albedo is a ratio between the reflected and the incident energy in the form of SW
radiation. MODIS level 3 daily albedo product (MCD43C3 CMG) at 0.05◦ spatial resolution
was used in this study. This product contains directional hemispherical reflectance (direct
or black sky albedo) and bihemispherical reflectance (diffuse or white sky albedo) [48,49].
Black sky albedo was used in this study because a highly correlated value (R = 0.99)
between black and white sky albedo provides the liberty to choose either of them. The use
of both black and white sky albedo is evident from recent literature [50]. The high quality
MODIS albedo product is accurate within 5% at local solar noon [49].

LST and emissivity are two essential parameters for the calculation of upward LW ra-
diation flux. MODIS Terra LST and emissivity monthly product (MOD11C3) at 0.05-degree
spatial resolution was used in this study. MODIS LST and emissivity products used a
generalized split window algorithm to obtain LST values while the classification based
emissivity method is used to obtain emissivity [51,52]. Two daily LST observations are
available within MOD11C3, one is at 10:30 AM and the other is at 10:30 PM. The Simplified
Merge Scheme (SMS) [53,54] was used to get daily average LST. Collection 6 LST product
is validated against various land cover sites and an average standard deviation error is
found as less than 0.5K [55]. A study conducted over TP validated MODIS LST and emis-
sivity products using ground based measurements at a semi desert site on western TP [56]
Emissivity was obtained from the EMIS31 scientific data set (SDS) of MOD11C3. EMIS31
is based on MODIS band 31 (10,780 to 11,280 nm) and provides more accurate emissivity
than other MODIS bands over various land covers [55].

In this study, the MODIS 8-days evapotranspiration and LE product (MOD16A2) at
500 m resolution was used to obtain LE. The product is based on a modified Penman–
Monteith method, a complex but well established equation that involves several parameters
including saturated water vapor pressure, available energy in the form RN, air density,
specific heat capacity of air, aerodynamic resistance, and surface resistance. Mu et al. [57,58]
use MODIS remote sensing products of Fraction of Photosynthetically Active Radiation,
(FPAR), Leaf Area Index (LAI), land cover, albedo, and NDVI, while tower observations
for meteorological data inputs. Obtained results were tested against eddy covariance flux
towers from the AmeriFlux network. These towers used the eddy covariance method
which is a widely accepted technique to measure energy fluxes. The mean absolute error of
daily MODIS ET was observed as 0.33 mm day−1.

For the land cover map of the Tibetan plateau, “MODIS/Terra+Aqua Land Cover
Type Yearly L3 Global 0.05-degree CMG” product was used. It provides five different land
cover classification schemes, from which the International Geosphere-Biosphere Program
(IGBP) scheme was used which classify land into 17 different classes.

MODIS MOD13C2 product provides mean monthly NDVI values at 0.05◦ spatial
resolution. The product computes vegetation indices from MOD09, an atmospherically

https://ceres.larc.nasa.gov/
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corrected surface reflectance MODIS product [59,60]. This product was used in this study
to quantify vegetation impact on LE.

All MODIS products used in this study were downloaded from NASA’s Level-1 and
Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center
(DAAC) (https://ladsweb.modaps.eosdis.nasa.gov/).

3.3. Reanalysis Data

ERA5 is a long-term reanalysis data set, prepared by ECMWF under Copernicus
Climate Change Service (C3S). ERA5 provides more accurate hourly data at a spatial reso-
lution of 31 km compared to the other reanalysis sources [61]. In this study, monthly mean
values of net SW, net LW, LE, SH, and air temperature at 0.1◦ spatial resolution were used.
Net SW and net LW were used to compute the RN. The model, Tiled ECMWF Scheme
for Surface Exchanges over Land incorporating land surface hydrology (TESSEL) is used
in ERA5 land products [62]. These parameters were obtained from https://cds.climate.
copernicus.eu/cdsapp#!/home.

For the air temperature at 2 m height, the National Centers for Environmental
Prediction (NCEP) reanalysis data were used. NCEP air temperature mean monthly
data set is available at 2.5◦ spatial resolution [63]. The data set has obtained from
https://psl.noaa.gov/.

3.4. FluxNet Data

In situ ground observational data was used from the FluxNET2015 data set under the
CC-BY-4.0 data policy for validation purposes. Monthly data from three FluxNet stations
were used in this study. Site information is summarized in Table 1 [64,65]. This data was
downloaded from http://fluxnet.fluxdata.org/. Table 2 provides a summary of all used
parameters.

Table 1. FluxNet data summary. Tier one date of FluxNet2015 data set is used under the CC-BY-4.0
data usage license.

