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Abstract: As the Geosynchronous Earth Orbital Synthetic Aperture Radar (GEO SAR) allows a wide
area viewing combined with a short revisit cycle, it is suitable for many applications that require high
timeliness, such as natural disaster monitoring, weather supervision, and military reconnaissance.
However, the ultralong integration time and the invalidation of “stop-and-go” assumption caused
by the raise of orbital height also greatly increase the difficulty of signal processing. In this paper, a
generalized method for calculating the accurate propagation distance between a GEO satellite and
a target with ultralong integration time is proposed. This range model is mainly composed of an
accurate pulse transmitting distance and an error compensation term for “stop-and-go” assumption
failure. The transmitting distance is obtained by Taylor expansion, and the specific derivation process
of the general formula of the mth-order expansion is given, in this paper. As for the compensation
term, this is achieved by approximately calculating the pulse receiving distance based on twice
Taylor expansion, the first expansion is for fast-time and the other is for slow-time. Finally, a series of
simulation experiments were conducted to verify the effectiveness and superiority of this new range
model for an ultralong integration time.

Keywords: Geosynchronous Earth Orbital Synthetic Aperture Radar (GEO SAR); ultralong integra-
tion time; range model; “stop-and-go” assumption; Taylor expansion

1. Introduction

As an advanced active aerospace microwave remote sensing method, Synthetic Aper-
ture Radar (SAR) can provide high resolution images in all-weather and all-time, which
is widely used in military reconnaissance and many civil fields [1]. However, with the
demand for shorter revisit cycles and larger coverage of imaging, the existing Low Earth
Orbital SAR (LEO SAR) can hardly satisfy people’s requirements. In addition, the rapid
development of space ballistic missiles and laser weapons in recent years also put a severe
test on the battlefield survivability of LEO satellites. Therefore, increasing the orbital
altitude of SAR satellites becomes a future development trend.

The concept of Geosynchronous Earth Orbital SAR (GEO SAR) was first proposed by
Kiyo Tomiyasu in 1978 [2,3], which indicates that GEO SAR satellite is in the orbit at an
altitude of approximately 36,500 km and the period is almost one Earth day. Compared to
the conventional SAR satellite located in lower earth orbit, it has many advantages, such as
short revisit cycle, large observe swath, and instantaneous accessibility of targets on the
Earth surface. However, limited by the antenna technology, rocket carrying capacity, and
satellite performance at that time, research work on GEO SAR remained stagnant since
it was proposed. Until the end of the 20th century, with the improvement of many key
technologies, GEO SAR research turned active again.
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At the beginning of the 20th century, the Jet Propulsion Laboratory (JPL) published
several articles on the application of GEO SAR for earthquake prediction, which made an
optimistic estimate on the observational characteristics of the GEO SAR system [4–7]. In
2003, NASA and JPL jointly published a report called Global Earthquake Satellite System
(GESS), which achieved several important results in GEO SAR system demonstration and
antenna design [8].

Since then, many scholars in different countries successively carried out research
work on GEO SAR. Hobbs et al. analyzed the impact of ionosphere and introduced the
system composition in detail, they pointed out that GEO SAR also has good processing
effects on noise suppression and interference, due to the ultralong integration time [9–11].
In 2015, Hobbs et al. proposed that when the orbital inclination is 7.4◦, the satellite is
approximately in the Laplace orbit plane, and the gravitational perturbations cancel out,
therefore, the orbit maintenance costs can be greatly reduced. In this orbit, the optimal
lifetime for a single satellite is probably in the range of 20–30 years [12]. In 2009, Guarnieri
et al. analyzed the impact of atmospheric water vapor on Ku-band GEO SAR imaging [13].
In 2012, Guarnieri et al. proposed the initial conception of the GEO SAR constellation, so
as to realize the monitoring of quick changes on different space and time scales, they also
pointed out its application prospects in disaster monitoring, weather forecast, and ground
deformation monitoring [14].

In recent years, GEO SAR is still a hot research issue, and scholars have achieved
a large number of results in many fields. Hu et al. proposed an analytical analysis
method for multistatic GEO SAR generalized ambiguity functions, based on the array
spatial ambiguity function [15]. The researchers also conducted research on configuration
design, azimuth multichannel reconstruction, and imaging algorithm for moving target in
Geosynchronous Spaceborne–Airborne Bistatic SAR [16–18]. As for the sources of GEO
SAR phase distortions, it mainly includes the trajectory distortions caused by spacecraft
motion measuring, hardware distortions and instabilities during signals formation and
reception, and distortion and instability in the signal propagation path. The effects of orbital
perturbation and radio frequency interferences were discussed in [19,20], and in [21,22],
the authors further analyzed the impact of the troposphere in GEO SAR. In addition, the
imaging of moving targets with complex motions in GEO SAR also recently attracted great
interest from researchers. Zhang et al. proposed an improved GRFT-based approach to
realize the detection and imaging of moving ship targets in GEO SAR [23], and Xiong et al.
presented a novel ship imaging method with multiple sinusoidal function matching for
the rotation effects of GEO SAR [24]. In 2019, Zhang et al. performed the first helicopter-
platform-based equivalent GEO SAR experiment with a long integration time, and they
stated that the first GEO SAR satellite is expected to launch in the next 10 years [25].

However, research related to GEO SAR signal processing is still insufficient. Early
research mainly focused on analyzing signal characteristics of GEO SAR [26,27] and modi-
fying the conventional imaging algorithms used in airborne SAR and LEO SAR [28–30].
The main ideas of these improved imaging methods are principally to modify the tra-
ditional frequency domain algorithms such as RD and CS algorithms, by deriving the
frequency spectrum corresponding to the curve trajectory of GEO SAR. Nevertheless, with
the increase in resolution requirements, the complex curve trajectory and invalidation
of “stop-and-go” assumption due to the ultralong integration time, limit the application
scenarios of these modified methods.

