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Abstract: Instance segmentation in aerial images is of great significance for remote sensing appli-
cations, and it is inherently more challenging because of cluttered background, extremely dense
and small objects, and objects with arbitrary orientations. Besides, current mainstream CNN-based
methods often suffer from the trade-off between labeling cost and performance. To address these
problems, we present a pipeline of hybrid supervision. In the pipeline, we design an ancillary seg-
mentation model with the bounding box attention module and bounding box filter module. It is able
to generate accurate pseudo pixel-wise labels from real-world aerial images for training any instance
segmentation models. Specifically, bounding box attention module can effectively suppress the noise
in cluttered background and improve the capability of segmenting small objects. Bounding box filter
module works as a filter which removes the false positives caused by cluttered background and
densely distributed objects. Our ancillary segmentation model can locate object pixel-wisely instead
of relying on horizontal bounding box prediction, which has better adaptability to arbitrary oriented
objects. Furthermore, oriented bounding box labels are utilized for handling arbitrary oriented
objects. Experiments on iSAID dataset show that the proposed method can achieve comparable
performance (32.1 AP) to fully supervised methods (33.9 AP), which is obviously higher than weakly
supervised setting (26.5 AP), when using only 10% pixel-wise labels.

Keywords: hybrid supervision; instance segmentation; aerial images; labeling cost

1. Introduction

Instance segmentation in aerial images is an important task, which benefits various
applications, e.g., monitoring of land changes [1], urban management [2] and traffic moni-
toring [3]. With the fast development of deep convolutional neural networks (CNN), the
CNN-based instance segmentation methods are able to reach higher performance. How-
ever, the prerequisite for their performance is the availability of large-scale image dataset
with accurate manually annotated labels. Current mainstream fully supervised instance
segmentation methods [4–9] need instance-level pixel-wise labels for training. Specifically,
labeling a bounding box on an object takes 10.2 s on average while labeling a segmentation
annotation takes 79 s, which is about 8× slower [10]. Furthermore, aerial images usually
have a wide range of view, which means they contain much more objects of interest than
natural images. This leads to higher labeling cost. Taking the iSAID dataset [11] as an
example, it is a large-scale aerial image dataset where each image has 233.6 instances on
average. In comparison, there are only 2.8 instances per image in natural image dataset
PASCAL VOC 2012 [12]. It means labeling cost of aerial images is two magnitude higher
than natural images.
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Although fully supervised instance segmentation methods [4–9] for natural images
can be extended to aerial images, their labeling cost is unacceptable. Currently, weakly
supervised instance segmentation methods that use economic image-level labels [13–15]
or bounding box labels [16–18] have been proposed for natural scenes. To achieve better
performance, some of them [16,17] use bounding box labels and rely on hand-crafted
heuristics (e.g., Grabcut [19] and MCG [20]) to infer an object mask inside a bounding
box as pixel-wise label for training. Nonetheless, their performance is far behind fully
supervised methods due to inaccurate labels, and they cannot work well with aerial images
because they do not consider challenges in aerial images which do not exist in natural
scenes. Specifically, there are three key challenges in aerial images, as illustrated in Figure 1,
first, cluttered background results in severe false positives, especially for small objects.
Second, objects (e.g., vehicles) can be extremely small and dense, meanwhile, huge objects
(e.g., ground track field) can cover a huge area. Third, while objects often appear with
horizontal orientation in natural images, they can be with arbitrary orientations in aerial
images. These challenges make it hard for hand-crafted heuristics (e.g., Grabcut [19] and
MCG [20]) to obtain accurate object masks from aerial images for training.

In this paper, we aim to achieve satisfactory performance while keeping low labeling
cost for aerial image instance segmentation. To this end, we present a pipeline of hybrid
supervision that takes advantage of low labeling cost from bounding box labels and high
accuracy from pixel-wise labels. It only uses 5–20% of images with instance-level pixel-wise
labels and the rest of training images only have bounding box labels. The pipeline consists
of an ancillary segmentation model and a primary instance segmentation model. The
ancillary segmentation model is designed to generate accurate pseudo pixel-wise labels
from real-world aerial images. A small portion of pixel-wise labels is enough for it to
learn to recognize the shape of objects. After obtaining accurate pseudo pixel-wise labels
with the help of the ancillary segmentation model, the primary instance segmentation
model can be easily trained with large amounts of pseudo pixel-wise labels as well as a
small portion of pixel-wise labels in a hybrid way and reach similar performance to fully
supervised setting.

To address three key challenges in aerial images, we add two simple but effective
modules to the ancillary segmentation model. The bounding box attention module is
proposed to suppress the noise in clutter background and deals with densely distributed
small objects, and the bounding box filter module is designed to suppress false positives
caused by cluttered background. To handle the arbitrary oriented objects in aerial images,
we adopt oriented bounding box instead of horizontal box to help these two modules to
work better when arbitrary orientated objects show up.

In summary, our main contributions of this work are that

• The proposed method can well balance performance and labeling cost for instance
segmentation in aerial images.

• We propose a pipeline that consists of an ancillary segmentation model and a primary
instance segmentation model. The ancillary segmentation model with bounding box
attention module, bounding box filter module and oriented bounding box labels can
effectively address the specific challenges in aerial images, i.e., cluttered background,
extremely dense and small objects, and objects with arbitrary orientations.

• We evaluate our method and achieve 32.1 AP on challenging iSAID dataset [11] using
10% pixel-wise labels, which is comparable to fully supervised method 33.9 AP and
much better than weakly supervised setting 26.5 AP.

2. Related Work

In this section, we review segmentation methods in natural images and the segmenta-
tion methods in aerial images, and the progress of aerial image datasets.

Segmentation in natural images. Semantic segmentation is a dense prediction task that
assigns each pixel a semantic category without identifying different instances. An early
CNN-based method was proposed by Long et al. [21]. Furthermore, later works improve
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performances by using multi-scale method [22–26], contextual information [27–30], and
feature fusion [26,30].

Compared with semantic segmentation, instance segmentation further identifies each
object instance in the same semantic category. Most mainstream methods use object
proposals where objects are detected with candidate bounding boxes and then segmented
with a binary mask. These methods can be further divided into two categories in terms
of the proposal methods. One is two-stage object detection framework based [4–6,31],
the other is one-stage object detection framework based [7–9,32]. The two-stage methods
rely on two-stage detectors [33,34], which usually first employ region proposal techniques
to obtain regions of interest, and then extract the features of the regions and obtain the
predictions of categories, bounding boxes and shapes. The one-stage methods rely on
one-stage detectors [35–38] which require only a single pass through the neural network
and directly obtain the predictions.