Site ID Site Name Latitude Longitude Land cover Duration

CN-Dan Dangxiong 30.4978◦ 91.066◦ Grassland 2004–05

CN-Ha2 Haibei Shrubland 37.6086◦ 101.3269◦ Wetland 2003–05

CN-HaM Haibei Alpine Tibet Site 37.3700◦ 101.1800◦ Grassland 2002–04

Table 2. Summary of the satellite, reanalysis data and ground observations used in this study.

Sensor/Source Product Parameter Spatial
Resolution

Temporal
Resolution

MODIS MCD43C3 Albedo 0.05◦ Daily

MODIS MOD11C3 LST 0.05◦ Monthly

MODIS MOD11C3 Emissivity 0.05◦ Monthly

MODIS MOD16A2 LE 500 m 8-days

MODIS MOD13C2 NDVI 0.05◦ Monthly

MODIS MCD12C1 Land Cover 0.05◦ Annual

CERES EBAF-surface Incoming SW 1◦ Monthly

CERES EBAF-surface Incoming LW 1◦ Monthly

ERA5 Land monthly averaged Net SW 0.1◦ Monthly

ERA5 Land monthly averaged Net LW 0.1◦ Monthly

https://ladsweb.modaps.eosdis.nasa.gov/
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://psl.noaa.gov/
https://psl.noaa.gov/
http://fluxnet.fluxdata.org/
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Table 2. Cont.

Sensor/Source Product Parameter Spatial
Resolution

Temporal
Resolution

ERA5 Land monthly averaged LE 0.1◦ Monthly

ERA5 Land monthly averaged SH 0.1◦ Monthly

ERA5 Land monthly averaged Temperature 0.1◦ Monthly

NCEP Air temperature at 2m Temperature 2.5◦ Monthly

FluxNET FluxNET-2015 RN, LE,SH Point data Monthly

3.5. Derivation of SEB from Satellite Data

RN describes the balance between incoming and outgoing radiations in the SW and
LW domain. In this study, the RN was derived from Equation (1).

RN = (1− ∝)RS↓ +
(

εRL↓ − σεT4
)

(1)

where RS↓ and RL↓ are downward SW and LW radiations respectively. α is the albedo, ε
is surface emissivity, σ is Stephan–Boltzmann constant (5.67 × 10−8 Wm−2 · K−4), and T is
LST measured in Kelvin. Equation (2) describes the complete equation for the SEB which
involves radiative (RN) as well as non-radiative parameters.

RN = SH + LE + G (2)

where G is ground heat flux. Over large temporal durations, ground heat flux can be
ignored since it has a very small range as compared to other energy fluxes. Moreover,
it is balanced to zero over the annual cycle [66]. In the next step, SH was calculated by
combining Equations (1) and (2) as;

SH = (1− ∝)RS↓ +
(

εRL↓ − σεT4
)
− LE (3)

Spatio-temporal, spatial, temporal, and seasonal analyses were performed for RN, SH,
and LE from January 2001 to December 2019.

3.6. Comparison Ofmultiple Data Sources

SEB parameters, RN, LE, and SH, were obtained from both satellite and reanalysis
data product (ERA5) spatio-temporal, spatial, temporal, and seasonal results from both,
satellite and ERA5 data were compared and analyzed to conclude a final result. Next, the
temporal trend obtained from LE was compared with the NDVI, and the temporal trend of
SH was compared with air temperature and LST.

3.7. Statistical Analysis

To calculate spatio-temporal trends, the Mann–Kendall (M-K) test was used. It is a
non-parametric statistical method to establish a monochromatic (increasing or decreasing)
trend of any given variable over a defined period [67,68]. The M-K test was performed
on mean annual raster images of RN, LE, and SH, to observe any increasing or decreasing
trend over the whole TP. Nineteen-years average raster images were produced for spatial
analysis. For temporal analysis, Linear Regression (LR) slope test and Sen’s slope test were
performed on the decadal scale as well as for the whole study duration. The positive and
negative values of these slopes represent increasing or decreasing trends, respectively. For
the cross validation of both satellite and ERA5 data, mean bias error (MBE) and mean
absolute error (MAE) were checked. These errors describe how closely both data sets are
related to each other.
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4. Results
4.1. Validation of SEB Parameters

Before the analysis of SEB, first, the accuracy of data as well as method shall be
verified. For this purpose, FluxNet tower observations were used. Figure 2 describes the
relationship between satellite, ERA5, and in situ ground observations. LR slope, Pearson’s
correlation coefficient (r-value), MBE, and MAE were used to check the accuracy of satellite
and ERA5 data. Table 3 provides a summary of statistical analyses for the validation of
SEB parameters. It is noteworthy that the significance of the correlation values (r-value
and LR slope) was obtained at a 95% confidence level. Any value which unsatisfied with
this condition is mentioned as insignificant.