The most critical step in GEO SAR signal processing is calculating the instantaneous
slant range between the antenna phase center and target, which can be described as the
range model. In recent years, many scholars proposed their own range models, which can
be employed in high orbit. In 2014, Hu et al. proposed a fourth-order Taylor expansion
model considering the failure of “stop-and-go” assumption, and they further presented
an improved domain imaging algorithm, based on this range model [31]. However, the
observation time used in their simulation experiment was only 100 s, the effectiveness of
this model for longer integration time was not verified. In 2013, Zhao et al. put forward
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an accurate range model, named the Doppler parameter range model (DRM), to perform
signal processing for GEO SAR, and the simulation results validated that DRM has a
satisfactory effect on an L-band GEO SAR system with an azimuth resolution around
5 m [32,33]. Although this model achieved good fitting results for 660 s exposure time, the
invalidation of “stop-and-go” assumption was not considered. In 2014, Tian et al. proposed
an “Equivalent Position” model, which considered the range error introduced by the “stop-
and-go” assumption [34]. However, this equivalent model was derived on the basis of
a circular orbit, which limited the usage of this model. Liu et al. presented an iterative
approximation range model, which also took the assumption failure into account and
had high computational efficiency and accuracy [35]. However, this model was obtained
by iterative calculation, so it could not be expressed by analytical expression and further
spectrum derivation.

From the above, the existing GEO SAR slant range models still have the following
problems that are not yet resolved:

(1) As the azimuth resolution increases, the low-order Taylor expansion range model
shows insufficient accuracy in ultralong integration time.

(2) The iterative approximation range model has a high accuracy but cannot be expressed
by an analytical expression.

(3) The range models lack the flexibility of precision adjustment for different exposure
times.

The above problems are what this paper is dedicated to solving. This paper is orga-
nized as follows. In Section 2, there is a brief explanation of the invalidation of “stop-and-
go” assumption, then the integration time of GEO SAR at different azimuth resolutions and
fitting effects of several “non-stop-and-go” range models are shown. In Section 3, a novel
range model based on the mth-order Taylor expansion is put forward, and the derivation of
the pulse transmitting and receiving distance are given, respectively. Section 4 shows the
simulation results of fitting errors and imaging results, based on several slant range models,
which validate the effectiveness of the proposed range model in this paper. Section 5 gives
conclusions.

2. Characteristics of GEO SAR
2.1. Invalidation of “Stop-and-Go” Assumption

The “stop-and-go” assumption is widely used in classic SAR imaging algorithms,
which assumes that the radar platform and targets are relatively stationary, during pulse
propagation. According to this hypothesis, the total propagation distance can be calculated
as twice the instantaneous slant range between the antenna phase center and the target,
at the time of pulse transmission. Nevertheless, this assumption ignores the range errors
introduced by two forms of motion, one is the movement of platform relative to the target
during pulse transmission and reception, and the other is the movement of platform
relative to the target during pulse propagation. Figure 1 illustrates the GEO SAR pulse
propagation model in an Earth-centered Earth-fixed (ECEF) coordinate system.

The first kind of error is determined by the radar system, which can be ignored when
the pulse width is short enough. In GEO SAR signal processing, the second movement has a
greater impact on the calculation of the slant range between the radar and target, especially
when the integration time is very long. The propagation delays of the geosynchronous
orbit satellite are always longer than 200 ms, during this period, the satellite runs along the
orbit and the target is also displaced due to the rotation of the earth and its own motion.
Thus, the range error caused by the “stop-and-go” assumption cannot be ignored.
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Figure 1. GEO SAR pulse propagation model in the ECEF coordinate system. P is a point target on
the earth, S0 is the satellite position when the pulse is transmitted, S1 is the satellite position when
the pulse reaches the target, S2 is the satellite position when the pulse is received. r1 and r2 represent
the propagation distance of pulse transmission and reception, respectively.

2.2. Ultralong Integration Time

The azimuth resolution of SAR is determined by the angle of synthetic aperture, so
a SAR system always needs a longer integration time to obtain the same resolution on a
higher orbit. A classic formula for calculating the integration time of different azimuth
resolution can be expressed as follows:

Tsar =
R(ηc)θsyn

vece f
(1)

where R(ηc) denotes the slant range at the center of the aperture, θsyn is the angle of
synthetic aperture, and vece f is the velocity of the platform in the ECEF coordinate system.
Unlike LEO SAR and airborne SAR, the velocity of GEO SAR satellite is quite different
in the Earth-centered inertial (ECI) coordinate and the ECEF coordinate. This is mainly
because the velocity of the satellite decreases as the orbital height increases, which causes
the effect of the earth’s rotation to become more and more obvious.

However, Equation (1) is inaccurate for GEO SAR because of the complicated space
trajectory and velocity changes. To illustrate this problem, we simulated the GEO SAR
space trajectory and velocity under two orbital configurations. The simulation parameters
are shown in Table 1.

Table 1. Simulation parameters of GEO SAR.

Parameter Value Parameter Value

Semi-major Axis 42,164 km RAAN 1 0◦

Inclination 53◦/7.4◦ Argument of Perigee 270◦

Eccentricity 0.07/0.1 Down Angle 4.65◦

PRF 70 Hz/140 Hz Wave Length 0.24 m
Bandwidth 75 MHz /150 MHz Pulsewidth 20 µs

1 RAAN = Right Ascension of Ascending Node.

In Table 1, the orbital inclination of 53◦ and the eccentricity of 0.07 corresponds to the
classic “8” shaped orbit, and the inclination of 7.4◦ and the eccentricity of 0.1 corresponds
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to a near-circular orbit, which is introduced in [12]. The simulation results of trajectory and
velocity under these two orbit configurations are shown in Figures 2 and 3.
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It could be seen that the trajectory of GEO SAR in the ECEF coordinate always presents
to be a complex spatial curve, and the shape of the trajectory is determined by the orbital
parameters. Common shapes include “8” shaped, drop-shaped, and ellipse. From Figure 3,
the velocity of GEO SAR in the ECEF coordinate is much lower than that of LEO SAR,
which means that the integration time is seriously increased.

Considering that (1) will introduce an intolerable error when used for calculating the
integration time of GEO SAR, we propose an accurate search method based on dichotomy.
The basic steps can be briefly described as follows:

1. Set an initial search region [Tmin, Tmax] according to the estimated integration time by
(1), and this region is required to include the real integration time.

2. Define Tmid = (Tmin + Tmax)/2. If Tmax − Tmin is smaller than the threshold, then
return the Treal = Tmid and stop the iteration.
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3. Calculate the synthetic aperture angle of different exposure time Tmin, Tmax, and Tmid,
denoted as θmin, θmax, and θmid.