The instance-level pixel-wise labels for segmentation is labor intensive. Therefore,
some recent researchers exploit weakly supervised method, which only requires image-
level labels [13–15] or bounding box labels [16–18]. Khoreva et al. [16] and Li et al. [17] use
GrabCut [19] and MCG [20] to propose the pseudo pixel-wise labels of objects, and then
refine them with iterative label refinement mechanism. Hsu et al. [18] learn a CNN-based
model in an end-to-end fashion by using the bounding box tightness prior and multiple-
instance learning. Although these weakly supervised methods require less labeling cost,
their performance is much inferior to fully supervised methods [13–16,18].

Segmentation in aerial images. The state-of-the-art end-to-end aerial image semantic
segmentation models are mostly inspired by the idea of fully convolutional networks [21],
which generally consist of an encoder-decoder architecture [21]. Sherrah et al. [39] utilize a
recurrent network in fully convolutional network which fuses multi-level features with
boundary-aware features to achieve better inferences. Ghosh et al. [40] stack U-Nets
architecture to merge high-resolution details and long distance context information at
low-resolution image. Hamaguchi et al. [41] introduce local feature extraction module to
aggregate local features with decreasing dilation factor.

As for instance segmentation, the relevant datasets for aerial images are less than
natural image datasets, and related researches mainly focus on segmenting one particular
type of object, e.g., vehicle [42] or ship [43]. Mou et al. [42] introduce a unified multi-task
learning network that can simultaneously segment vehicle regions and detect semantic
boundaries. Feng et al. [43] address dense object detection issue by applying a sequence
of dilation convolution blocks to progressively learn multi-scale context information and
avoid confusion between objects of the same class. To our best knowledge, there is still
no existing studies for weakly supervised aerial image instance segmentation on multiple
types of objects.

Aerial image datasets. Recently, some well-annotated aerial image datasets for object de-
tection [44,45] and semantic segmentation [46,47] have been introduced, which encourage
the advancements in aerial images for earth observation. However, these datasets do not
provide accurate pixel-wise labels for each object instance in an aerial image, so they are not
suitable for instance segmentation task. There does exist a few publicly available instance
segmentation datasets [11,48], but some of them typically focus on a single object category,
e.g., [48] only labels building footprints. Currently, the only aerial image dataset with
instance-level pixel-wise labels of multiple categories is iSAID [11]. It contains annotations
for 655,451 instances of 15 important categories in 2806 high spatial resolution images.
Moreover, iSAID dataset [11] exhibits the following distinctive characteristics: (1) images
were collected from multiple sensors and platforms, scenes in these images are varying
and have complex contextual information; (2) it has huge object scale variation, the small,
medium and large objects, often show in the same image; (3) it depicts real-life aerial
conditions, the distribution of objects is imbalanced and uneven, the orientation of objects
are arbitrary. All of these characteristics make the instance segmentation task on iSAID
dataset [11] challenging.
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3. Hybrid Supervision for Instance Segmentation in Aerial Images

In this section, we first formulate the instance segmentation task in aerial images and
provide more insights on the choice of label types and three challenges. Then, our proposed
method and the implementation details are introduced.

3.1. Motivation

In this paper, we focus on instance segmentation in aerial images that locates the
objects of interest (Figure 1a–d, e.g., aeroplanes, vehicles and harbors, etc.) with pixel-level
accuracy.

Our goal is to balance performance and labeling cost. To this end, we analyze three
types of labels that are commonly used and we also analyze the key challenges in aerial
images that do not exist in natural images.

(a) Cluttered (b) Extremely dense and small objects (c) Extremely (d) Arbitrary
background large object orientation

(e) (f) (g)

Figure 1. Challenges in aerial images. (a–d) are aerial images from the iSAID Dataset [11]. (a) Cluttered background. A line
of cars are in the shadow of the buildings and the white cars are surrounded by white zebra crossings. (b) Small vehicles
that are extremely densely distributed. (c) The extremely large ground track field. (d) Arbitrary oriented harbor. (e–g) are
natural images from PASCAL VOC 2012 [49], Cityscapes [50] and COCO [51] respectively, where objects are much less and
have a similar size.

Choice of label types. To reduce labeling cost of instance segmentation in aerial images, it
is natural to use economic image-level labels or bounding box labels to replace expensive
instance-level pixel-wise labels. However, uncertain locations of objects in image-level
labels and uncertain shapes of objects in bounding box labels definitely harm the learning
of instance segmentation model and lead to inferior performance. In order to solve this
problem, as shown in Figure 2, we have carefully analyzed three types of labels which are
commonly used.

(a) Image (b) Image-level (c) Bounding box (d) Instance-level
label label pixel-wise label

Figure 2. The example of three types of labels.
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• Image-level labels only provide the information about categories of objects in images
and cannot indicate specific location of each object. They are usually used for image
classification [52] but can be hardly used for instance segmentation task in aerial
images especially when objects of interest are small and densely distributed.

• Bounding box labels can provide the information about categories, and locations of
objects. They are usually used for object detection [12]. Nonetheless, they do not
contain the information about shapes of objects, which are important for instance
segmentation task.

• Instance-level pixel-wise labels contain rich information about category, location and
shape of each interested object. But they are expensive to obtain. They are usually
used for instance segmentation [12,50,51].

According to these analyses, the combination of a few pixel-wise labeled samples and a
dominant majority of bounding box labeled samples is an optimal choice to reduce labeling
cost while keeping satisfactory performance. Using dominant majority of bounding box
labeled samples can save ∼7× labeling cost compared with pixel-wise labels [10], and the
usage of a few pixel-wise labeled samples can provide the knowledge about shapes of
objects, which can be beneficial to obtain the shape from bounding box labels and achieve
better performance.

Key challenges. While weakly supervised instance segmentation in natural images has
been well exploited [13–16,18], those methods cannot be naively adopted to aerial images,
due to three challenges of weakly supervised instance segmentation in aerial images.