Figure 2. Correlation of satellite and ERA5 data with FluxNet observations. Red line describes the
linear regression (LR) slope. Each black dot corresponds to a mean monthly value of surface energy
budget (SEB) parameters measured in Wm−2.

Table 3. Validation statistics of satellite and ERA5 data with respect to FluxNet observations. For LR
slope and Pearson’s r; ** describe 99% significance while * describe 95% significance. Without * values
are insignificant.

Statistical
Analysis

RN (Wm−2) LE (Wm−2) SH (Wm−2)

ERA5 Satellite ERA5 Satellite ERA5 Satellite

LR Slope 0.91 ** 1.19 ** 0.75 ** 0.35 ** 0.75 * 1.49

Pearson’s r 0.88 ** 0.87 ** 0.86 ** 0.79 ** 0.81 * 0.63

MBE (Wm−2) 20.53 0.33 5.55 −0.37 13.19 −21.8

MAE (Wm−2) 26.39 30.03 11.59 18.98 18.93 62.85

RN observations from satellite and ERA5 data sets are 99% significant with r-values
of 0.87 and 0.88, respectively. All four statistical indicators validate the accuracy of the
RN from both data sets. LE values are 99% significant and show very less MBE −0.03 and
5.55 Wm−2 and MAE 18.98 and 11.59 Wm−2 for satellite and ERA5 data, respectively. The
LR slope value of satellite LE is the only indicator that shows a weak relation with FluxNet
observed LE. However, based on the other three statistical parameters, the accuracy of
satellite LE is established. For SH, ERA5 observations are validated from 95% significance
with 0.81 r-value and 13.19 and 18.92 Wm−2 MBE and MAE, respectively. Satellite observed
SH is insignificant (less than 95% significance level). Although the slope value is very high
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(1.49), yet the low r-value 0.63, and very high MAE 62.85 Wm−2, make this parameter
less accurate.

4.2. Spatio-Temporal Analysis

For SEB spatio-temporal trends over TP, the M-K trend test was performed on mean
annual raster images of RN, LE and SH obtained from satellite and ERA5 data. The results
of M-K tau (τ) values are shown in Figure 3. Positive values (in green and blue) represent
increasing trends while negative values (in red and yellow) represent a decreasing trend.
RN shows a positive trend in east and southeast TP in both satellite and ERA5 data. Major
land covers in these regions are forest and shrub lands as shown in Figure 1. Few pixels
in southeast TP show more increasing trends (trend values in between 0.5 to 1) in ERA5
data while such increasing trend is not observable in satellite data. The central regions
of TP exhibit a decreasing trend in both data sets. For spatio-temporal trends in the east,
southeast and central TP, satellite and ERA5 data are approximately in agreement, but the
upper region, the northern part of TP, shows an opposite trend from both data sets. In ERA5
data, these regions show increasing RN trend, with positive M-K τ values, but satellite RN
exhibits a decreasing trend (<0 trend values). The major land cover in northern TP is barren
land. An overall net positive spatio-temporal trend is dominant in the entire TP.

Figure 3. Spatio-temporal trends of (RN), latent heat flux (LE), and sensible heat flux (SH) from ERA5
and satellite data using M-K τ value. Negative values (red and yellow) correspond to the decreasing
trend while positive values (green and blue) correspond to the increasing trend; white regions in
satellite LE and SH are the missing values.

LE shows an increasing trend in both data sets, especially satellite LE exhibits a highly
increasing trend (M-K τ values approaching 1) in northeast TP. From satellite LE the only
decreasing trend is observed in the central region of TP One limitation of the MODIS LE
product is that the product does not produce any values for barren lands, thus the northern
part of TP cannot be observed from satellite LE data, while ERA5 data covers the whole
region. In ERA5 LE, few regions from the northeast and southwest exhibit decreasing
trends. The main contradiction is observed in the northeast where satellite LE shows a
prominent increasing trend (0.5 to 1 trend value) while ERA5 LE shows a decreasing trend
(−0.5 to 0 trend values). Overall a significant increasing trend is observed for LE from both
data sets.

