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Abstract: Abundant shallow underground brackish water resources could help in alleviating the
shortage of fresh water resources and the crisis concerning agricultural water resources in the North
China Plain. Improper brackish water irrigation will increase soil salinity and decrease the final yield
due to salt stress affecting the crops. Therefore, it is urgent to develop a practical and low-cost method
to monitor the soil salinity of brackish irrigation systems. Remotely sensed spectral vegetation indices
(SVIs) of crops are promising proxies for indicating the salinity of the surface soil layer. However,
there is still a challenge concerning quantitatively correlating SVIs with the salinity of deeper soil
layers, in which crop roots are mainly distributed. In this study, a field experiment was conducted to
investigate the relationship between SVIs and salinity measurements at four soil depths within six
winter wheat plots irrigated using three salinity levels at the Yucheng Comprehensive Experimental
Station of the Chinese Academy of Sciences during 2017–2019. The hyperspectral reflectance was
measured during the grain-filling stage of winter wheat, since it is more sensitive to soil salinity
during this period. The SVIs derived from the observed hyperspectral data of winter wheat were
compared with the salinity at four soil depths. The results showed that the optimized SVIs, involving
soil salt-sensitive blue, red-edge, and near-infrared wavebands, performed better when retrieving
the soil salinity (R2 ≥ 0.58, root mean square error (RMSE) ≤ 0.62 g/L), especially at the 30-cm depth
(R2 = 0.81, RMSE = 0.36 g/L). For practical applications, linear or quadratic models based on the
screened SVIs in the form of normalized differential vegetation indices (NDVIs) could be used to
retrieve soil salinity (R2 ≥ 0.63, RMSE ≤ 0.62 g/L) at all soil depths and then diagnose salt stress
in winter wheat. This could provide a practical technique for evaluating regional brackish water
irrigation systems.

Keywords: hyperspectral remote sensing; soil salinity; brackish water irrigation; spectral vegetation
index; winter wheat

1. Introduction

The shortage of fresh water is severe in the North China Plain, where 64.7% of the
total water use is accounted for by agriculture [1]. Since shallow groundwater brackish
water resources (total dissolved solids (TDS) 2–5 g/L) are rich in this region [2], they have
been proposed as an alternative irrigation water source to alleviate the water shortage
crisis [2–4]. Studies have shown that using brackish water irrigation once or twice is
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feasible for winter wheat during spring when irrigation is necessary in the North China
Plain [3–6]. However, improper brackish water irrigation could increase the soil salinity
and cause crop physiological stresses [3,7–14]. Thus, it is crucial to monitor the soil salinity
under brackish water irrigation.

Soil salinity along the vertical profile is commonly inhomogeneous because of the
vertical movement of water in the soil. To fully understand the degree of salinity stress
on crops caused by brackish water irrigation, it is necessary to measure the soil salinity
at different depths accurately. Traditional methods for monitoring soil salinity usually
require the manual analysis of field soil samples in a laboratory or the installation of in-situ
sensors to automatically measure the soil salinity. Neither of these are suitable for regional
applications because of their high costs. As remote sensing is a cost-effective, real-time,
and non-destructive process with a wide scope, it is commonly used for monitoring crop
growth status and soil conditions [6,15–20]. Soil salinity has previously been directly
derived from the spectra of salinized soil surfaces [21–24]. However, this method does
not work for a salinized soil surface covered by vegetation [21,23–25]. Microwave remote
sensing can detect the soil surface through the vegetation canopy; however, the working
depth is only around 2–5 cm from the surface layer [26]. The above two methods could not
quantitatively relate remotely sensed signals with the salinity of deeper soil layers, in which
crop roots are mainly distributed. In spectral observations, the soil salinity around the
roots of crops is important due to the specific changes in the physiology and morphology
of crops caused by environmental stressors [27]. Prior studies have developed various
spectral vegetation indices (SVIs) to quantify soil salinity [21,24,28–33] (Table 1). Most of
them focused on the soil salinity at a target depth, whereas a quantitative investigation
concerning SVIs and the soil salinity along the vertical profile has not yet been reported.
Besides, the combinations of band types for monitoring soil salinity are different in different
studies [21,24,28–33]. Therefore, it is necessary to relate soil salinity at different depths and
specific band type combinations from crop spectra to better and more quickly grasp the
status of soil salt transport.

In this study, a field experiment was conducted within six winter wheat plots irrigated
using three salinity levels at the Yucheng Comprehensive Experimental Station of the Chi-
nese Academy of Sciences during 2017–2019. According to previous studies, hyperspectral
remote sensing with narrow bands can still optimize the band combination and improve
the correlations between SVIs and soil salinity [15,24,32,34–36]. Therefore, data concerning
field hyperspectral observations and salinity measurements at four soil depths during
a sensitive stage of winter wheat were used to (1) optimize SVIs for soil salinity at four
depths, (2) evaluate the ability of optimized SVI-based retrieval models to estimate the soil
salinity at four depths, and then (3) discuss some practical suggestions to quantitatively
relate remotely sensed SVIs of crop canopies with saline soil around crop roots.
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Table 1. Summary of the spectral indices for vegetation stress diagnosis 1.