• Cluttered background. Aerial images can cover various scenes rather than specific
scenes, e.g., cities, oceans and field. Furthermore, other factors like trees and shad-
ows of buildings can also disturb the detection and segmentation. Therefore, the
background (area without interested objects) can be highly diverse and cause false
positives easily. Taking Figure 1a as an example, a line of cars in the shadow of
the buildings are easy to ignore, and the shape of white cars surrounded by zebra
crossings are difficult to obtain accurately.

• Extremely dense and small objects. Aerial images are taken from a much longer
distance than natural images, which results in an extremely dense distribution of small
objects. For example, as shown in Figure 1b, many small vehicles are concentrated in
specific area, sizes of these objects are smaller than 10 pixels in the aerial image. At
the same time, there also exists extremely large objects, as shown in Figure 1c, making
object detection more complex and challenging.

• Arbitrary object orientation. In contrast to conventional datasets for instance seg-
mentation [12,50,51], where objects are generally oriented upward due to gravity, the
orientation of object in aerial images is arbitrary as shown in Figure 1d.

3.2. Formulation

The overview of our proposed method is illustrated in Figure 3. It adopts a small
portion of pixel-wise labeled samples (i.e., fully labeled images) and a dominant amount of
bounding box labeled samples (i.e., weakly labeled images).

In this part, we first introduce the idea of hybrid supervision, then the design of
ancillary segmentation model and how we address the challenges in aerial images are
described. As for instance segmentation model in our pipeline, we use vanilla Mask R-
CNN [4] and CenterMask [8] for experiments separately, please refer to [4,8] for more
details. Notice that they work independently after training and can be replaced by any
instance segmentation models [5,6].
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Ancillary
Segmentation

Model

Losses
Instance 

Segmentation
Model

Bounding Box
Labels

Pixel-wise
Labels

Ground Truth Labels

Pseudo
Labels

stop 
gradient 

Figure 3. The overview of our pipeline. The ancillary segmentation model is first trained with a small portion of pixel-wise
labeled samples, so as to learn to predict high quality pseudo pixel-wise labels on the weakly labeled samples. Then, the
instance segmentation model is optimized with the combination of pseudo labels generated by the ancillary segmentation
model and the pixel-wise labeled samples. Notice that the instance segmentation model works independently after training.

Hybrid supervision. As shown in Figure 3, our method uses both fully labeled and
weakly labeled images for learning in a hybrid way. Our work differs from previous
methods [16–18,53] in four significant aspects:

Firstly, there have been some existing works [17,54,55] that provide experiment results
on utilizing both fully labeled and weakly labeled images for learning. Nevertheless, [54,55]
can only deal with semantic segmentation task. [17] simply uses the GrabCut [19] and
MCG [20] to obtain pseudo pixel-wise labels from bounding boxes and cannot utilize
fully labeled images to refine the pseudo labels which limits its performance. We replace
hand-crafted methods [19,20] and iterative mechanism [16,17] with a CNN-based ancillary
segmentation model for extracting high quality pseudo instance-level pixel-wise labels on
weakly labeled images. The pseudo labels we obtain can be seen as a hybrid of knowledge
about shapes of objects from fully labeled images and the ground truth information about
locations of objects from weakly labeled images, which provide richer information than
original bounding box labels and help to reach better performance.

Secondly, weak supervision [16,18] uses only weakly labeled images but suffers from
uncertain shapes of objects in labels. We utilize a small portion of fully labeled images to
provide the knowledge about shapes of objects, avoiding the problem of uncertain shapes
in weak supervision [16,18].

Thirdly, semi-supervision [53] utilizes fully labeled images and predicts pseudo labels
on unlabeled images for learning, however, noise in pseudo labels (e.g., false positives in
cluttered background, objects with wrong category labels) harms the learning of models.
In our pipeline, the ancillary segmentation model is able to fully use the bounding box
labels to suppress the noise in pseudo labels.

Finally, previous works [16–18,53] only consider natural images, our method is care-
fully designed to deal with the challenges in aerial image instance segmentation, i.e.,
cluttered background, extremely dense and small objects, and objects with arbitrary orien-
tations, which do not exist in natural images.

Ancillary segmentation model. To implement the method of hybrid supervision, we
design an ancillary segmentation model based on DeepLabv3+ [22], which is a reliable
semantic segmentation network. The spatial-invariant property of fully convolutional
networks makes DeepLabv3+ [22] unable to distinguish different instances that distribute
in different location. To adopt it to instance segmentation, we modify DeepLabv3+ [22] into
two decoder branches and utilize spatial-embedding loss introduced by Neven et al. [56]
for training. The spatial-embedding loss [56] avoids the problem of spatial-invariance
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by assigning each pixel a spatial coordinate and learning position-relative offset vectors.
Therefore, the resulting combination of pixel coordinate and offset vector points to its
corresponding instance center.

As shown in Figure 4a, after extracting features by backbone Xception-65 in
DeepLabv3+ [22], two decoder branches are followed. The confidence branch decoder
consists of a deconvolutional layer, a residual block [57], a deconvolutional layer and a
sigmoid layer. Furthermore, the instance branch decoder is similar, except that margin
maps need no sigmoid layer and pixel offset maps need tanh layer to predict offset value in
[−1, 1]. Notice that the difference in coordinate between two neighboring pixels is 1/800,
both in x and y direction, so each pixel can point at most 800 pixels away. Deconvolutional
layers in decoders are for 2× upsampling and the first deconvolutional layer is followed
by a batch normalization layer and a ReLU layer.

Pixel (", $)
Coordinates 

Confidence Maps

Instance Branch Margin Maps Pixel Offset Instance Clustering

Bounding Box

Image

+

Confidence Branch

Instance Masks

Attention
Module

Filter
Module

...

Feature Extraction

(a) Overview of ancillary segmentation model

4x downsample 16x downsample
3x3 Conv
Sigmoid

3x3 Conv
Sigmoid

Attention
Module

Backbone

Bounding Box

Confidence Map

Bounding Box Tensor Filtered Map

Plane
Vehicle

Background

... ...
Bounding Box

Image

(b) Bounding box attention module (c) Bounding box filter module

Figure 4. The illustration of ancillary segmentation model. (a) Pixel offset map is color-encoding where the color indicates
the angle of the vector and the saturation indicates the distance to the center. The “+” in (a) indicates pixel-wise addition.
The “×” in (b,c) indicates element-wise multiplication.