The limitation of LE data from MODIS product prolongs to SH as SEB method
(Equation (3)) was used to calculate SH. SH shows the only visibly negative trend amongst
all SEB parameters. From satellite SH a minor increasing trend in east and central regions
of TP is observed, while from ERA5, east, northwest and few central regions of TP show
increasing trends. In satellite SH some regions from northeast and southwest show a
significant decreasing trend (−1 to −0.5 trend values). In ERA5 SH, such low trend values
are not observed.
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4.3. Spatial Analysis

For spatial analysis; 19 years mean spatial images were used for RN, LE, and SH from
satellite and ERA5 data sets. Figure 4 shows the spatial coverage of all SEB parameters.
The upper panel shows the spatial distribution of ERA5 SEB parameters, while the lower
panel shows the spatial distribution of satellite SEB parameters. The southeast part of TP
exhibits the highest RN values; >150 Wm−2 in satellite data and 90–150 Wm−2 in ERA5
data. In satellite RN, these high values extended towards eastern regions, but in ERA5
RN, the southern regions showed higher values (90–120 Wm−2). Major land covers in
the southeast and eastern regions of TP are forests, shrublands, and savannas, while in
the southwest part majority of land cover is croplands and grass fields. Northern regions
of TP where there are large barren lands as major land cover exhibit least values (from
30 to 60 Wm−2) of RN in satellite and ERA5 data. A contradiction between two data is
observed in the west and central regions of TP where ERA5 data show RN as less than 30
and 30–60 Wm−2, respectively, but the same regions from satellite data show the RN as 60
to 120 wm−2.

Figure 4. The spatial trend of RN, LE, and SH from ERA5 and satellite data. Spatial distribution
image of each SEB parameter is produced by averaging 19 years mean annual spatial images of the
corresponding data (study duration 2001–19). The unit of the legend is Wm−2. White regions in
satellite LE and SH are the missing values.

The highest values of LE also belong to southeast regions of TP from both ERA5
(60–90 Wm−2) and satellite (45–60 Wm−2) data sets. This region is rich in forests. In
satellite data, the least values which are less than 30 Wm−2 belong to the central and
southwest regions. For ERA5 LE, the least values which are less than 15 Wm−2 belong to
the northern regions of TP. As mentioned in the above sections, the MODIS LE product has
a limitation that the product does not provide values for barren lands, which is abundant
in the north TP. One interesting point is that these least values (less than 15 Wm−2) of
ERA5 LE are only in the regions which are at the lowest height in the entire TP (as shown
in the elevation map in Figure 1). However, there is no scholarly proof of the relationship
between LE with altitude. LE has no significant contradiction in spatial patterns between
satellite and ERA5 data.

The spatial pattern of SH shows many contradictions in both data sets. The most
prominent fact is that satellite SH values are between 45 to 120 Wm−2 (only a few pixels
show less than 30 Wm−2) while ERA5 SH values are between 0 to 60 Wm−2. The highest
ERA5 SH values (45 to 60 Wm−2) are exhibited in southwest TP, and the highest satellite SH
values (90 to 120 Wm-2) are exhibited in southeast TP. A thin strip in the extreme southeast
shows the least satellite SH values (less than 30 Wm−2), these pixels in ERA5 SH show the
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same values. In the northwest, central and southern regions of TP, ERA5 SH exhibit the
least values (less than 15 Wm−2), but this trend is not observed in satellite SH.

4.4. Temporal Analysis

For temporal analysis, mean annual aerial averages of RN, LE and SH were computed
over the whole TP. On these aerial averages, LR slope and Sen’s slope were computed
on a decadal scale and for the whole study duration (2001–19). These slope values are
calculated at a 95% confidence level. Figure 5a,c,e shows the ERA5 RN, LE, and SH trends,
while Figure 5b,d,f shows the satellite RN, LE, and SH temporal trends. LR slope lines
for decadal trends (2001–10 and 2011–19) are shown in blue while temporal trends from
2001–19 are shown in the red line. Table 4 summarizes the temporal trend values of the
LR slope and Sen’s slope. Decadal trends of ERA5 RN show negative trends in both LR
and Sen’s slope for both decades, but when the temporal trend is computed for complete
study duration (2001–19) LR slope and Sen’s slope show increasing trends with the value
of 0.01 and 0.02, respectively. For satellite RN, temporal trends for each decade as well as
for total study duration show an increasing trend. The overall temporal trend for satellite
RN from LR slope and Sen’s slope is 0.01 and 0.03, respectively. Temporal trends of RN
from satellite and ERA5 data are in agreement for total study duration and show a nominal
increasing trend.

Figure 5. Temporal variation of RN, LE, and SH based on aerial average over TP. (a,c,e) represent
trends observed from satellite data while the (b,d,f) represents trends observed from ERA5 data.
Decadal trends are shown in blue and overall temporal trend from 2001–19 is shown in red.
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Table 4. Decadal and total temporal trends of RN, LE, and SH from ERA5 and satellite data sets.
LR slope and Sen’s slope are used for temporal trend analysis. ** describe 99% significance while *
describe 95% significance. The values after ± are standard errors in LR slope.