Indices Calculation Formulas Application References

Normalized differential vegetation index (NDVI) NDVI = (RNIR − RR)/(RNIR + RR) Vegetation coverage and state [37,38]
Ratio vegetation index (RVI) RVI = RNIR/RR Dry leaf biomass (DM), LAI, and chlorophyll content [39]

Difference vegetation index (DVI) DVI = RNIR − RR Vegetation stage [40]
Enhanced vegetation index (EVI) EVI = 2.5× ((RNIR − RR)/(RNIR + 6× RR − 7.5× Rblue + 1)) Vegetation changes with climate [41]

Green normalized differential vegetation index (GNDVI) GNDVI =
(
RNIR − Rgreen

)
/
(
RNIR + Rgreen

)
Vegetation state and water stress [42]

Modified simple ratio (MSR) MSR = (RNIR/RR − 1)/
√
(RNIR/RR + 1) Vegetation stress caused by heavy metal pollutant [40]

Red-edge normalized differential vegetation index
(NDVI705) NDVI705 = (RNIR − Rre)/(RNIR + Rre) Minor changes in leaf canopy and senescence [43,44]

Modified red-edge simple ratio index (mSR705) mSR705 = (Rre − Rblue)/(Rre + Rblue) Vegetation low nitrogen stress [45]
Modified red-edge normalized differential vegetation index

(mNDVI705) mNDVI705 = (RNIR − Rre)/(RNIR + Rre − 2× Rblue)
Vegetation water stress and the stress caused by heavy

metal pollutants [46]

Plant senescence reflectance index (PSRI) PSRI =
(
RR − Rgreen

)
/RNIR

Vegetation disease, insect stress, water stress,
and senescence [47]

1 RNIR, RR, Rblue, Rgreen, and Rre represent the spectral reflectance of near-infrared, red, blue, green, and red-edge bands, respectively.
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2. Materials and Methods
2.1. Experimental Site and Design

The field experiment was conducted at the Yucheng Comprehensive Experiment
Station (YCES) of the Chinese Academy of Sciences (CAS) in Yucheng, Shandong Province,
China (36◦57′N, 116◦36′E, 28 m a.s.l.), during the growing seasons of winter wheat in 2017–
2019 (Figure 1). This site has a semi-humid, temperate, and monsoon climate with an annual
average temperature of 13.4 °C and an annual total precipitation of 576.7 mm. This climate
allows a dominant cropping system of winter wheat and summer maize in the region. The
soil in this area is sandy loam (22% sand, 66% silt, and 22% clay), classified as Calcaric
Fluvisols according to the FAO-UNESCO system (Food and Agriculture Organization of
the United Nations (FAO), 1988), with an average pH of 6.46. The local groundwater depth
generally ranges from 1.5 to 4.0 m and has a TDS of approximately 2 g/L. This abundant
shallow brackish groundwater resource is widely used to irrigate winter wheat around the
experimental site.

 

2 

 

Figure 1. Satellite images of study area in false color based on Sentinel-2 data from April to June.
(a) The position of the Yucheng Comprehensive Experiment Station (YCES) of the Chinese Academy
of Sciences (CAS); (b) the experimental area in YCES.

Six plots (5 × 10 m each) were used for the brackish water irrigation experiment
(Figure 2). To prevent the movement of water and salt, the plots were separated by a
cement wall about 10 cm thick, extending 60 cm deep into the soil and 15 cm above the
ground. The experiment consisted of three irrigation treatments, with a replicated plot of
each. The treatments included fresh water irrigation (CK, with a TDS of <1 g/L), moderate
brackish water irrigation (MS, with a TDS of 3 g/L), and severe brackish water irrigation
(SS, with a TDS of 5 g/L). The fresh water was transported from the Yellow River and the
experimental brackish water was made of fresh water and sea salt.

The experimental plots were sown in 20-cm rows at a density of 225 kg/h with the
same local winter wheat variety (JM 22) around October 20th for 3 years. Following the local
irrigation system, water with three salinity treatments was used to irrigate the respective
plots, with 70 mm used during the jointing stage (around the beginning of April) and
50 mm during the filling stage (around May 11th) of winter wheat (Figure 1). Since there is
sufficient rain to leach the salt in the soil from brackish water irrigation in the season of
corn growing, it made sure that the brackish water irrigation in the previous year had no
effect on the subsequent experiments in the next year. During 2017–2019, the soil moisture
was kept at a suitable state, about 62.3–66.7% of the field water capacity. Between the
two irrigations, the control of field pests and diseases using pesticides was implemented
once. Two fertilizations were completed during the whole growing season of winter wheat.
Compound fertilizer (600 kg/ha) was used before sowing and urea (450 kg/ha) was used
before the first irrigation. All six experimental plots were under the same field management
system, except for the differences in the three irrigation water treatment sources.
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Figure 2. Schematic diagram of the experimental area of brackish water irrigation. CK is the fresh
water irrigation treatment, with a TDS of <1 g/L; MS is the moderate brackish water irrigation
treatment, with a TDS of 3 g/L; and SS is the severe brackish water irrigation treatment, with a TDS
of 5 g/L. The brown spots refer to the position of the collected soil samples [48].