The confidence branch is used to obtain confidence map for each category. The pixel i
is more likely to be foreground if its confidence value di is close to 1, and pixel with di ≤ 0.5
is regarded as background. The instance branch predicts pixel offset maps and margin
maps. Pixel offset value (oix, oiy) in pixel offset maps is used to obtain the predicted center
(cix, ciy)

cix = oix + eix,

ciy = oiy + eiy,
(1)

where (eix, eiy) is the coordinates of pixel. The predicted centers of pixels that belong to
the same instance should be close to each other, which can be recognized by clustering.
Considering that different objects have different size and shape, they need object-specific
clustering margin. Otherwise, if clustering margin is kept the same for all objects, two
small objects that are next to each other may be clustered into one object, since margin
is relative large for them. Furthermore, big objects may be clustered into more than one
objects, because pixels far away from the center may not be able to point into this small
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region around the center. To handle this, margin maps are learnt for predicting instance
margin values (σix, σiy) in (x, y) direction for each object, which are adapted to size and
shape of each object. The confidence branch and the instance branch are optimized jointly
to achieve best performance as described in Section 3.3.

During inference, we sequentially cluster the foreground pixels (whose confidence
value di > 0.5) to different instance objects for each category-specific confidence map. The
cluster procedure is first to choose the pixel with the highest confidence value in confidence
map and then use corresponding predicted center as the center of instance Sk (Ĉkx, Ĉky).
The corresponding instance margin values (σ̂kx, σ̂ky) are also kept. By using this center
and accompanying margin, we cluster the i-th foreground pixel into instance Sk, if the i-th
predicted center (cix, ciy) is close to Sk, the distance is measured by gaussian function,

i ∈ Sk ⇐⇒ exp(− (cix − Ĉkx)
2

2σ̂2
kx

−
(ciy − Ĉky)

2

2σ̂2
ky

) > 0.5. (2)

The spatial-embedding loss [56] is an excellent work designed for predicting high
resolution instance segmentation results in urban street scenes. We utilize it for helping
our ancillary segmentation model to predict pseudo pixel-wise labels in high resolution
and instance-level, which are important for the learning of primary instance segmentation
model. However, it is not enough to deal with the challenges in aerial images and the task
of generating pseudo pixel-wise labels. To make our ancillary segmentation model more
robust for extracting pseudo labels from aerial images, we add a bounding box attention
module and bounding box filter module to it, and the usage of an oriented bounding box
helps these two modules work better when arbitrary orientated objects show up.

3.3. Design and Learning Details

Bounding box attention module. In our analysis, there are two main obstacles in pre-
dicting accurate pseudo pixel-wise labels for small objects, insufficient object feature
information and cluttered background. Small objects lose most of their feature information
in deep layers due to the use of the pooling layer, which makes it hard to localize them.
Meanwhile, cluttered backgrounds may introduce false positives due to its similarity with
foreground objects.

We notice that bounding box labels contain the information about locations of small
objects, and they also provide the information about the background. Therefore, we regard
the bounding box labels as feature maps containing localization information and present a
bounding box attention module for encoding bounding boxes to attention maps, as shown
in Figure 4b. Though its structure is very simple, it can fully utilize the information of
bounding boxes to adjust the feature maps of backbone, e.g., highlight the features of small
objects within bounding boxes and decay the features in the area of background.

In detail, the bounding box attention module first converts the bounding box labels to
feature maps with N + 1 channels, where N is the number of categories and 1 represents
background. If a given pixel belongs to a bounding box of specific class, its corresponding
category channel is set to 1 and the background channel is set to 0. Please notice that
a pixel can belong to multiple bounding boxes. If a given pixel does not belong to any
bounding boxes, the background channel is set to 1 and other channels are set to 0. Then the
bounding box attention module converts the bounding box feature maps to attention maps
which are fused with the feature maps of backbone Xception-65 [22] using element-wise
multiplication. Moreover, the attention maps are generated in 4× downsampling scale and
16× downsampling scale, which are adapted to both small objects and large objects.

Figure 5 visualizes a confidence map for small vehicles, due to the complexity of real-
world aerial images, excessive noise can overwhelm the object information. As shown in
Figure 5b, some small objects have relative low confidence score and cluttered background
introduce severe false positives. After we add the bounding box attention module to
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ancillary segmentation model, in Figure 5c, most of small objects are clearly located and
noise caused by cluttered background are largely suppressed.

(a) Image (b) Baseline (c) +Bounding box (d) Ground truth
attention module

Figure 5. Visualization of bounding box attention module. The (b,c) are visualized confidence map for small vehicles. It can
be seen in (c) that false positives are largely suppressed and most of small vehicles in image are clearly identified with the
help of bounding box attention module.

Bounding box filter module. The original clustering procedure in [56] easily leads to
inaccurate segmentation results when objects are densely distributed or background is
cluttered. For example, two objects that are very close can be clustered as one object, and
cluttered background may lead to false positives. To address this problem and further
improve the quality of generated pseudo pixel-wise labels, we introduce the bounding
box filter module. As shown in Figure 4c, it utilizes the bounding box labels to output
confidence map for each object sequentially before clustering procedure. For each object,
it separates objects and filters out noise of confidence map in area outside the bounding
box, so as to prevent the situation that two objects are clustered as one. Furthermore,
background area outside bounding box is not involved in clustering procedure, so the false
positives are avoided. After clustering procedure, we choose the instance mask that fits
the bounding box best as optimal pseudo pixel-wise label of object. We view the pseudo
pixel-wise label along with corresponding bounding box label as ground truth for the
training of primary instance segmentation model.

Usage of oriented bounding box. Our ancillary segmentation model is segmentation-
based and do not rely on horizontal bounding box prediction to locate object. Therefore,
it has better adaptability to arbitrary oriented objects. For better dealing with arbitrary
oriented objects, we adopt oriented bounding box inspired from [44,58,59], which tackle
objects with arbitrary orientations in detection task. Notice that we use it for solving
instance segmentation in aerial images with hybrid supervision, which is more challenging
and not a naive extension. Moreover, we do not use oriented bounding box labels directly
for training, they are utilized for obtaining pseudo pixel-wise labels with our ancillary
segmentation model. Compared with horizontal bounding box, oriented bounding box
can fit object with arbitrary orientation better. It helps bounding box attention module
to generate more accurate attention maps (see Figure 6), which leads to better results.
Furthermore, the bounding box filter module can better separate objects whose orientations
are arbitrary. Therefore, our ancillary segmentation is able to obtain more accurate shape
of object and this leads to better performance.
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(a) Image (b) Using horizontal (c) Using oriental (d) Ground truth
bounding box bounding box

Figure 6. Visualization of bounding box attention modules with horizontal and oriental bounding box. The (b,c) are
visualized confidence map for large vehicles. It can be seen in (c) that arbitrary oriented objects are better identified when
the bounding box attention module takes oriental bounding box as input.