4. Define the new search region: if θmid > θsyn, then Tmax = Tmid, else let Tmin = Tmid.
Return to step 2.

Through the above steps, an accurate integration time can be obtained, its accuracy
is controlled by the interval threshold, which can be selected according to the error re-
quirements. The interval threshold is selected as 1 s in this experiment, and the simulation
results are shown in Figure 4.
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According to Figure 4, the integration time of the classic “8” shaped orbit is shorter
than that of the near-circular orbit, but the maximum integration time also reaches 1086 s at
5 m azimuth resolution. As for the near-circular orbit, the maximum integration time even
reaches 2400 s at the same resolution. Regarding 2 m azimuth resolution, the integration
time becomes much longer. Therefore, whether the existing range models can be applied
to such a long imaging time remains to be verified.

2.3. “Non-Stop-and-Go” Range Models

With the continuous deepening of GEO SAR research, many scholars proposed their
own range models, which took the “stop-and-go” assumption failure into account [31–35].
In order to analyze the applicability of these models for long integration times, a series
of fitting experiments were conducted. The parameters used in simulation are shown in
Table 1, the observation time was chosen as 2000 s, and the “8” shaped orbit was selected
for this experiment. The phase error simulation results of the whole orbit are shown in
Figure 5 and Table 2. Among these figures, x-axis is the observation time, y-axis is the true
anomaly, and z-axis is the phase error between these range models and the real propagation
distance.

In order to get the fitting error of these range models, we also need to know the real
distance of pulse propagation. Considering that the equation about the real distance is a
transcendental equation and has no analytical solution, a dichotomy search method is used
to approximate it. The specific calculation process is described in [36].
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Table 2. Fitting error comparison of several GEO SAR range models.

Range Model Mean Error
(rad) Max Error (rad) Standard Deviation

(rad)

“Stop-and-go” assumption 47.29 153.72 12.79
Fourth-order Taylor expansion 3.95 50.56 4.41

Iterative approximation 1.84 × 10−6 1.21 × 10−5 1.16 × 10−6

According to Figure 5, a simple summary of these two “non-stop-and-go” range
models can be made:

(1) Fourth-order Taylor expansion model considering the invalidation of “stop-and-go”
assumption. This model can be expressed in the form of a power series, which can
obtain the 2-D spectrum to form an efficient frequency domain imaging algorithm.
However, limited by the order of expansion, this model only has a satisfactory fitting
effect in a short observation time. As the exposure time increases, the fitting error
accumulates rapidly at both edges of the aperture.

(2) Iterative approximation range model. The main idea of this range model is to use
twice the transmitting delay to approximately calculate the satellite position in the
orbit, then an iteration can be formed to calculate a relatively accurate result. The
calculation of this model is simple, and only one iteration already has a high accuracy,
which can be used in echo generation and time-domain imaging algorithms. However,
this range model cannot be expressed by an analytical expression, so its usage for
frequency domain imaging algorithms is limited.

3. Proposed Range Model and Imaging Algorithm
3.1. Proposed Range Model

Based on the two “non-stop-and-go” GEO SAR range models introduced in Section 2,
an improved range model is proposed, which mainly has the following two advantages:

(1) A general calculation method for mth-order expansion of pulse transmitting distance
is given, and the expansion order can be adjusted according to the integration time
and error accuracy requirement.

(2) An accurate pulse receiving distance is obtained by using the thought of iterative
approximation, and the analytical expression is obtained by Taylor expansion in the
ECEF coordinate system.

3.1.1. Pulse Transmitting Distance

This part introduces the mth-order Taylor expansion method of the pulse transmitting
distance, and all the following derivation is completed in the ground-fixed coordinate
system. Without loss of generality, assume that the ground target has a moving speed.
Figure 6 shows the propagation history of the transmitted pulse at the nth pulse repetition
time (PRT).
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Figure 6. The propagation history of the transmitting pulse at the nth PRT. P is a point target on
the earth. Rsn, Rtn, Vsn, and Vtn are the position vectors and velocity vectors of satellite and target,
respectively.

According to Figure 6, the pulse transmitting distance vector can be expressed as:

r1n = Rtn −Rsn (2)

To derive the modulus of r1n, we can first square the two sides of Equation (2),

‖r1n‖2 = (Rtn −Rsn)(Rtn −Rsn)
T (3)

Taking the derivative of Equation (3), the first-derivative and second-derivative of the
transmitting distance can be obtained:

r1n
′ =

(Vtn −Vsn)rT
1n

r1n
(4)

r1n
′′ =

(Atn −Asn)rT
1n + ‖Vtn −Vsn‖2 − (r1n

′)2

r1n
(5)

where Asn and Atn are the acceleration of satellite and target, respectively.
Then, the high order derivatives of transmitting distance can be achieved by taking

the derivative of Equation (5) step by step. In order to make the formula concise and easy
to find the rules, the results of previous derivative are substituted into the next expression.
The derivatives from the third-order to the fifth-order can be expressed as follows:

r1n
(3) =

(
R(3)

tn −R(3)
sn

)
r1n

T + 3
(
R”

tn −R”
sn
)(

R
′
tn −R

′
sn

)T
+ 3r1n ′′ · r1n

′

r1n
(6)

r1n
(4) =

(
R(4)

tn −R(4)
sn

)
r1n

T + 4
(

R(3)
tn −R(3)

sn

)(
R
′
tn −R

′
sn

)T
+ 3‖R”

tn −R”
sn‖

2 − 4r(3)1n · r1n
′ + 3(r1n ′′ )

2

r1n
(7)

r1n
(5) =

(
R(5)

tn −R(5)
sn

)
r1n

T+5
(

R(4)
tn −R(4)

sn

)(
R
′
tn−R

′
sn

)T
+10

(
R(3)

tn −R(3)
sn

)
(R”

tn−R”
sn)

T−5r(4)1n ·r1n
′+10r(3)1n ·r1n

′′

r1n
(8)
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According to the above equations and binomial expansion, the general formula of the
mth-order derivative of the transmitting distance can be written in the following form:

r1n
(m) =

m−1
∑

i=0
C(m− 1, i)

(
R(m−i)

tn −R(m−i)
sn

)(
R(i)

tn −R(i)
sn

)T
−

m−1
∑

i=1
C(m− 1, i)r(m−i)