2.2. Data Acquisition

During the filling stage, winter wheat leaves grow vigorously and improve their
photosynthetic ability. This is a sensitive period for soil moisture and the formation of the
final yield. Therefore, in this study, we chose the filling period as the observation period.

In this study, soil salinity data were obtained in a laboratory, using an electrical
conductivity meter, as the true data. During the filling stage of winter wheat (around May
15th), soil samples were collected in 10-cm increments down to a depth of 40 cm in each
experimental plot, as shown in Figure 2. Thus, 72 soil samples were taken from the six
plots during the three years (2017–2019).

Meanwhile, the hyperspectral reflectance of the winter wheat canopy in each plot
was measured with a Resonon Pika XC2 hyperspectral imager (Resonon Inc., USA) under
cloudless conditions at around 14:00 in the same period (Figure 3a). The Resonon Pika XC2
imaging spectrometer is a compact, high-fidelity instrument used to obtain the complete
reflectance image of a plant canopy in the range of 400–1000 nm, with a 1.3-nm spectral
resolution (Figure 3b,c). In this study, the hyperspectral imager was mounted on a rocker at
a height of 10 m to vertically capture the winter wheat canopy information, facing the sun
to avoid the effects of observers and their shadows (Figure 3a). Before acquiring the images,
a standard white panel made by Teflon filled the field of view to properly set the exposure
and gain, making sure the camera settings were adjusted such that the object under the
lighting conditions could be seen. After that, the lens was covered by a cap to remove the
dark current noise of the imager from the data. Then, the standard white panel was placed
within the view of the imager so that these reflectance observations could be used to correct
the reflectance of the whole image. For each experimental plot, one hyperspectral image
was obtained during the winter wheat filling period every year (Figure 3b). Therefore, in
total, 18 hyperspectral images were obtained during the 3 years (2017–2019).

Considering the time cost of calculation and the limited observed area, the minimum
distance method was used to extract the pixels of winter wheat from the images before
calculating the SVIs, avoiding the effects of weed and soil pixels. Five spectral curves were
extracted from each hyperspectral image (Figure 3b,c). The Savitzky-Golay filter, with a
step size of 15, was used to reduce the high-frequency noise of the spectral curves and
maintain the important spectral curve features [49,50]. Therefore, 5 observed hyperspectral
curves with less noise were used to obtain 1 mean curve for each plot, with 18 hyperspectral
curves of the 3 treatments obtained during the 3 years.
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Figure 3. Acquisition of hyperspectral data in the experimental plots. (a) The instruments for
hyperspectral imaging; (b) the reflectance image of the plant canopy; (c) the reflectance curves
extracted from the spectral image.

2.3. Methodology
2.3.1. Screening Soil Salt-Sensitive Wavebands

In this study, hyperspectral observations with narrow bands could help to improve
the correlation between spectral vegetation indices and the soil salinity at four soil depths
(Figure 4). In order to reduce the number of samples required and save time, two commonly
used methods of screening sensitive bands, namely partial least squares regression (PLSR)
and stepwise multiple linear regression (SMIR), were used to select the bands sensitive to
soil salinity out of all observational bands [51,52]. Firstly, the PLSR analysis was used to
relate the multi-colinear and noisy independent variables (reflectance of a given band) to
the target-dependent variables (soil salinity at a given soil depth). The regression coefficient
(b-coefficient) and variable importance on projection (VIP) from the PLSR analysis were
then used to find bands sensitive to soil salinity, as evident when the b-coefficient value
is above the standard deviation and the VIP score is greater than 1.0 [53]. Then, SMIR
analysis was used to further screen the initially selected bands, considering the combined
effects of the bands. Through the SMIR analysis, the independent variables (the reflectance
of initially selected bands) were maintained while significantly (p < 0.05) contributing to
the target variable of a given soil salinity [54].

2.3.2. Calculating and Selecting Soil Salt-Sensitive SVIs

The selected soil salt-sensitive wavebands were grouped into three visible regions
(blue: 378–500 nm; green: 500–560 nm; red: 600–760 nm), one red-edge region (720–730 nm),
and one near-infrared region (760–1000 nm). Following Table 1, the SVIs relating to salt
stress consist of six forms: NDVI, ratio vegetation index (RVI), difference vegetation index
(DVI), modified simple ratio (MSR), enhanced vegetation index (EVI), modified red-edge
normalized differential vegetation index (mNDVI), and plant senescence reflectance index
(PSRI). The SVIs were calculated based on these forms, using the selected bands for a
given soil depth. If one group consisted of more than one band, the bands in this group
were combined with the band/bands in other related groups to calculate the SVIs. When
one group did not have any bands, the bands in neighboring groups were suggested for
further calculations. Then, correlation analyses were conducted to find SVIs that were
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more sensitive to soil salinity at a given depth, according to the following coefficients of
determination: R2 > 0.5 and p < 0.05. Finally, statistical correlation analysis of data based
on steady R2 and root mean square error (RMSE) in different years provided a basis for
screening stable SVIs.
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2.3.3. Building Models to Correlate Spectral Vegetation Indices with Soil Salinity at
Four Depths