Loss function. During training, we utilize aforementioned spatial-embedding loss [56] for
learning. Specifically, the confidence branch is optimized with pixel-wise L2 loss Lcon f ,
and φk is a gaussian function representing the distance to instance Sk with probability

Lcon f =
1
M

M

∑
i
1{i∈Sk}‖di − φk(cix, ciy)‖2 + 1{i∈bg}‖di − 0‖2, (3)

φk(cix, ciy) = exp(− (cix − Ckx)
2

2σ2
kx

−
(ciy − Cky)

2

2σ2
ky

), (4)

where M is the number of pixels, 1 is indicator function, di is confidence value and bg
represents background. φk(cix, ciy) usually has higher value if pixel i is close to the center
of object. Therefore higher value in confidence maps indicates that the corresponding pixel
is closer to a center of object. The (Ckx, Cky) is the center of instance object Sk

Ckx =
1
|Sk| ∑

i∈Sk

cix, Cky =
1
|Sk| ∑

i∈Sk

ciy, (5)

and (σkx, σky) is defined as

σkx =
1
|Sk| ∑

i∈Sk

σix, σky =
1
|Sk| ∑

i∈Sk

σiy. (6)

The instance branch can be optimized with cross entropy loss

Linst =
1
M

M

∑
i
1{i∈Sk}(− log φk(cix, ciy)) + 1{i∈bg}(− log(1− φk(cix, ciy))). (7)

Furthermore, to ensure that (σix, σiy) is close to (σkx, σky), a smoothness term is added

Lsmooth =
1
|Sk| ∑

i∈Sk

‖σix − σkx‖2 + ‖σiy − σky‖2. (8)

So the total loss function is

Ltotal = λcon fLcon f + λinstLinst + λsmoothLsmooth, (9)

where λcon f , λinst, λsmooth are the constant coefficient, we choose λcon f = 1, λinst = 10,
λsmooth = 1 for balancing three losses.
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4. Experimental Results

Our method is systematically evaluated on the challenging iSAID dataset [11]. In
this section, the dataset and evaluation metric are first introduced. Then, we describe the
implement details. After that, we quantitatively and qualitatively evaluate our method.
Finally, the ablation studies are performed to analyze the proposed modules.

4.1. Dataset and Evaluation Metric

Dataset. The iSAID dataset [11] contains 2806 original high spatial resolution images.
These images are collected from multiple sensors and platforms with multiple resolutions.
The original spatial resolution ranges from ∼800 × 800 to ∼4000 × 13,000. The predefined
training set consists of 1411 images, while validation set contains 458 images and test
set has 937 images. For instance segmentation task, the iSAID dataset provides 655,451
instances annotations over 15 different categories of object, which is the largest dataset for
instance segmentation in high spatial resolution remote sensing images. As the official
evaluation server of iSAID is still improving, the results on testing set are unavailable, we
evaluate our method on iSAID validation set in the following.

Evaluation metric. We use the standard COCO [51] metrics, i.e., AP (averaged over
IoU threshold from 0.5 to 0.95 with stride of 0.05), AP50 (IoU threshold is 0.5), AP75
(IoU threshold is 0.75), APS, APM and APL, where S, M and L represent small (area:
10–144 pixels), medium (area: 144 to 1024 pixels) and large objects (area: 1024 pixels and
above), respectively.

4.2. Implementation Details

There are three steps in the whole training procedure. First, we train the ancillary
segmentation model with a small portion of images with instance-level pixel-wise labels.
Notice that both horizontal and oriented bounding box labels can be obtained from pixel-
wise labels by using extreme points or algorithm of finding minimum area rectangle, which
needs no extra labeling cost. We input both bounding box labels and images to ancillary
segmentation model and take pixel-wise labels as the supervisory signal. Second, the
ancillary segmentation model generates high quality pseudo instance-level pixel-wise
labels from bounding box labels on weakly labeled images. Third, the primary instance
segmentation model can be trained with a combination of images with instance-level
pixel-wise labels and images with generated pseudo instance-level pixel-wise labels. Here,
we describe the implementation details of ancillary segmentation model and instance
segmentation model in Figure 3.

Training procedure of ancillary segmentation model. For optimizing intersection-over-
union of each instance, we follow [56] to use Lovász-hinge loss [60] rather than standard
cross entropy loss in Linst. The backbone of the ancillary segmentation model is based on
Xception-65 [22], which is pre-trained on the ImageNet dataset [52]. We first pre-train our
model on 448× 448 crops, which are taken out of the original 800× 800 training images.
Notice that each 448× 448 image patch is centered around an object. In this way, we
avoid spending too much computation time on background images patches without any
instances, which leads to shorter training time. The training iterations and batch-size for
pre-training are 40 k and 8, respectively.

Then, we finetune the ancillary segmentation model for another 20 k iterations on
800× 800 crops with a batch-size of 2 to increase performance on the bigger objects which
cannot fit completely within the 448× 448 image patch. The batch normalization statistics
are kept fixed during this stage for better convergence. We use the ADAM optimizer [61]
and polynomial learning rate decay (1− iter

max iter )
0.9. The initial learning rate is 5 × 10−4 ,

which is later decreased to 5 × 10−5 for finetuning.
The ancillary segmentation model is optimized on two NVIDIA GeForce GTX 1080 Ti

GPUs for roughly two days. Next to random cropping, we also apply random horizontal
mirroring and vertical mirroring as data-augmentation.
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Training procedure of instance segmentation model. We use off-the-shelf Mask R-CNN [4]
and CenterMask [8] as our primary instance segmentation model, and the implementation
is based on Detectron2. The training data consists of all bounding box labels, a small portion
of pixel-wise labels and pseudo labels generated by our ancillary segmentation model.