1n · r(i)1n

r1n
(m ≥ 2) (9)

where C(m− 1, i) represents the combination formula.
After obtaining the high order derivatives, the mth-order Taylor expansion of the

transmitting distance can be performed at the beam center moment:

r1n ≈ r10 + r10
′(nT) + r10

′′

2 (nT)2 + r10
′′′

6 (nT)3 + · · ·+ r(m)
10
m! (nT)m

= r10 + k1(nT) + k2(nT)2 + k3(nT)3 + · · ·+ km(nT)m
(10)

where nT is the azimuth time, and km represents the mth-order coefficient of azimuth time.
In order to calculate the mth-order derivative of transmitting distance, first, we need

to find the first-order to mth-order derivatives of Rsn and Rtn. Considering that the motion
state of the target is known already, the key point to this problem lies in the derivative
of the satellite position vector. During the calculation process, we found that the mth-
order derivative of Rsn has a form that is easy to represent and iteratively calculate in
the orbital coordinate system. Therefore, the derivatives of Rsn is first calculated in the
orbital coordinate system, and are then rotated into the ECEF coordinate system. For
convenience, the three coordinate systems used in the subsequent derivation are defined
here—Ev represents the orbital coordinate system, Eo represents the ECI coordinate system,
and Eg represents the ECEF coordinate system.

According to the orbit equation, the satellite velocity vector in the orbit coordinate
system Ev can be expressed as:

Vs_v =

√
µ

P
[
− sin f e + cos f 0

]T (11)

where f is the true anomaly, µ is the geocentric gravitational constant, µ = 3.986005 × 1014

m3/s2, P and e are the semi-latus rectum and the eccentricity of the orbit.
Taking sin f and cos f as a whole, the mth-order derivative of the satellite position

vector can be expressed as:

R(m)
s_v =

√
µ

P

[
−(sin f )(m−1) (cos f )(m−1) 0

]T
(12)


(sin f )(m) =

m
∑

i=1
C(m− 1, i− 1)(cos f )m−i · f (i)

(cos f )(m) = −
m
∑

i=1
C(m− 1, i− 1)(sin f )m−i · f (i)

(13)

According to Equations (12) and (13), if the 1st to (m − 1)-th order derivatives of true
anomaly are obtained, the mth-order derivative of the satellite position vector in Ev can be
obtained. The first-order to fifth-order derivatives of f are given in Appendix A.

Next is the coordinate rotation part. First, rotate the mth-order derivative of Rs_v from
Ev to Eo. Considering that the rotation matrix Aov is constant, it can be directly written as:

R(m)
s_o = AovR(m)

s_v (14)

Aov =

 cos Ω − sin Ω 0
sin Ω cos Ω 0

0 0 1

 1 0 0
0 cos θi − sin θi
0 sin θi cos θi

 cos ω − sin ω 0
sin ω cos ω 0

0 0 1

 (15)

Second, rotate the mth-order derivative of Rs_o from Eo to Eg. However, the rotation
matrix Ago has the variable orbit time ts, so we also need to take the derivative of Ago.
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The rotation matrix Ago can be written as:

Ago =

 cos Hg sin Hg 0
− sin Hg cos Hg 0

0 0 1

 (16)

Hg = ωe · ts (17)

where Hg is the Greenwich hour angle, ωe is the angular velocity of the earth’s rotation, ts
is the Greenwich mean time. The mth-order derivative of Ago can be expressed as:

A(m)
go = ωm

e

 cos
(

Hg +
mπ

2
)

sin
(

Hg +
mπ

2
)

0
− sin

(
Hg +

mπ
2
)

cos
(

Hg +
mπ

2
)

0
0 0 0

 m ≥ 1 (18)

Therefore, the mth-order derivative of satellite position vector in Eg can be written as
follows:

R(m)
s_g =

m

∑
i=0

C(m, i)A(m−i)
go ·R(i)

s_o (19)

From the above, the complete calculation process of the mth-order Taylor expansion
of transmitting distance is given, and Figure 7 summarizes the process of calculation.
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3.1.2. Pulse Receiving Distance

According to the analysis and simulation results in Section 2, the “stop-and-go”
hypothesis is invalid in GEO SAR. Therefore, it is inaccurate to approximate the pulse
receiving distance with the transmitting distance. In view of the fact that the iterative
approximation range model has a high accuracy but cannot be expressed by an analytical
expression, a new calculation method of pulse receiving distance is proposed in this paper,
which combines the Taylor expansion with one iteration approximation. Figure 8 shows
the propagation history of transmitting and receiving pulse at the nth PRT in the ECEF
coordinate system.
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Figure 8. The propagation history of transmitting and receiving pulse at the nth PRT. P is a point
target on the earth. r1n, r2n represent the transmitting distance vector and receiving distance vector,
respectively. τn is the total propagation time of the pulse.

The relationship between pulse transmitting distance and receiving distance can be
expressed as: {

r1n = ‖r1n‖ = ‖Rtn −Rsn‖
r2n = ‖r2n‖ = ‖Rsn,τn −Rtn‖ = ‖Rsn + Vsnτn −Rtn‖

(20)

Similar to the transmitting distance, the first-order and second-order derivatives of
the receiving distance can be expressed as:

r2n
′ =

(Asnτn + Vsn −Vtn)(Vsnτn − r1n)
T

r2n
(21)

r2n
′′ =

(
R(3)

sn τn + Asn −Atn

)
(Vsnτ − r1n)

T + ‖Asnτn + Vsn −Vtn‖2 − (r′2n)
2

r2n
(22)

The general formula of the mth-order derivative of the pulse receiving distance can be
written in the following form:

r2n
(m) =

m−1
∑

i=0
C(m−1,i)

(
R(m+1−i)

sn τn+R(m−i)
sn −R(m−i)

tn

)(
R(i+1)

sn τn+R(i)
sn−R(i)

tn

)T
−

m−1
∑

i=1
C(m−1,i)r(m−i)

2n ·r(i)2n

r2n
(m ≥ 2) (23)

Considering that the pulse propagation time τn is subsecond, its higher order terms
have little effect on the fitting error. Therefore, this paper only performs a second-order
Taylor expansion of the receiving distance on fast time, and the subsequent simulations in
Section 4 also prove that the second-order expansion can achieve sufficiently high accuracy.