Through observations of the soil salinity scatter plots and SVIs, linear and commonly
used non-linear (quadratic, logarithmic, or exponential) models were built to retrieve the
soil salinity at different depths, with the soil salinity at a given depth being a dependent
variable and a given SVI being the independent variable. R2 and root mean square error
(RMSE) values were used to quantify the performance of the models. If it was not possible
to directly determine the model that should be adopted, the possible models would be
tested, with the best model selected based on the highest R2 and lowest RMSE values.
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3. Results
3.1. Vertical Distribution of Soil Salinity for Three Brackish Water Irrigation Treatments

The vertical distribution of the soil salinity was different among the three brackish
water irrigation treatments and four soil depths (Figure 5). From the 10–40-cm depth, the
soil salinity of the <1 g/L TDS treatment increased at a rate of 21.99%, whereas the soil
salinity of the TDS treatments at 3 and 5 g/L decreased at rates of 22.27% and 34.46%,
respectively. The observed heterogeneous vertical profile of soil salinity suggests that
correlating SVIs with soil salinity at different depths could improve our understanding of
the effects of salt stress on winter wheat.
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3.2. Responses of the Hyperspectral Reflectance of the Winter Wheat Canopy to Three Brackish
Water Irrigation Treatments

The change in soil salinity may have affected the growth of crops through the root
system, which was then reflected in leaf characterization. Comparing the field spectral
images of winter wheat with different treatments showed that the winter wheat canopy
under the <1 g/L TDS treatment was greener than that under 3 g/L TDS and 5 g/L TDS
treatments (Figure 6a–c). However, the physiological response of crops to soil salinity
cannot be fully demonstrated by visual differentiation alone.
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Figure 6. The progress of extracting the hyperspectral reflectance from winter wheat spectral images. (a–c) are the spectral
images of winter wheat canopy with different treatments of TDS <1 g/L (a), 3 g/L (b), and 5 g/L (c); (d) responses of
the hyperspectral reflectance of the winter wheat canopy to three brackish water irrigation treatments of a TDS of <1 g/L
(green), 3 g/L (blue), and 5 g/L (purple). The color shades along the spectral curves indicate one standard deviation for the
spectral reflectance observations in three years.
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The observed hyperspectral reflectance of the winter wheat canopy extracted from
the images showed obviously different patterns among the three brackish water irrigation
treatments (Figure 6). The spectral reflectance curve of the <1 g/L TDS treatment was
slightly above that of the 3 g/L TDS treatment, whereas both of them were sharply above
that of the 5 g/L TDS treatment, especially within the visible (VIS, 400–760 nm) and near-
infrared regions (NIR, 760–1000 nm) (Figure 6d). The decrease in VIS is consistent with
the decrease in crop canopy greenness, but the change in spectral information can convey
more information about crop physiology. Therefore, the differences in the hyperspectral
reflectance among the three brackish water irrigation treatments proved that the salt stress
of winter wheat could be diagnosed using hyperspectral observations.

3.3. Optimization of Wavebands and Spectral Vegetation Indices

The b-coefficient and VIP values for each wavelength against the soil salinity at four
depths were obtained based on the PLSR analysis, showing how much the spectral bands
contribute to retrieving soil salinity (Figures 7 and 8). Then, the sensitive waveband regions
were initially selected when the b-coefficient values were above one standard deviation
(0.84 for 10-cm depth, 0.14 for 20-cm depth, 0.58 for 30-cm depth, and 0.76 for 40-cm depth)
(Figure 7), and the regions were screened according to VIP values that were larger than
1.0 (Figure 8). The wavebands in the blue, green, red-edge, and near-infrared wavelength
regions were chosen for the soil depths of 10, 20, 30, and 40 cm, respectively, while the red
wavelength region was also chosen for the soil depth of 30 cm (Table 2).
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Figure 7. The b-coefficient values used for the selection of sensitive waveband regions through the
relationships with soil salinity at four soil depths. (a) refers to soil depth of 10 cm; (b) refers to soil
depth of 20 cm; (c) refers to soil depth of 30 cm; (d) refers to soil depth of 40 cm. The red line refers
one standard deviation (0.84 for 10-cm depth, 0.14 for 20-cm depth, 0.58 for 30-cm depth, and 0.76 for
40-cm depth).
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Figure 8. Variable importance on projection (VIP) values used for the selection of sensitive waveband
regions through the relationships with soil salinity at four soil depths. (a) refers to soil depth of 10 cm;
(b) refers to soil depth of 20 cm; (c) refers to soil depth of 30 cm; (d) refers to soil depth of 40 cm. The
red line refers to VIP = 1.