In our implementation, Mask R-CNN [4] adopts ResNet-101 [57] as the backbone
network and CenterMask [8] adopts ResNeXt-101 [62] as the backbone network. For the
training setting, ResNet-101 [57] and ResNeXt-101 are both pre-trained on the ImageNet
dataset [52]. The batch size, learning rate, weight decay, momentum, and the number of
the iterations are set to 8, 1 × 10−2, 1 × 10−4, 0.9 and 180 k, respectively. The learning
rate drops to 1 × 10−3 at the 60k-th iteration and 1 × 10−4 at the 120k-th iteration. We use
ADAM [61] as the optimizer. For data augmentation, we use the same settings as those in
Mask R-CNN [4]. Both Mask R-CNN [4] and CenterMask [8] are optimized on a server
with eight NVIDIA GeForce GTX 1080 Ti GPUs.

Methods for comparison. To verify the effectiveness of the proposed method, we provide
results under different label settings as follow:
• Weak supervision. Considering there exists no weakly supervised method for instance

segmentation in aerial images, we use bounding box labels as pseudo instance-level
pixel-wise labels for training, so as to serve as weakly supervised results.

• Full supervision. With all pixel-wise labels available, the full supervision can easily
reach the best result. For a comprehensive comparison, we provide the fully super-
vised results with different percentage of pixel-wise labels available (i.e., 5%, 10%,
20% and 100%).

• Weak and full supervision. For a fair comparison, we provide the results of weak and
full supervision. Under this setting, the instance segmentation model is trained with
both instance-level pixel-wise labels and bounding box labels, notice that bounding
box labels are utilized to train the bounding box branch and classification branch only.

Overall performance. As illustrated in Tables 1 and 2, with 10% of pixel-wise labels
and Mask R-CNN [4] serves as instance segmentation model, our hybrid supervision
largely suppress the weak supervision (31.2 AP vs. 13.3 AP, 32.1 AP vs. 26.5 AP) and
full supervision with 10% of pixel-wise labels available (32.1 AP vs. 22.3 AP). Compared
with weak and full supervision setting that uses the same percentage of pixel-wise labels
and bounding box labels, we achieve 3.5 AP higher result (32.1 AP vs. 28.6 AP), which is
a strong evidence to prove the effectiveness of our proposed method. Furthermore, the
AP50 result of our method is very close to full supervision with 100% pixel-wise labels
available (55.0 AP50 vs. 56.4 AP50, i.e., 97.5%). Even with the most strict metric AP, our
hybrid supervision achieves the 94.7% of performance of full supervision (32.1 AP vs. 33.9
AP). It means that our method can achieve similar performance to 100% fully supervised
method with only 10% of pixel-wise labels available.

Besides, we provide the results of Mask R-CNN [4] with 5% and 20% of pixel-wise
labels. As shown in Table 1, our method still performs well with only 5% of pixel-wise labels,
and when pixel-wise labels increase to 20%, our result is even closer to full supervision
(33.3 AP vs. 33.9 AP). These results show that our hybrid supervision is adaptive to the
percentage of pixel-wise labels.
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Table 1. AP, AP50, AP75, APS, APM and APL results on iSAID dataset [11].

Supervision
Instance Number of Number of Horizontal Number of Oriented

AP AP50 AP75 APS APM APLSegmentation Model Pixel-Wise Labels Bounding Box Labels Bounding Box Labels

Weak
Mask R-CNN [4]

- 1411 (100%) - 13.3 34.7 7.2 8.5 14.8 18.5
- - 1411 (100%) 26.5 47.0 26.2 14.8 32.1 36.0

CenterMask [8]
- 1411 (100%) - 12.6 33.0 7.2 7.4 14.5 18.4
- - 1411 (100%) 26.1 45.8 25.6 12.5 31.9 39.6

Full

Mask R-CNN [4]

70 (5%) - - 15.7 25.3 17.0 5.9 19.9 22.6
141 (10%) - - 22.5 38.8 22.5 10.6 28.7 30.2
282 (20%) - - 26.5 43.8 33.6 13.0 33.6 34.8

1411 (100%) - - 33.9 56.4 35.7 18.8 41.1 50.1

CenterMask [8]

70 (5%) - - 15.2 24.9 16.1 5.2 20.5 22.8
141 (10%) - - 23.3 39.2 23.9 10.3 30.4 28.9
282 (20%) - - 26.8 44.5 28.0 11.7 35.1 37.3

1411 (100%) - - 34.0 56.3 35.8 18.0 42.8 53.8

Weak+Full
Mask R-CNN [4] 141 (10%) 1270 (90%) - 28.6 49.1 28.9 15.5 34.2 40.7

CenterMask [8] 141 (10%) 1270 (90%) - 28.3 48.8 28.1 14.5 33.9 40.5

Hybrid(Ours)

Mask R-CNN [4]

70 (5%) - 1341 (95%) 28.7 51.1 27.8 16.4 34.1 35.2
141 (10%) 1270 (90%) - 31.2 53.6 31.9 17.5 37.5 38.9
141 (10%) - 1270 (90%) 32.1 55.0 32.4 18.5 39.0 42.2
242 (20%) - 1169 (80%) 33.3 55.5 34.6 18.7 40.5 47.4

CenterMask [8]

70 (5%) - 1341 (95%) 29.3 51.4 28.8 15.2 36.5 45.6
141 (10%) 1270 (90%) - 31.0 52.9 31.1 16.2 38.6 47.9
141 (10%) - 1270 (90%) 31.5 54.0 31.2 17.0 39.2 48.0
242 (20%) - 1169 (80%) 32.2 54.2 32.1 17.2 40.1 49.1

Table 2. AP results for each category on iSAID dataset [11]. The asterisk “*” indicates using horizontal bounding box labels
instead of oriented bounding box labels.