Performing the fast-time Taylor expansion of the receiving distance at a pulse trans-
mitting time, that is, τ equal to 0, the expansion can be written as:

r2n ≈ r1n + r1n
′τn +

r1n ′′

2
τ2

n (24)
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In view of the fact that the actual value of the total pulse propagation time τn cannot
be solved, the idea of one iteration approximation is employed here. The total propagation
time is replaced by double the transmitting delay:

τn ≈
2r1n

c
(25)

It should be pointed out that this approximation step implies the upper limit of the
fitting performance of this method, its fitting error would not be better than that of the
iterative approximation range model.

Substituting the approximate propagation time into Equation (24), the first-order term
can be expressed as:

(Vtn−Vsn)r1n
T

r1n
τn ≈ (Vtn−Vsn)r1n

T

r1n

2r1n
c = 2 (Vtn−Vsn)r1n

T

c
= 2∆r1

(26)

Then, the slow-time Taylor expansion of ∆r1 is performed at the beam center moment:

∆r1 ≈ ∆r10 + ∆k11(nT) + ∆k12(nT)2 + · · ·+ ∆k1m(nT)m (27)
∆r10 = (Vs0−Vt0)r10

T

c

∆k1m =

m
∑

i=0
C(m,i)

(
R(m−i+1)

s0 −R(m−i+1)
t0

)(
R(i)

t0 −R(i)
s0

)T

c·m! m ≥ 1
(28)

Considering that the first-order term is the main source of the fitting error, it should
be expanded to a specified order, according to the accuracy requirements in actual use. In
the following simulation of this paper, the fifth-order expansion of ∆r1 proved to have a
sufficiently high accuracy.

Next, repeating the same steps, the second-order term can be expressed as:

τ2
n
2

(Atn−Asn)r1n
T+‖Vtn−Vsn‖2−(r′2n)

2

r1n

≈ 2
c2

[
r1n

[
(Atn −Asn)r1n

T + ‖Vtn −Vsn‖2
]
− [(Vtn−Vsn)r1n

T]
2

r1n

]
= 2∆r2

(29)

Similar to the expansion of ∆r1, the slow-time Taylor expansion of ∆r2 is performed at
the beam center moment:

∆r2 ≈ ∆r20 + ∆k21(nT) + ∆k22(nT)2 + · · ·+ ∆k2m(nT)m (30)

Given that ∆r2 is the second-order term of fast-time, it has less impact on the fitting
error. Therefore, only the first-order expansion is sufficient to ensure the fitting accuracy.
The calculation results of the ∆r20 and ∆r21 are as follows:

∆r20 =
1
c2

[
r10

(
(At0 −As0)rT

10 + ‖Vt0 −Vs0‖2
)
−
(
(Vtn −Vsn)rT

10
)2

r10

]
(31)

∆k21 = r10
c2

[(
R(3)

t0 −R(3)
s0

)
rT

10 + 3(At0 −As0)(Vt0 −Vs0)
T
]
+ r′10

c2

[(
(At0 −As0)rT

10 + ‖Vt0 −Vs0‖2
)

− 2
r10·c2

[
(Vt0 −Vs0)rT

10
][
(At0 −As0)rT

10 + ‖Vt0 −Vs0‖2
]
+ r′10

r2
10·c2

[
(Vt0 −Vs0)rT

10
]2 (32)

From the above, after considering the failure of “stop-and-go” assumption, the pulse
receiving distance can be expanded as:

r2n = r1n + ∆r ≈ r1n + 2∆r1 + 2∆r2

= r1n + 2
[
(∆r10 + ∆r20) + (∆k11 + ∆k21)(nT) + ∆k12(nT)2 + · · ·+ ∆k15(nT)5

] (33)
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3.1.3. Total Pulse Propagation Distance

The first part of this section introduces a general method to calculate the mth-order
Taylor expansion of pulse transmitting distance in GEO SAR, whose expansion order can
be adjusted by the accuracy requirement and integration time. The second part illustrates
an approach to approximately calculate the pulse receiving distance based on twice Taylor
expansion, the first expansion is for fast-time and the other is for slow-time. In addition, all
derivation of this range model is based on a ground moving target, so this model is also
applicable to the moving target.

Based on the derivation and analysis above, an accurate range model in GEO SAR,
which considers the invalidation of “stop-and-go” assumption can be expressed as:

rn = r1n + r2n = 2r1n + ∆r ≈ 2r1n + 2(∆r1 + ∆r2) (34){
r1n ≈ r10 + k1(nT) + k2(nT)2 + k3(nT)3 + · · ·+ km(nT)m

∆r ≈ 2
(

∆r10 + ∆r20 + (∆k11 + ∆k21)(nT) + (∆k12 + ∆k22)(nT)2 + · · ·+ (∆k1m + ∆k2m)(nT)m
) (35)

where r1n and ∆r represents the Taylor expansion of the pulse transmitting distance and
the compensation term for the “stop-and-go” error, respectively. The fitting precision of
this range model for the ultralong integration time is mainly determined by r1n, whose
accuracy can be adjusted by the expansion order m. The calculation of ∆r mainly uses the
ideas of iterative approximation and twice Taylor expansion, since the total propagation
time is subsecond, there is often no need to expand ∆r to a very high order in actual use.

3.2. Imaging Method

Considering the curved trajectory and invalidation of the “stop-and-go” assumption of
GEO SAR, the conventional imaging algorithms cannot be directly used for focusing. Based
on the range model proposed in this paper, an improved back projection (BP) focusing
algorithm is used for imaging [37,38]. Figure 9 shows the flowchart of the improved BP
algorithm.
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Figure 9. Flowchart of the improved BP algorithm based on the mth-order Taylor expansion range
model.

The main process of the algorithm is the same as that of traditional BP, and the
differences are marked in the flowchart with red boxes. The main different steps are as
follows:

(1) Calculating the true anomaly and its derivatives from 1st to (m − 1)-th order based
on the satellite ephemeris data and orbit configuration;
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(2) Determining the Taylor expansion order m by the SAR system parameters and er-
ror accuracy, and then performing the mth-order Taylor expansion to obtain the
transmitting distance for each grid point.

(3) Calculating the compensation term of the “stop-and-go” assumption failure, and then
bringing the complete pulse propagation distance into the azimuth compression.