Table 2. Waveband regions sensitive to the soil salinity at four depths using the partial least squares
regression (PLSR) analysis.

Depth
Waveband Regions Selected through PLSR Analysis

VIS NIR

10 cm

378–491 769–780
496–555 780–810
559–570 819–832
734–753 845–865

871–927

20 cm

430–437 760–917
446–474
502–507
511–561
688–760

30 cm

378–408 760–771
454–487 775–812
494–529 817–830
537–609 834–871
627–660 878–880
668–675 887–1031
679–699
703–760

40 cm

382–408 760–773
457–494 778–815
498–505 819–828
677–729 832–871
734–760 876–928

937–1007
1011–1031
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Then, the soil salt-sensitive wavebands for different soil depths were further screened
using SMIR analysis (Table 3). For the depth of 10 cm, the bands with central wavelengths
of blue (441 nm) and near-infrared (863 nm) were the most sensitive to soil salinity. For
the depth of 20 cm, the bands with central wavelengths of blue (446 nm) and red-edge
(732 nm) were the most sensitive to soil salinity. As for the depth of 30 cm, the bands
with central wavelengths of blue (398 and 454 nm) and near-infrared (760 and 834 nm)
were the most sensitive to soil salinity, and for the depth of 40 cm, the bands with central
wavelengths of blue (400 and 457 nm) and red-edge (743 nm) were the most sensitive to soil
salinity (Table 3). This reveals that blue bands with a wavelength between 398 and 457 nm
were sensitive to soil salinity at each depth from 10 to 40 cm, whilst the near-infrared and
red-edge bands also help to explain the change in soil salinity.

Table 3. Waveband regions sensitive to the soil salinity at four depths using stepwise multiple linear
regression (SMIR) analysis.

Depth Wavebands Selected through SMIR Analysis R2 p

10 cm
863 0.322 0.014

863, 441 0.612 0.004

20 cm
732 0.363 0.008

732, 446 0.676 0.002

30 cm

398 0.296 0.02
398, 454 0.479 0.036

398, 454, 760 0.765 0.001
454, 760, 834 0.839 0.016

40 cm
400 0.285 0.023

400, 457 0.469 0.038
400, 457, 743 0.728 0.003

The SVIs, calculated using the selected wavelengths, were correlated with the soil
salinity at four depths (Table 4). The results showed that the SVIs in the forms of an NDVI,
RVI, DVI, and MSR were sensitive to soil salinity at depths of 10 and 20 cm, whereas
the above SVIs as well as those in the forms of an EVI, mNDVI, and PSRI were sensitive
to soil salinity at depths of 30 and 40 cm. When the conditions of R2 > 0.5 and p < 0.05
were used to screen the calculated SVIs, which were more sensitive to the soil salinity, it
was found that NDVI(441,863), MSR(441,863), and RVI(441,863) were selected for the depth of
10 cm (0.59 ≤ R2 ≤ 0.78); MSR(446,732), NDVI(446,732), and RVI(446,732) were selected for the
depth of 20 cm (R2 ≥ 0.63); PSRI(454,760,834), NDVI(454,760), MSR(454,760), NDVI(454,834), and
MSR(454,834) were selected for the depth of 30 cm (R2 ≥ 0.66); and NDVI(457,743), RVI(457,743),
PSRI(400,457,743), mNDVI(400,457,743), and EVI(400,457,743) were selected for the depth of 40 cm
(R2 ≥ 0.58). The screened SVIs are positioned in descending order according to the R2 value
for each soil depth. When focusing on the top-ranked SVIs, it was suggested that NDVI
and MSR were most sensitive to the soil salinity at depths of 10, 20, and 40 cm, whereas a
PSRI involving one blue and two near-infrared bands was most sensitive to the soil salinity
at the 30 cm depth.

3.4. Empirical Models for Retrieving the Soil Salinity at Four Soil Depths Using Screened SVIs

Interannual difference analysis of observation data from 2017 to 2019 showed that
some SVIs were stable and not affected by climate (Table 5). In addition, it is clearly shown
in Table 5 that the selected SVIs performed stably in retrieving the soil salinity at the
depth of 10–20 cm. At the depth of 30 cm, despite the performance of other SVIs being
disappointing, the relationship between PSRI(454,760,834) and soil salinity had no interannual
difference (Table 5). Furthermore, NDVI(457,743), RVI(457,743), and EVI(400,457,743) showed
steady close relationships with soil salinity at a 40-cm depth (Table 5).
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Table 4. Statistical correlations between the vegetation indices calculated using the screened wave-
bands and soil salinity at four depths. The bold section of the table is the selected index along with
its R2 and RMSE values.