Method Ship
Storage Baseball Tennis Basketball Ground

Bridge
Large Small Heli- Swimming Round- Soccer-

Plane Harbor AP
Tank Diamond Court Court Field Track Vehicle Vehicle Copter Pool about Ball Field

Mask R-CNN [4]
Weak * 7.23 26.37 30.41 24.08 17.52 14.73 3.24 4.59 6.27 0.20 10.72 29.35 23.37 0.12 0.99 13.28
Weak 31.08 30.93 43.59 74.02 33.20 22.11 18.98 33.31 12.60 0.43 24.51 30.20 38.46 0.43 4.27 26.54
Full (5%) 11.68 21.80 32.09 54.81 4.16 10.21 2.01 23.23 7.70 0.00 0.22 15.88 19.18 31.29 0.75 15.67
Full (10%) 28.10 21.86 36.32 65.88 10.55 13.17 12.19 26.33 8.07 4.32 18.20 15.68 22.31 39.95 13.91 22.46
Full (20%) 33.38 25.75 40.13 68.82 17.96 16.46 14.52 30.33 12.25 5.65 24.14 18.22 29.75 42.84 17.77 26.53
Full (100%) 39.70 34.64 46.73 75.46 34.61 29.83 17.34 34.81 13.10 6.09 29.33 28.07 42.24 49.68 26.84 33.90
Weak+Full * (10%) 30.32 31.98 41.87 69.29 31.12 23.79 17.45 31.39 11.61 2.33 24.81 25.06 34.54 38.57 14.10 28.55
Ours (5%) 33.39 32.71 49.37 73.72 24.36 19.82 14.68 30.87 12.14 3.00 29.97 24.25 35.62 32.79 13.15 28.67
Ours * (10%) 36.58 34.16 49.40 72.64 26.01 22.85 18.55 31.66 12.49 2.37 28.87 25.60 37.24 45.99 23.55 31.20
Ours (10%) 37.66 34.77 49.71 73.53 29.18 23.88 19.01 32.01 12.93 4.17 29.13 27.05 40.63 44.66 23.59 32.13
Ours (20%) 38.05 35.51 48.12 76.82 31.59 25.36 19.36 35.20 13.36 5.08 30.10 31.38 42.87 43.23 23.21 33.28
CenterMask [8]
Weak * 5.15 25.84 31.95 24.32 18.66 12.09 2.70 3.44 3.74 0.27 10.20 26.51 23.63 0.09 0.80 12.63
Weak 23.41 29.50 44.53 75.41 42.79 18.82 18.25 29.68 9.28 0.69 24.58 29.66 40.14 0.43 4.18 26.09
Full (5%) 9.87 24.69 27.09 57.13 8.03 9.50 2.45 17.40 5.83 0.00 0.20 18.18 16.49 30.73 0.72 15.22
Full (10%) 22.83 25.86 38.53 68.82 16.49 13.33 13.87 23.22 6.87 3.44 20.08 17.83 21.50 40.56 16.55 23.32
Full (20%) 24.80 28.42 42.48 69.81 24.77 17.39 16.02 27.20 8.17 3.69 24.27 23.01 31.02 42.71 18.13 26.79
Full (100%) 30.23 35.19 51.53 77.16 42.36 24.50 19.97 32.01 10.06 5.29 30.34 32.61 44.89 47.93 26.30 34.02
Weak+Full * (10%) 23.66 28.45 45.63 71.95 34.47 19.39 18.76 27.64 8.23 2.25 25.20 26.17 38.06 38.28 17.57 28.38
Ours (5%) 26.73 33.24 49.34 74.52 38.13 18.87 16.68 30.31 9.11 3.23 27.02 33.50 40.71 27.98 10.52 29.33
Ours * (10%) 27.90 33.36 49.58 76.02 39.26 18.27 17.69 30.76 9.28 4.64 27.87 32.45 40.08 37.97 19.15 30.95
Ours (10%) 28.32 33.80 49.52 76.51 40.19 20.10 18.64 31.26 9.68 4.32 28.10 33.63 42.04 36.97 19.57 31.51
Ours (20%) 28.48 33.97 50.10 76.67 42.11 21.47 18.74 31.61 9.72 4.87 29.62 34.18 43.93 37.58 20.61 32.22

When we switch the instance segmentation model to CenterMask [4], our method with
5%, 10% and 20% pixel-wise labels also outperforms the weak supervision and achieves
satisfactory performance compared with 100% full supervision, which shows the stability
of our method.

Performance on small and dense objects. We further evaluate performance on small and
dense objects, for it is a key challenge in aerial images. With only 10% of pixel-wise labels,
our method with Mask R-CNN [4] can effectively save labeling cost and achieve similar
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accuracy to 100% fully supervised result in APs, i.e., 18.5 APs vs. 18.8 APs, while the
weakly supervised method can only achieve 14.8 APs. These results show that our method
works well with small objects, and this conclusion keeps the same when we switch the
instance segmentation model to CenterMask [8] (17.0 APs vs. 18.0 APs).

4.3. Qualitative Evaluation

Pseudo pixel-wise labels. We show some pseudo labels generated by our ancillary seg-
mentation model when it is trained with 5%, 10% pixel-wise labels in Figure 7. It can be
seen that we handle cluttered background well, and densely distributed small objects and
arbitrary oriented objects are clearly identified in our pseudo labels. They are very similar
to the ground truth in training set of iSAID dataset [11], which explains why our method
can achieve similar performance with much less pixel-wise labels.

(a) Image (b) Pseudo labels (c) Ground truth (d) Image (e) Pseudo labels (f) Ground truth

Figure 7. Examples of pseudo pixel-wise labels generated by ancillary segmentation model when trained with 5% (upper
three rows) and 10% (bottom three rows) of pixel-wise label.

Instance segmentation results. Figure 8 shows some representative instance segmentation
results for comparison, and Figure 9 shows more examples. It can be seen that our approach
is able to produce high quality instance segmentation results, even in challenging scenarios,
and the visual quality is very close to 100% fully supervised method. In Figure 8, the
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example of the first row shows that our method performs well in image with cluttered
background, and is able to detect the vehicles in the shadow of buildings. The example of
the second row may not be good enough in detecting small objects due to the limitation of
primary instance segmentation model, it shows the recall rate of dense and small objects is
basically the same with fully supervised setting. The example of the third row shows our
method can segment object with arbitrary orientation well. The example of the fourth row
shows that the mask prediction of our method outperforms the weakly supervised setting
when segmenting objects with complex shape like planes. In short, the overall performance
of our method is quite close to the fully supervised setting.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 8. Some representative qualitative results on iSAID dataset [11]. (a) Full (10%, 22.5 AP) Mask R-CNN [4]; (b)
Ours (10%, 32.1 AP) Mask R-CNN [4]; (c) Full (100%, 33.9 AP) Mask R-CNN [4]; (d) Full (10%, 23.3 AP) CenterMask [8];
(e) Ours (10%, 31.5 AP) CenterMask [8]; (f) Full (100%, 34.0 AP) CenterMask [8]; (g) Ground Truth; (h) Weak (26.5 AP)
Mask R-CNN [4]; (i) Ours (10%, 32.1 AP) Mask R-CNN [4]; (j) Full (100%, 33.9 AP) Mask R-CNN [4]; (k) Weak (26.1 AP)
CenterMask [8]; (l) Ours (10%, 31.5 AP) CenterMask [8]; (m) Full (100%, 34.0 AP) CenterMask [8]; (n) Ground Truth.
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(a) (b) (c) (d)