4. Simulation Results and Discussion

The range model proposed in this paper can be divided into two parts—pulse trans-
mitting distance and compensation term for “stop-and-go” error. In order to verify the
effectiveness of the proposed range model and analyze the impact of different terms on the
fitting accuracy, this section gives some simulation results on pulse propagation distance
fitting and point target focusing. The simulation parameters are shown in Table 1, and if
there are none specifically mentioned below, the satellite orbit is an “8” shaped orbit. All
targets are in the stationary state.

4.1. Fitting Error of the Pulse Transmitting Distance

This subsection focuses on simulating the fitting error of each order of Taylor expan-
sion for different integration time, the simulation results can be helpful for selecting the
expansion order of the range model. According to Equation (34), the final slant distance is
composed of twice the transmitting distance and a compensation term, so the phase error
of the transmitting distance should be at least less than π/8.

Figure 10 and Table 3 show the fitting error of the pulse transmitting distance of the
whole orbit from fourth-order to sixth-order Taylor expansion. According to the simulation
results, it was obvious that the fitting error would gradually decrease as the expansion
order increased. With an observation time of 2000 s, the maximum phase error of the
fourth-order and fifth-order expansion were both greater than π/8, only the sixth-order
Taylor expansion could meet the accuracy requirement.
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Table 3. Pulse transmitting distance fitting error comparison of different order Taylor expansion.

Expansion Order Mean Error (rad) Max Error (rad) Standard Deviation (rad)

Fourth-order 1.97 25.28 2.20
Fifth-order 0.05 0.66 0.05
Sixth-order 1.16 × 10−3 0.02 1.55 × 10−3

Furthermore, it could be seen from Figure 10 that the positions corresponding to the
minimum and maximum fitting errors changed with the expansion orders, and showed
obvious odd and even changes. This was mainly because the reminder terms corresponding
to the different order expansion were different forms, so their extreme points would appear
in different positions.
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In order to further analyze the selection of the expansion order with different inte-
gration times, the maximum fitting phase error of the whole orbit was simulated. The
observation time was selected as 6000 s, and the results are shown in Figure 11.
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It was obvious that the observation time corresponding to the error bound would
change as the satellite orbit configuration changed. Therefore, in order to analyze the
influence of orbit configuration on the fitting error, we simulated both phase error in the
two types of orbit. It should be pointed out that since the pitch angle of some positions in
the near-circular orbit was too large, the Zero-Doppler attitude guidance in [39,40] was no
longer applicable, and the attitude steering was only performed on the former.

According to the symmetry of Figure 11a, the observation time corresponding to the
error bound π/8 of the 3rd-order to 7th-order Taylor expansion were 328 s, 870 s, 1866 s,
3050 s, and 4744 s. As for Figure 11b, the observation time corresponding to error bound
π/8 were 516 s, 1146 s, 2180 s, 3646 s, and 5534 s, which were slightly larger than that of the
“8” shaped orbit. This was mainly because the velocity of the satellite in the near-circular
orbit was smaller, so the accumulated error was less than that of the “8” shaped orbit, for
the same duration.

From the above simulation results, in order to select an appropriate expansion order
to reduce the computation cost, it was necessary to analyze the fitting errors of different
Taylor expansion orders in advance.

4.2. Fitting Error of Compensation Term

The error of “stop-and-go” assumption mainly comes from replacing the pulse receiv-
ing distance with the transmitting distance. However, the equation on the real receiving
distance was a transcendental equation and had no analytical solution, so it could only be
represented using approximate methods. Considering that the compensation term was
derived from iterative approximation and Taylor expansion, its fitting effect would not be
better than that of the iterative approximation range model. Figures 12 and 13 show the
fitting errors of these two methods for calculating the pulse receiving distance for different
integration times. The expansion order used in the proposed method was the same as
Equation (33), which is a fifth-order expansion for the first-order term and a first-order
expansion for the second-order term.
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Comparing Figures 12a and 13a, the fitting error of the proposed compensation term
was close to the iterative approximation range model for short integration time. When the
observation time increased to 1000 s and 2000 s, the fitting error of the proposed method
would be slightly larger than that of the iterative approximation range model. However,
the errors were still in the magnitude of 10−5 and 10−4 rad, which verified the effectiveness
of the proposed compensation term for a long integration time.

According to the above simulation results, it could be seen that the compensation term
proposed in this paper had a satisfactory effect for compensating the errors introduced by
the “stop-and-go” assumption. Furthermore, considering that the motion of the target was
taken into account when deriving the compensation term, it was also applicable to moving
targets.

4.3. Focusing Results at Different Orbit Position

Since the motion state of the GEO satellite varied during the flight, the Taylor expan-
sion range model had different fitting effects at different orbit positions. Figure 14 shows
the relationship between the fitting error of the fourth-order Taylor expansion and the orbit
positions; the observation time was 1000 s.

According to Figure 14, the maximum fitting error of the fourth-order expansion
appeared at 45◦ and 315◦ of true anomaly, the minimum fitting error appeared in multiple
locations, including the perigee and apogee. Therefore, to illustrate the focusing effect
at different orbit positions, we conducted the imaging simulations based on fourth-order
expansion at perigee and 45◦ of true anomaly. The simulation parameters are shown in
Table 1, and the orbit was chosen as the “8” shaped orbit, the integration time was chosen
as 1000 s.
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different orbit positions.

Figure 15 shows the fitting error and the focusing results of the fourth-order Taylor
expansion at perigee. From Figure 15a, it can be seen that the fitting error of fourth-
order Taylor expansion was much smaller than π/4, which could lead to a satisfactory
focusing results in Figure 15b,c. There were three quality parameters in Figure 15c—
impulse response width (IRW), peak sidelobe ratio (PSLR), integrated sidelobe ratio (ISLR).
According to the satellite synthetic aperture angle, the theoretical azimuth resolution was
2.2641 m, which was close to the experimental result.
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Figure 16 shows the fitting error and focusing result of the fourth-order Taylor expan-
sion at 45◦ of true anomaly. From Figure 16b,c, it can be seen that the azimuth focusing
results of the fourth-order Taylor expansion show obvious asymmetry. The main reason for
azimuth-defocusing was that the radial velocity of satellite changed rapidly around this
orbit position, and the fourth-order Taylor expansion was difficult to meet the accuracy
requirement. According to Figure 16a, the fitting error showed obvious odd function
characteristics, which was consistent with the fact that the main term of its reminder was a
fifth-order polynomial. The maximum error was about 1.57 rad, which was larger than the
error bound π/4, thus resulting in the defocusing of azimuth.