Depth Forms Index R2 p

10 cm

NDVI NDVI(441,863) 0.78 0.0000013
RVI RVI(441,863) 0.59 0.00019
DVI DVI(441,863) 0.38 0.0060
MSR MSR(441,863) 0.68 0.000026

20 cm

NDVI NDVI(446,732) 0.63 0.000077
RVI RVI(446,732) 0.64 0.000060
DVI DVI(446,732) 0.48 0.0016
MSR MSR(446,732) 0.66 0.000046

30 cm

NDVI

NDVI(398,760) 0.01 0.663
NDVI(398,834) 0.01 0.713
NDVI(454,760) 0.69 0.000021
NDVI(454,834) 0.66 0.000038
NDVI(760,834) 0.07 0.283

RVI RVI(760,834) 0.07 0.285
DVI DVI(760,834) 0.17 0.085

MSR

MSR(398,760) 0.01 0.691
MSR(398,834) 0.01 0.725
MSR(454,760) 0.68 0.0000228
MSR(454,834) 0.66 0.000040
MSR(760,834) 0.07 0.284

EVI
EVI(398,760,834) 0.12 0.167
EVI(454,760,834) 0.04 0.416

mNDVI
mNDVI(398,760,834) 0.08 0.245
mNDVI(454,760,834) 0.01 0.692

PSRI
PSRI(398,760,834) 0.07 0.297
PSRI(454,760,834) 0.72 0.0000095

40 cm

NDVI
NDVI(400,743) 0.007 0.734
NDVI(457,743) 0.66 0.000043

RVI
RVI(400,743) 0.003 0.818
RVI(457,743) 0.63 0.000094

DVI
DVI(400,743) 0.21 0.055
DVI(457,743) 0.38 0.0067

EVI EVI(400,457,743) 0.58 0.00024
mNDVI mNDVI(400,457,743) 0.60 0.00016

PSRI PSRI(400,457,743) 0.61 0.00013

Removing unstable SVIs, through visual evaluations of the scatter plots of the screened
SVIs and soil salinity at four depths (Figure 9), linear and non-linear empirical models
with good performances were proposed (R2 ≥ 0.58, RMSE ≤ 0.62 g/L) (Table 6). The
non-linear (quadratic and exponential) models based on MSR(441,863), RVI(441,863), and
NDVI(441,863) had similar performances (R2 = 0.78–0.79, RMSE = 0.60–0.62 g/L) at the 10-cm
depth. The linear models based on MSR(446,732), RVI(446,732), and NDVI(446,732) had similar
performances (R2 = 0.63–0.66, RMSE = 0.44–0.46 g/L) at the 20-cm depth. As for the depth of
30 cm, the quadratic model based on PSRI(454,760,834) had the greatest performance (R2 = 0.81;
RMSE = 0.36 g/L). As for the depth of 40 cm, the quadratic models based on NDVI(457,743)
and RVI(457,743) had the best performances (R2 = 0.68, RMSE = 0.36–0.37 g/L), whilst the
quadratic/linear models based on EVI(400,457,743) had similar performances (R2 = 0.58–0.62,
RMSE = 0.40–0.41 g/L). It was also shown that SVIs in the forms of MSR/RVI and NDVI
involving the blue and red-edge/near-infrared bands had the closest relationships with
the soil salinity at the 10-, 20-, and 40-cm depths, whereas the SVI in the form of a PSRI
involving one blue and two near-infrared bands could perform best in relation to the soil
salinity at the depth of 30 cm. Then, the soil salinities estimated from the proposed models
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were compared against the observed soil salinity (Figure 10). The statistical results further
indicated the robustness of the proposed empirical models (R2 ≥ 0.58, RMSE ≤ 0.63 g/L).
Among all models based on the screened SVIs for all depths, the quadratic model based
on the PSRI(454,760,834) performed best when retrieving the soil salinity at the 30-cm depth
(R2 = 0.81, RMSE = 0.36 g/L). It was also suggested that the observed spectral information
concerning the salt-stressed vegetation canopy was closely related with the salinity at the
soil depths where vegetation roots are mainly located.

Table 5. Statistical correlations of the relationships between the selected SVIs and soil salinity at four depths in 2017–2019.
The bold section of the table is the selected index.

Depth SVIs
2017 2018 2019 2017–2019

R2 RMSE
(g/L) R2 RMSE

(g/L) R2 RMSE
(g/L) R2 RMSE

(g/L)

10 cm
NDVI(441,863) 0.81 0.69 0.67 0.20 0.52 0.27 0.78 0.65
RVI(441,863) 0.82 0.68 0.69 0.19 0.52 0.27 0.59 0.60
MSR(441,863) 0.81 0.69 0.63 0.21 0.53 0.27 0.68 0.64

20 cm
NDVI(446,732) 0.55 0.48 0.73 0.19 0.49 0.28 0.63 0.46
RVI(446,732) 0.57 0.47 0.73 0.20 0.49 0.28 0.64 0.45
MSR(446,732) 0.51 0.51 0.73 0.20 0.48 0.29 0.66 0.44