Duration
ERA5 Satellite

LR Slope Sen’s Slope LR Slope Sen’s Slope

RN

2001–10 −0.06 ± 0.1 −0.04 0.15 ± 0.2 0.007

2011–19 −0.005 ± 0.2 −0.03 0.08 ± 0.2 0.18

2001–19 0.01 ± 0.05 0.02 0.01 ± 0.08 0.03

LE

2001–10 0.02 ± 0.7 0.02 0.24 ± 0.1 0.19

2011–19 0.15 ± 0.08 0.15 0.29 ± 0.1 0.25 **

2001–19 0.03 ± 0.02 0.03 0.25 ± 0.05 ** 0.25 **

SH

2001–10 −0.09 ± 0.9 −0.05 0.04 ± 0.2 0.11

2011–19 −0.16 ± 0.2 0.006 0.02 ± 0.2 0.15

2001–19 −0.02 ± 0.05 0.005 −0.18 ± 0.08 * −0.18 *

For LE, all trends, including the decadal scale and for the total study duration from
both data sets show increasing trends in both statistical slopes. However, ERA5 LE shows
an overall minor increasing trend with the LR slope and Sen’s slope value 0.03, but for the
same duration, satellite LE exhibits 0.25 LR slope and Sen’s slope values which exhibit the
prominent increasing trends. For the decadal scale, satellite LE shows the more increasing
temporal trend for the second decade (2011–19). This effect is more pronounced in ERA5 LE
in which the second decade shows a prominently increasing temporal trend (LR slope and
Sen’s slope value 0.15) with respect to the first decade (LR slope and Sen’s slope value 0.02).

SH shows the mixed decadal and overall temporal trends from both data sets. In the
LR slope, ERA5 SH shows a continuously decreasing trend for all the temporal durations.
Overall, ERA5 LR slope value is −0.016, which exhibits a weak decreasing trend. In the
Sen’s slope, the first decade of ERA5 SH shows a decreasing trend while the second decade
shows a very weak increasing trend, and for the total duration, Sen’s slope value for ERA5
SH is 0.005, exhibiting a very weak increasing trend. For satellite SH, LR slope values for
the first and second decade are 0.04 and 0.02, respectively, and for Sen’s slope, these values
are 0.1 and 0.14, respectively. All these four values exhibit a weak but increasing trend. But
for the total study duration, both LR slope and Sen’s slope values are −0.18, which exhibit
a weak negative trend. Increasing decadal temporal trends but decreasing trends over the
longer duration signify the importance of SEB analysis over a longer duration.

4.5. Seasonal Aanalysis

Seasonal averages of RN, LE, and SH from satellite and ERA5 data were computed
using aerial averages of TP. Figure 6 shows the seasonal averages of RN, LE, and SH along
with the LR slope, and Table 5 summarized the numerical values of computed LR slopes
of each trend line marked in Figure 6. For RN, the winter season shows a decreasing
trend while the autumn season shows an increasing trend from both satellite and ERA5
observations concluding that RN is reducing in winters and increasing in summers. For the
spring and summer (mid-seasons of the year) both data sets exhibit different trends, i.e., in
spring, the trend from satellite observations is decreasing while it is increasing in ERA5
observations and vice versa for summer.
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Figure 6. Seasonal analysis of RN, LE, and SH observed from satellite and ERA5 data. Each value rep-
resents the aerial average of the particular SEB parameter for the corresponding season. Straight black
lines are LR slopes.

Table 5. LR slope values of seasonal trends for RN, LE, and SH from satellite and ERA5 data each
numerical value represents the corresponding trend line from Figure 6. ** describe 99% significance,
while * describes 95% significance. Without * values are insignificant. The values after ± are standard
error in LR slope.

Data Set Winter Spring Summer Autumn

RN
Satellite −0.23 ± 0.1 * −0.02 ± 0.1 0.13 ± 0.1 0.07 ± 0.1

ERA5 −0.09 ± 0.09 0.11 ± 0.1 −0.008 ± 0.06 0.003 ± 0.09

LE
Satellite 0.03 ± 0.04 0.39 ± 0.1 ** 0.36 ± 0.08 ** 0.17 ± 0.06 *

ERA5 −0.01 ± 0.01 0.02 ± 0.04 0.07 ± 0.07 0.03 ± 0.04

SH
Satellite −0.2 ± 0.1 * −0.43 ± 0.1 ** −0.27 ± 0.1 * −0.06 ± 0.1

ERA5 −0.04 ± 0.08 0.05 ± 0.1 −0.04 ± 0.05 −0.05 ± 0.06

For LE, all the seasons from both data sets show prominent increasing trends, except
for the winter season from ERA5 data which shows a week decreasing trend, specifically,
LE is prominently increasing in the spring and summer months.