According to Figure 17a, the fitting error of sixth-order Taylor expansion remained at
a very low level at the same position, which could achieve relatively satisfactory focusing
results. The imaging results are shown in Figure 17b,c. It should be noted that since the
satellite runs faster at this orbit position, this position would obtain a larger synthetic aper-
ture angle and a higher azimuth resolution for the same integration time. The theoretical
azimuth resolution was 1.6069 m, which was also close to the experimental result.
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Through the above simulation results, it could be seen that since the motion state of
satellite changes all the time, the range model of a certain expansion order in different
orbit positions would have different fitting effects. The perigee and apogee are always
positions with the minimum fitting error, so it is insufficient to verify models or algorithms
at only those positions. In conclusion, the expansion order should be determined by the
maximum fitting error of the whole orbit, or using different expansion order at different
orbit positions for the purpose of reducing the computational burden.

4.4. Focusing Results with Ultralong Integration Time

In order to verify the effectiveness of the mth-order Taylor expansion for target focus-
ing with ultralong integration time, a series of simulation experiments for point targets
imaging were conducted. The simulation parameters are shown in Table 1, and the orbit
was chosen as the “8” shaped orbit. The integration time was 2000 s in these experiments,
and the expansion order of pulse transmitting distance was sixth. Figure 18 shows the rela-
tionship between the fitting error of the sixth-order Taylor expansion and orbit position for
2000 s observation time. The imaging positions chosen are 55◦ of true anomaly and perigee,
which were the locations of the maximum and minimum fitting error. The simulation scene
was 40 km × 40 km, which had twenty-five point targets established in it, and the intervals
between the two adjacent points were both 10 km in the range and azimuth direction. The
distribution of point targets in the latitude–longitude grid at perigee is shown in Figure 19.
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Figure 19. The distribution of twenty-five point targets at perigee.

It needs to be pointed out that these point targets were all placed on the earth surface
according to satellite motions and the WGS84 coordinates, rather than being placed on the
slant plane, which avoided the problem of targets separated from the earth surface. Targets
from P1 to P5 were arranged along the range direction, and the beam scanning velocity
was along the longitude at the perigee, according to Figure 19.

The focusing results of twenty-five targets are shown in Figure 20, the horizontal and
vertical direction were the azimuth and range directions, respectively. Through the five
refined imaging results, the targets located at different positions in the scene could all be
well focused. Table 4 lists the evaluation measures of the five point targets, including PSLR,
ISLR, and IRW. The positions in Table 4 indicate the coordinates of the point targets in the
imaging scene, and assuming that the center-point was the origin of the coordinates. As
shown in Table 4, the range PSLR and azimuth PSLR of different position targets were all
close to the theoretical value −13.26 dB, and the ISLR of range direction were also close to
the theoretical value −10 dB. It could be seen that the azimuth ISLR were slightly lower
than the ideal value, which was mainly because of the curved trajectory of satellite. As for
the IRW, the theoretical azimuth resolution of the center-point was 1.1346 m, which was in
good agreement with experimental results.
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Table 4. Evaluation parameters of point targets by the imaging method proposed in this paper.

Positions
(km)

PSLR(dB) ISLR(dB) IRW(m)

Range Azimuth Range Azimuth Range Azimuth

(−20, 20) −13.29 −13.29 −9.97 −10.54 0.88 1.13
(−10, −10) −13.29 −13.30 −9.98 −10.54 0.88 1.13

(0, 0) −13.28 −13.31 −9.97 −10.55 0.88 1.13
(10, 10) −13.28 −13.32 −9.97 −10.55 0.88 1.13

(20, −20) −13.30 −13.33 −9.97 −10.56 0.88 1.13

Next, performing the focusing experiment at the true anomaly of 55◦. Figure 21
shows the distribution of point targets in the latitude–longitude coordinates. Similar
to the previous experiment, the targets from P1 to P5 were arranged along the range
direction. However, the difference was that the satellite velocity was no longer parallel
to the longitude at this position, so the targets showed an oblique distribution in the
latitude–longitude coordinates.

The focusing results and evaluation parameters are shown in Figure 22 and Table 5.
According to Table 5, most evaluation measures are close to the ideal values. Only the
azimuth ISLR was slightly lower than −10 dB, which resulted from the cured trajectory of
GEO satellite. The azimuth IRW was 0.76 m at this orbit position, which was close to the
theoretical value of 0.7567 m.
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Figure 22. Focusing results with the range model proposed in this paper for 2000 s integration time
at 55◦ of true anomaly.

Table 5. Evaluation parameters of point targets by the imaging method proposed in this paper.

Positions
(km)

PSLR(dB) ISLR(dB) IRW(m)

Range Azimuth Range Azimuth Range Azimuth

(−20, 20) −13.30 −13.19 −10.07 −10.55 0.88 0.76
(−10, −10) −13.29 −13.19 −10.07 −10.57 0.88 0.76

(0, 0) −13.32 −13.21 −10.07 −10.55 0.88 0.76
(10, 10) −13.31 −13.20 −10.07 −10.57 0.88 0.76

(20, −20) −13.31 −13.19 −10.07 −10.56 0.88 0.76
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4.5. The Influence of Different Sources of Distortion on Imaging

With an ultralong synthesis time and high resolution in GEO SAR, the sources of
distortions in the phase distribution over the antenna synthesis aperture would have many
forms. In this section, we briefly discuss the impact of two sources of distortion on imaging:

(1) Trajectory distortions caused by errors in measuring the parameters of the spacecraft
motion.

(2) Hardware distortions and instabilities during the formation and reception of probing
signals (in particular, phase instability, instability of the microwave path parameters).

The simulation parameters are shown in Table 1, and the orbit was chosen as the “8”
shaped orbit. The integration time was 2000 s in these experiments, and the orbital position
was located at the perigee.