30 cm

NDVI(454,760) 0.62 0.44 0.73 0.18 0.27 0.27 0.69 0.48
NDVI(454,834) 0.60 0.45 0.68 0.19 0.28 0.27 0.66 0.55
MSR(454,760) 0.55 0.48 0.83 0.14 0.27 0.27 0.68 0.54
MSR(454,834) 0.53 0.49 0.79 0.16 0.28 0.27 0.66 0.48

PSRI(454,760,834) 0.70 0.40 0.90 0.11 0.84 0.12 0.72 0.42

40 cm

NDVI(457,743) 0.65 0.30 0.44 0.20 0.82 0.14 0.66 0.34
RVI(457,743) 0.57 0.34 0.59 0.17 0.81 0.15 0.66 0.42

EVI(400,457,743) 0.99 0.04 0.78 0.12 0.66 0.20 0.58 0.41
mNDVI(400,457,743) 0.60 0.33 0.70 0.14 0.15 0.31 0.60 0.42

PSRI(400,457,743) 0.58 0.33 0.65 0.16 0.12 0.31 0.61 0.43

1 
 

Figure 9. Cont.
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1 
 

Figure 9. Scatter plots of the screened SVIs and soil salinity at four depths during 2017–2019.

Table 6. Proposed models for retrieving the soil salinity at four depths using screened SVIs.

Depth SVIs Equation R2 RMSE (g/L)

10 cm
MSR(441,863) S = 1.0345 ∗MSR(441,863)

2 − 6.528 ∗MSR(441,863) + 10.855 0.79 0.62
RVI(441,863) S = EXP(2.51575 − 0.28424 ∗ RVI(441,863)) 0.78 0.60

NDVI(441,863) S = 10.195 ∗ NDVI(441,863)
2 − 28.194 ∗ NDVI(441,863) + 17.072 0.78 0.62

20 cm
MSR(446,732) S = −1.24386 ∗MSR(446,732) + 3.4805 0.66 0.44
RVI(446,732) S = −0.33231 ∗ RVI(446,732) + 3.17042 0.64 0.45

NDVI(446,732) S = −5.52852 ∗ NDVI(446,732) + 5.03529 0.63 0.46
30 cm PSRI(454,760,834) S = −48.22928 ∗ PSRI(454,760,834)

2 + 61.80144 ∗ PSRI(454,760,834) −17.13968 0.81 0.36

40 cm
NDVI(457,743) S = −6.43761 ∗ NDVI(457,743)

2 + 3.76033 ∗ NDVI (457,743) + 1.75232 0.68 0.37
RVI(457,743) S = 0.0313 ∗ RVI(457,743)

2 − 0.59629 ∗ RVI(457,743) + 3.5534 0.68 0.36
EVI(400,457,743) S = −2.00848 ∗ EVI(400,457,743) + 2.41905 0.58 0.41
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4. Discussion
4.1. Effect of Soil Salinity on Winter Wheat

Based on the results of this study, it has been shown that the winter wheat spectrum
performs well in reflecting the physiological changes of crops under soil salt stress, and it
is feasible to detect soil salinity using the crop spectral response. In this study, the spectra
of winter wheat leaves under different irrigation treatments showed significant differences
(Figure 6). Furthermore, compared with the yield changes of winter wheat in the three
years under different treatments (Figure A1), they have similar performances. Soil salinity
affects soil water potential. Increases in soil salinity will destroy the balance of water
potential inside and outside the crop root cells, affecting crop water absorption. When
the soil salt outside the root cells accumulates to a certain degree, it will cause ion toxicity
to the cells and destroy their internal structure. These will impact the crop physiological
processes such as photosynthesis and transpiration as well as the chlorophyll and cell
structure of the leaves, affecting the yield accordingly [24,55–57].
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Analysis of crop spectra is a method to observe the physiological state of crops from
an optical perspective. Previous studies have confirmed that crop spectral indices can be
used to observe crop physiological and ecological changes [46,52,56,58–61]. Therefore, it is
theoretically feasible to diagnose soil salinity using leaf spectral analysis.

The decline of the spectral curve under the 3 g/L TDS treatment was slight, indicating
that it had little effect on crop physiology (Figure 6). The performance of crop yield also
proved the small difference between irrigation under the 3 g/L TDS treatment and fresh
water irrigation, with the decline of -0.84–17.67%, which is much lower than the decline
under the 5 g/L TDS treatment (5.08–35.40%) (Figure A1). According to previous research,
with moderate brackish water irrigation (≤3 g/L TDS), changes in crop physiological
state can enhance the ability to adapt to long-term physiological stress without causing
damage to the final yield, such as by lowering the stomatal conductance to reduce tran-
spiration [3,9,10,13]. It indicated that brackish water irrigation with reasonable salinity
will not cause major damage to crop growth, proving the applicability of brackish water
irrigation in the North China Plain.