Reciprocal to LE, SH exhibit decreasing trends in all four seasons from both data sets
except for the spring seasons observed from ERA5 data in which an increasing trend is
observed. From the above discussion, it is concluded that both data sets are in agreement
for most of the seasonal trends with very few exceptions. Seasonal trends also described
that LE is equally increasing while SH is equally decreasing throughout the year from 2001
to 19 over TP. The RN is balanced as it is increasing in half of the year (two seasons) while
decreasing for the remaining half year. There is no prominent trend for RN in the overall
annual cycle.

4.6. NDVI and LE

The most prominent trend is observed in LE for the temporal, spatial, and spatio-
temporal domain. The LE and evapotranspiration are directly related to the vegetation
cover of the surface. In this section, the trends of NDVI are analyzed, and the impact of
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NDVI on LE is observed. Figure 7a describes the spatio-temporal trends of NDVI using
M-K τ values. Figure 7b gives the temporal variation of NDVI from mean annual aerial
averages over TP. LR slope and Sen’s slope is used to find the temporal trend. The LR and
Sen’s slope positive trend values of 0.008 exhibit an increasing temporal trend for NDVI
in TP. From the spatio-temporal analysis, the north and northeast regions of TP show the
most increasing trends (trend values 0.5 to 1). Other regions exhibit a moderate positive
trend (trend values 0 to 0.5) of NDVI. Only a few central regions (with trend values −0.5 to
0) show a negative trend. Here, it is noteworthy that the same central regions of TP exhibit
negative trends in LE, as discussed in Section 4.2.

Figure 7. Normalized Difference Vegetation Index (NDVI)analysis: (a) spatio-temporal analysis of
NDVI using M-K τ value (negative values represent decreasing trends while positive value represents
increasing value) and (b) temporal analysis (each point represents mean annual aerial average of
NDVI over TP). The Red line is the LR slope line which represents a temporal trend.

Figure 8a shows the correlation (r-value) between LE and NDVI. Figure 8b shows the
correlation (r-value) between the M-K trend of LE with the M-K trend of NDVI. Random
points were observed from both trend images to establish a correlation between LE and
NDVI. Only satellite LE is used to find the correlation to avoid sensor calibration factors.
A total of 99% of significant correlations are observed at a 95% confidence level. From
a significant r-value (0.754) between NDVI and LE, the spatio-temporal and temporal
analysis, the argument becomes stronger that NDVI analysis is a useful mechanism to
analyze LE.

Figure 8. (a) Correlation between NDVI and satellite LE; both parameters are obtained from MODIS
products. Each point represents a random pixel value taken from mean monthly images of NDVI
and satellite LE (b) Correlation between NDVI trend and LE trend. A total of 320 random pixels were
selected from NDVI and satellite LE spatio-temporal trend images which are produced using the
M-K trend test.
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4.7. LST, Air Temperature and SH

SH is defined as the heat which can change the temperature without changing the
state of matter. Thus, the SH must have a strong relationship with surface and atmospheric
temperature. In this section, a correlation is computed between satellite SH with satellite
(MODIS) LST and ERA5 SH with the ERA5 air temperature at 2 m height. To avoid
any sensor calibration and get a more synchronized correlation, parameters from the
same sensors/data sets are selected. Figure 9a shows the correlation r-value between
satellite SH and MODIS LST, and Figure 9b shows the r-value between ERA5 SH and
ERA5 air temperature. Both correlations are 99% significant at a 95% confidence level.
The relation between SH and LST observed from satellite data sources showed a strong
positive correlation of 0.763. The correlation between SH and air temperature shows a
weak r-value of 0.376. This weak correlation indicates the significance of other factors (such
as wind direction, wind speed, and relative humidity) on air temperature.

Figure 9. Correlation between (a) LST obtained from MODIS product and satellite SH. Random
pixels were selected from mean monthly images of both parameters; a significant r-value shows the
strong correlation between both parameters. (b) Air temperature at 2 m obtained from ERA5 and
ERA5 SH. Below-average r-value exhibits that these factors are not closely related to each other.

Figure 10 shows the temporal variation of air temperature obtained from two reanaly-
sis data sets, ERA5 and NCEP. It is observed that air temperature from ERA5 and NCEP
shows a positive (increasing) trend with the LR slope value 0.018 and 0.073, respectively,
and Sen’s slope value 0.022 and 0.069, respectively. The importance of the factors other
than SH can be observed by comparing temporal trends of SH from Figure 5 with the
temporal trends of air temperature presented in Figure 10. SH shows a decreasing trend
over TP; still, the temporal trend of air temperature is increasing in the same region.
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Figure 10. The temporal trend of air temperature at 2 m height was obtained from ERA5 and NCEP.
Each point represents the aerial average of mean annual value over TP. straight lines are LR slope
values. Both LR slope and Sen’s slope were computed at a 95% confidence level.