The first was the impact of motion parameter measurement errors. In order to simplify
the model, we divided the form of measurement error into common forms such as constant
value, quadratic polynomial, and sinusoidal function. The simulation results are shown in
Figure 23.
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Figure 23. The simulation results of measurement error. (a) The constant measurement error in the x-axis direction. (b) The
quadratic polynomial measurement error in the x-axis direction. (c) The sinusoidal measurement error in the x-axis direction.
(d) The imaging result of the constant error. (e) The imaging result of quadratic polynomial error. (f) The imaging result of
sinusoidal error.

Through the above simulation experiments, it could be seen that the measurement
error of satellite motion parameters would cause the target focusing distortion. The form
of measurement errors determined the impact on imaging. Constant errors caused the
target’s offset, while quadratic polynomial and sinusoidal errors would cause the target to
defocus in the azimuth direction.

Next, we discuss the impact of phase errors caused by hardware distortions and
instabilities. Similar to the previous experiment, we divided the forms of phase distortion
into common forms, such as constant value, quadratic polynomial, and sinusoidal function.
The simulation results are shown in Figure 24.



Remote Sens. 2021, 13, 255 23 of 26

Remote Sens. 2021, 13, x FOR PEER REVIEW 24 of 27 
 

 

into common forms, such as constant value, quadratic polynomial, and sinusoidal func-

tion. The simulation results are shown in Figure 24. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 24. The simulation results of phase distortion. (a) The constant phase error. (b) The quadratic polynomial phase 

error. (c) The sinusoidal phase error. (d) The imaging result of constant phase error. (e) The imaging result of quadratic 

polynomial phase error. (f) The imaging result of sinusoidal phase error. 

According to Figure 24, the phase error caused by hardware distortions and instabil-

ities also had a certain impact on target focusing. Constant phase errors would not cause 

obvious changes in the image, while the quadratic polynomial and sinusoidal errors 

would cause varying degrees of defocus. 

As a summary, a slight measurement error and hardware distortion would introduce 

an intolerant error with the ultralong integration time, which would result in deterioration 

of the images. Therefore, methods such as calibration and phase autofocus are needed to 

reduce their influence in the actual system. 

5. Conclusions 

In view of the wide application prospects, GEO SAR attracts more and more attention 

from scholars and related organizations. However, the extremely high orbit also brings 

great challenges to the establishment of accurate slant range models, especially for the 

range calculation for ultralong time. There are two main difficulties in solving this prob-

lem, one is the “stop-and-go” assumption failure caused by the long pulse propagation 

time, and the other is that the fitting error of traditional low-order Taylor expansion would 

quickly accumulate at both ends of the aperture. 

To solve the problems induced by extremely high orbit and ultralong integration 

time, an accurate range model based on mth-order Taylor expansion was put forward in 

this paper. This model was mainly composed of an mth-order Taylor expansion of trans-

mitting distance and an accurate compensation term of the error introduced by the inval-

idation of “stop-and-go” assumption. The superiority and effectiveness of this new model 

for ultralong integration time was verified through the simulation experiments. The im-

aging results demonstrated that this range model was effective for GEO SAR with 2000 s 

integration time and a 40 km wide imaging scene. The evaluation parameters of point 

targets were close to the ideal values, and the azimuth resolution could reach 1 meter. 

Figure 24. The simulation results of phase distortion. (a) The constant phase error. (b) The quadratic polynomial phase
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According to Figure 24, the phase error caused by hardware distortions and instabili-
ties also had a certain impact on target focusing. Constant phase errors would not cause
obvious changes in the image, while the quadratic polynomial and sinusoidal errors would
cause varying degrees of defocus.

As a summary, a slight measurement error and hardware distortion would introduce
an intolerant error with the ultralong integration time, which would result in deterioration
of the images. Therefore, methods such as calibration and phase autofocus are needed to
reduce their influence in the actual system.

5. Conclusions

In view of the wide application prospects, GEO SAR attracts more and more attention
from scholars and related organizations. However, the extremely high orbit also brings
great challenges to the establishment of accurate slant range models, especially for the
range calculation for ultralong time. There are two main difficulties in solving this problem,
one is the “stop-and-go” assumption failure caused by the long pulse propagation time,
and the other is that the fitting error of traditional low-order Taylor expansion would
quickly accumulate at both ends of the aperture.

To solve the problems induced by extremely high orbit and ultralong integration
time, an accurate range model based on mth-order Taylor expansion was put forward
in this paper. This model was mainly composed of an mth-order Taylor expansion of
transmitting distance and an accurate compensation term of the error introduced by the
invalidation of “stop-and-go” assumption. The superiority and effectiveness of this new
model for ultralong integration time was verified through the simulation experiments. The
imaging results demonstrated that this range model was effective for GEO SAR with 2000 s
integration time and a 40 km wide imaging scene. The evaluation parameters of point
targets were close to the ideal values, and the azimuth resolution could reach 1 meter.
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Appendix A

The orbit equation can be written as:

Rs =
P

1 + e cos f
=

a(1− e2)

1 + e cos f
(A1)

where Rs is the separation distance between the satellite and earth center, f is the true
anomaly. P, e, and a are the semi-latus rectum, eccentricity, and semi-major axis of the orbit,
respectively.

The derivative of Rs and f can be expressed as:

R′s =
√

µ

P
e sin f (A2)

f ′ =
√

µP
R2

s
(A3)

Since Equation (A1) is an implicit equation, the mth-order derivative of f cannot be
obtained directly, here are two solutions for this problem.

One way is using the chain rule for derivation with composite functions to derive.
We can differentiate t on both sides of the equation, and after a series of derivation, the
second-order to fifth-order derivatives of f can be expressed as:

f ′′ = −2
µe sin f

R3
s

(A4)

f ′′′ = −2e

√
µ3

P
e + cos f − 4e sin2 f

R4
s

(A5)

f (4) = 2e sin f
µ2

P
12e2 + 1 + 13e cos f − 24e2 sin2 f

R5
s

(A6)

f (5) = 2e

√
µ5

P3

[
12e3 + 14e−

(
144e3 + 32e

)
sin2 f +

(
25e2 + 1

)
cos f − 163e2 sin2 f cos f + 192e3 cos4 f

R6
s

]
(A7)

Another way is to achieve the different order derivatives of f through numerical
calculation, that is, to calculate the finite difference step-by-step. Experiments proved that
this method has sufficient accuracy when the time intervals are short and the orders of
derivative are not too high.
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