Figure 9. Examples of the segmentation results with our method on iSAID dataset [11]. (a) Ours (10%, 32.1 AP) Mask
R-CNN [4]; (b) Ground Truth; (c) Ours (10%, 31.5 AP) CenterMask [8]; (d) Ground Truth.
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4.4. Ablation Study

The quality of pseudo instance-level pixel-wise labels generated by ancillary segmen-
tation model significantly affects the final results. In this section, we conduct ablation
study on the bounding box attention module, bounding box filter module and oriented
bounding box labels to investigate their contribution on improving the quality of pseudo
labels and effectiveness on solving the challenges in aerial images. We compare the pseudo
labels with ground truth labels and evaluate their quality in the same metric used in main
experiments, i.e., AP, AP50, AP75, APS, APM and APL. We use 10% of pixel-wise labels
with 90% of bounding box labels for experiments and provide the results on validation
set of iSAID dataset [11]. The quantitative results are shown in Table 3, to illustrate the
quantitative results more clearly, we show the content of Table 3 in form of bar chart in
Figure 10. And some examples of pseudo labels are shown in Figure 11 as qualitative
results.
Baseline. As shown in Table 3, without bounding box attention modules, bounding
box filter modules and bounding box labels, the pseudo labels generated by ancillary
segmentation model have low accuracy. In Figure 11b we can see that there is severe noise
in pseudo labels, e.g., false positives caused by a cluttered background, false positives of
small objects and incomplete shapes of objects with arbitrary orientations.

Table 3. Quantitative results of pseudo pixel-wise labels generated by ancillary segmentation model when trained with 10%
pixel-wise labeled images.

Bounding Box Bounding Box Oriented
AP AP50 AP75 APS APM APLAttention Module Filter Module Bounding Box

× × × 12.9 23.9 11.8 6.3 15.4 14.2√
× × 38.1 70.4 36.6 32.9 41.3 36.3√ √

× 41.2 77.2 38.8 34.5 47.3 42.6√ √ √
44.2 79.1 44.5 35.1 51.7 44.9

AP AP50 AP75 APs APm APl
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Figure 10. Visualized bar chart for the quantitative results of Table 3.
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(a) Image (b) Baseline (c) +BBAM (d) +BBAM, BBFM (e) +BBAM, BBFM, OBB (f) Ground truth

Figure 11. Examples of pseudo pixel-wise labels generated by ancillary segmentation model. Different colors are used to
distinguish different object instances in an image. We show the generated pseudo pixel-wise labels under different setting,
it can be seen that bounding box attention modules (BBAM), bounding box filter modules (BBFM), and the usage of oriental
bounding box (OBB) effectively improve the quality of pseudo labels.

Bounding box attention module. Although the structure of bounding box is simple,
Table 3 and Figure 10 show that it significantly improves the overall results. Specifically,
the result on APs increases from 6.3 to 32.9, which demonstrates its effectiveness on
segmenting densely distributed small objects.

As for cluttered backgrounds, comparing the Figure 11b,c, we can see the false pos-
itives in background area are largely removed by the bounding box attention module.
Furthermore, shapes of objects in pseudo labels are more complete. Both quantitative re-
sults and qualitative results show its effectiveness on addressing the challenge of cluttered
background.

Bounding box filter module. As shown in Table 3 and Figure 10, the bounding box
filter module further improves the overall result especially on AP50, from 70.4 to 77.2. In
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Figure 11, we can see that the false positives in background area in Figure 11c are removed
by bounding box filter module in Figure 11d.

In short, these results show that the bounding box filter module improves performance
of ancillary segmentation model by simply removing the false positives outside of bounding
box. In this way, it largely reduces negative effects caused by cluttered background.

Horizontal bounding box vs. Oriented bounding box. Table 3 shows that the utilization
of oriented bounding box improves result on AP75 from 38.8 to 44.5, which means ori-
ented bounding box labels can help ancillary segmentation model to obtain more accurate
segmentation results in aerial images. As shown in Figure 11e, after replacing horizontal
bounding box labels with oriented bounding box labels, our ancillary segmentation model
is able to generate more accurate pseudo labels for both small objects and objects with
arbitrary orientations. This leads to about a 0.5–0.9 AP improvement for primary instance
segmentation model as shown in Table 1, which verifies its effectiveness on solving the
challenge of arbitrary orientations in aerial images. More importantly, our pseudo labels
in Figure 11e are very close to ground truth pixel-wise labels, and this explains why the
proposed method can achieve similar results to 100% fully supervised setting.

5. Conclusions

In this paper, we present a pipeline of hybrid supervision for instance segmenta-
tion in aerial images. We design an ancillary segmentation model to generate accurate
pseudo pixels-wise labels from real-world aerial images which only needs a small portion
of pixel-wise labels for training. It largely reduces the labeling cost while helping the
primary instance segmentation model to achieve satisfactory performance. The proposed
bounding box attention module can effectively suppress the noise from clutter background
in aerial images, and improve the capability of segmenting small objects, addressing the
key challenges of cluttered background and small objects. The proposed bounding box
filter module removes the false positives caused by cluttered background and densely
distributed objects, addressing the key challenge of cluttered background. Besides, we
replace horizontal bounding box labels with oriented bounding box labels to further im-
prove performance of ancillary segmentation model on generating high quality pseudo
pixel-wise labels. On a recent large-scale instance segmentation dataset for aerial images,
i.e., iSAID [11], we achieve comparable performance 32.1 AP to fully supervised setting
33.9 AP which is obviously higher than weakly supervised setting 26.5 AP.

In future, it is worth investigating how to design and further jointly optimize the
primary instance segmentation model to achieve better performance for aerial images.
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