5. Discussions

In this study, two different data sources were used to analyze spatio-temporal trends
of RN, LE and SH over TP. the first data source is the satellite data obtained from two
different sensors, CERES and MODIS, and the second data source is a reanalysis data
product ERA5. In this way, a comparative spatio-temporal analysis was performed on SEB
parameters. The first step was to validate the data and method; for this purpose, both data
sets were compared with in situ ground measurements from FluxNet tower observations.
Four statistical parameters (Pearson’s r, LR slope, MBE, and MAE) were used to validate
satellite and ERA5 data. From the results, it is established satellite and ERA5 RN is both
valid and reliable with r-values of 0.87 and 0.88, respectively. ERA5 LE resulted in a more
accurate LR slope than satellite LE. The LR slope of satellite LE (0.35) is significantly less
than the LR slope of ERA5 LE (0.75), but smaller MBE (−0.36 Wm−2) of satellite LE as
compared to MBE of ERA5 LE (5.55 Wm−2) shows that over the annual cycle, satellite LE
is closer to the ground observations. Satellite SH is the only SEB parameter that shows an
insignificant relation with ground observations. High MAE (62.85 Wm−2) and low r-value
(0.63) make satellite SH less accurate than ERA5 SH, which has low MAE (18.92 Wm−2)
and 95% significant high r-value (0.81). Although satellite SH obtained from CERES and
MODIS using Equation (3) is evident from recent literature [15,38,69], in this study, its
accuracy is low.

For the cross validation, MBE and MAE were calculated on aerial averages of mean
monthly satellite and ERA5 observations. Table 6 presents the summary of statistical error
values; here, bias was calculated using satellite—ERA5 observations. Positive MBE and
MAE mean that satellite observations are higher than ERA5 observations. LE represents the
least MBE and MAE, but MAE for SH is very high (53.91 Wm-2) concluding that satellite
SH prominently overestimates ERA5 SH.

Table 6. Cross validation of SEB parameters. MBE and MAE are calculated from mean monthly
observations of RN, LE, and SH observed from satellite and ERA5 data sets. The bias is computed as
satellite–ERA5 data, thus the positive values correspond to the higher satellite observations.

Statistical Analysis RN LE SH

MBE (Wm−2) 34.02 7.55 38.27

MAE (Wm−2) 34.39 15.58 53.92

Spatio-temporal trends were calculated from M-K trend analysis. For RN, east and
southeast regions of TP show the same increasing trends in satellite and ERA5 data sets,
but the northern TP shows opposite spatio-temporal trends in both data sets. In the spatial



Remote Sens. 2021, 13, 256 16 of 20

analysis, almost the same pattern was observed that both data sets are in agreement in
southeast and eastern TP but the northern TP shows the opposite trends. From Figure 1,
it is clear that the majority of land covers in eastern regions of TP are forests, shrubs, and
savannas. Moreover, these regions are relatively at low altitudes. Over these land covers,
satellite and ERA5 data show similar results. The major land cover in northern TP is barren
land; here, both data sets exhibit opposite results. Satellite (MODIS) LE product is the
only satellite product that observes evapotranspiration and LE over 109.03 million km2

global vegetated land [57], but the limitation of the product is that it does not observe LE
over barren lands. Hence in north TP where the majority of land cover is barren lands,
satellite LE is not applicable. In other regions of TP, satellite LE and ERA5 LE are in
agreement and exhibit a net increasing trend except for northeast TP, where ERA5 TP
shows decreasing spatio-temporal trends. Over northern barren lands, ERA5 LE has the
least spatial value between 0 to 15Wm−2. NDVI is an important factor to analyze LE.
In Figure 7a, spatio-temporal analyses of NDVI emphasize the spatio-temporal pattern of
LE, as the regions with increasing spatio-temporal NDVI trends are those which exhibit
spatio-temporal increasing LE trends. For SH, spatio-temporal trends from satellite and
ERA5 data show minor increasing trends for east and central TP, but the majority area in TP
exhibits decreasing trends. Spatial analysis of SH pronounced the difference in satellite and
ERA5 SH as discussed above. Satellite SH observes 60 to 120 Wm−2 in the majority of the
regions in TP while ERA5 SH observes 0 to 45 Wm−2 for the same regions. MAE between
satellite and ERA5 SH presented in Table 6 points towards this difference. By comparing
the MAE of SH from Table 6 with those present in Table 3, it is concluded that satellite SH
is overestimated compared to real SH. Our observed spatial pattern of ERA5 LE and SH are
identical with Xie et al. [6] observed LE and SH from the ERA-Interim data set. One notable
fact is that the east and southeast regions of TP exhibit increasing spatio-temporal trends
and higher spatial values for almost all energy fluxes. A possible reason is the land cover
change in the area, as it is evident from the literature that in these regions afforestation took
place [40,70]. Lands converted to forest from any other land cover exhibit more positive
RN and LE [15,50].