4.2. Sensitive Bands Related to the Soil Salinity at Different Depths

The results showed that the indices with the combination of blue and red/near-
infrared performed well in retrieving the soil salinity at different depths (Tables 3 and 4).
Increase in soil salt around crop roots may decrease the root water absorption, causing
a change in the leaf spectrum. Previous studies have suggested that the red-edge and
near-infrared bands could help to diagnose salinity stress in crops because of their close
relationships with root water absorption [24,55–57], which is also shown in our results.

It also shows the effect of visible bands (the blue and red bands) on the retrieval of
soil salinity in this study (Table 3). Unlike drought, salt stress also produces ion toxicity
and damages cells within the crop. Therefore, the blue and red bands, which can help to
quantify the responses of chlorophyll retention, photosynthetic capacity, and internal leaf
structure [24,55–57], were also selected to estimate the soil salinity at all investigated soil
depths. It also highlights the vital role of the blue band in retrieving soil salinity in this study
(Table 5), which is different from crop spectral changes under other environmental stresses.
It was proven to be highly related to chlorophyll changes, especially chlorophyll b [62].

Although previous research showed that other stressors (i.e., pathogens, herbicides,
ozone, and dehydration) could cause similar responses in crop spectral wavebands, there
are still differences with soil salt stress (Figure 11). Some stress agents mainly affect
the crop water absorption, resulting in great changes in the red-edge and near-infrared
wavebands, such as soil drought stress (Figure 11) [15,24,34,55–57]. Others can change the
physiological structure of crops and the content of chemical substances such as chlorophyll,
whose response is mainly concentrated the VIS band regions (Figure 10) [58,59,63–66].
However, soil salt stress not only affects root water absorption but also produces ion
toxicity and damages cells within the crop, whose effects on the crop spectrum are twofold
(Figure 10). As this study showed, neither band combination with one signal type region
had a strong relationship with soil salinity at any depth, while the combination of the blue
and red-edge/near-infrared bands performed well in retrieving the soil salinity.

4.3. SVIs and Models Selected for Retrieving Soil Salinity

The results showed that the SVIs with soil salt-sensitive bands performed great in
retrieving soil salinity for four depths (Tables 5 and 6). Among them, the form of NDVI
is applicable to all soil layers in this study with high accuracy (Table 5). Considering
practicality and ease of calculation, SVIs in the form of an NDVI with soil salt-sensitive
bands could be used to retrieve the soil salinity at depths from 10 to 40 cm in region scale.

The soil salt content is commonly heterogeneous along a soil profile because of soil
water movement [68,69]. However, most studies concerning soil salinity retrievals from
SVIs have seldom considered the difference among soil depths [24,32,52,70]. For example,
a soil depth of 20 cm is usually assumed to represent the root layer of winter wheat for
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soil salinity retrievals [24,71]. In this study, the results showed that SVI and SVI-based
retrieval models were quite different among four experimental depths (10, 20, 30, and 40 cm)
(Table 6). From the screening wavelengths sensitive to soil salinity at each depth, depth-
specific SVIs and models were proposed, finding that the retrieval models performed better
at deeper soil layers (30–40 cm), especially at the 30-cm depth (R2 = 0.81, RMSE = 0.36 g/L)
(Table 6). According to field investigations and previous studies, the root density of winter
wheat is relatively high during the filling period, at a depth of 30 cm. In addition, the
root system has a stronger water absorption capacity and is more sensitive to salt stress
at this depth [72–74]. This could explain the closer relationship between the SVIs of the
winter wheat canopy and soil salinity at the 30-cm depth. However, for other crops or
the same crop during different growing periods, such an optimal depth for diagnosing
soil salt stress would change according to the root distribution. Therefore, the differences
in the root systems among crop types and growing periods should be considered before
diagnosing soil salt stress in crops.
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5. Conclusions

In this study, a three-year field experiment was conducted to quantify the relationships
between hyperspectral observations of the winter wheat canopy and soil salinity at four soil
depths under three brackish water irrigation treatments. The soil salt-sensitive wavebands
and SVIs were screened from images based on PLSR and SMIR analyses. Then, empirical
models based on the screened SVIs were evaluated for their ability to retrieve the soil
salinity at the four soil depths. The results showed that the SVIs involving blue bands
along with red-edge/near-infrared bands showed a closer relationship with the soil salinity
at all investigated soil depths. Furthermore, the empirical models based on the screened
SVIs performed better when retrieving the salinity at the four soil depths (R2 ≥ 0.58,
RMSE ≤ 0.62 g/L), especially at the 30-cm depth (R2 = 0.81, RMSE = 0.36 g/L), where
winter wheat roots are mainly distributed during the filling period. Considering practicality,
it was suggested that SVIs in the form of an NDVI involving the blue bands along with the
red-edge/near-infrared bands could be used to retrieve the soil salinity at depths from 10 to
40 cm for practical applications. From this, salt stress on winter wheat could be evaluated
by comparing all screened SVIs among the four soil depths. It was also indicted that crop
root distributions, which change among crop types and their growing periods, should be
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considered when remote sensing spectral information is used to diagnose soil salt stress in
crops for specific applications.
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