For the temporal trends, two different statistical methods, LR slope and Sen’s slope
were used in this study. Although LR slope is widely used for time series data, it has a
limitation that it is more accurate for the data which best fits on a straight line; moreover,
it is more sensitive to the outliers [32]. Sen’s slope is a non-parametric trend method and
is not limited to the aforementioned limitations. Thus, by choosing two different trend
methods, we eliminate the chances of any bias which may appear because of the statistical
method. From these two slopes, temporal trends for each decade (2001–10, 2011–19) and
the total study duration (2001–19) were calculated. ERA5 RN shows a minor decreasing
decadal trend, but overall study duration exhibits a net increasing trend, while satellite RN
consistently shows an increasing trend in each decade and over the whole duration.

LE observed from ERA5 and satellite shows the significant increasing trend in each
decade and over the total study duration. Increasing vegetation cover and afforestation is
a potential cause for this increase. The argument is strengthening in Figure 7b in which
an increasing temporal trend for NDVI is observed. Shen et al. [20] show the increasing
vegetation growth in TP using multiple satellite NDVI products and relate this with the
evaporative cooling. Our results are in agreement with this study. In Figure 8a, we also
established a significant correlation (r-value 0.754) between LE and NDVI in TP.

For ERA5 SH, the LR slope and Sen’s slope exhibit different behavior in the second
decade (2011–19) and for the total duration, where LR slope shows a decreasing trend but
Sen’s slope shows the increasing trend. The satellite SH shows even more contradictory
results; both slopes show increasing trends in the first and second decade, but for the
total duration, the trend is decreasing. The different longer trends than decadal trends
lead to the conclusion that for the climatic phenomena longer studies are more important
and may lead to different results. There is a huge body of literature that observed the
SH in TP, some studies use reanalysis data especially for the spring and summer seasons.
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Almost all studies show the decreasing SH in TP [2,6,30,33–35]. Despite a decrease in
SH, atmospheric temperature over TP is continuously increasing, resulting in climate
warming [1,8,27,29,33]. A weak correlation (r-value 0.376) between SH and air temperature
is observed in Figure 9b. Climate warming over TP is observed in Figure 10, in which we
show from two reanalysis data sets, ERA5 and NCEP, that mean annual air temperature
over TP is temporally increasing from 2001 to 2019.

6. Conclusions

In this study, the spatio-temporal variations of SEB parameters, RN, LE, and SH are
analyzed from 2001 to 2019 in the TP using satellite data observed from MODIS and CERES
sensors, and reanalysis data from ERA5 data set. After detailed analysis of RN, LE, and SH
from satellite and reanalysis data over the TP, we conclude the following results.

(1) After validation from in situ ground observations, RN observed from satellite and
ERA5 data are equally reliable and can be used for SEB studies. ERA5 LE is more
accurate for monthly analysis, but for annual analysis satellite, LE product (MODIS
MOD16A2) can be used as its MAE over a longer duration is less than the MAE of
ERA5 LE. Although satellite SH is an efficient alternative over large spatial and longer
temporal durations, in the current study it is less accurate than ERA5 SH, which
showed better validation statistics in TP. Satellite and ERA5 data observations are in
better agreement over forests, savannas and shrub lands, but for barren lands, both
observations differ widely.

(2) East and southeast regions of TP exhibit the prominent increasing trend for all SEB
parameters, while central regions show decreasing trends. Temporally, a significant
increase in LE is observed over TP while a relatively smaller decrease for SH is
observed over the same period. RN shows the nominal increasing temporal trend.

(3) NDVI is an important parameter not only for the land cover but also to analyze LE.
Over TP, NDVI’s spatial, temporal, and spatio-temporal trends endorsed the trends
of LE. Increasing NDVI also enlightens the growing vegetation cover over TP.

(4) SH is an important parameter for the heat cycle, yet it may not solely define the
atmospheric temperature trends as SH is decreasing over TP but the air temperature
is increasing in the region.

(5) Climate warming and an imbalance between SEB parameters lead towards the thaw-
ing of permafrost and snow melting in TP. Being the water head of many important
rivers of east and south Asia, any change in the heat cycle of TP enormously affects
the whole region. As discussed earlier, TP has a major impact on the Asian monsoon;
thus, an increase in LE may alter the Asian monsoon pattern and eventually the whole
regional climate.
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