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Abstract: Precise vegetation maps of mountainous areas are of great significance to grasp the situation
of an ecological environment and forest resources. In this paper, while multi-source geospatial data
can generally be quickly obtained at present, to realize effective vegetation mapping in mountainous
areas when samples are difficult to collect due to their perilous terrain and inaccessible deep forest,
we propose a novel and intelligent method of sample collection for machine-learning (ML)-based
vegetation mapping. First, we employ geo-objects (i.e., polygons) from topographic partitioning
and constrained segmentation as basic mapping units and formalize the problem as a supervised
classification process using ML algorithms. Second, a previously available vegetation map with
rough-scale label information is overlaid on the geo-object-level polygons, and candidate geo-object-
based samples can be identified when all the grids’ labels of vegetation types within the geo-objects
are the same. Third, various kinds of geo-object-level features are extracted according to high-spatial-
resolution remote sensing (HSR-RS) images and multi-source geospatial data. Some unreliable
geo-object-based samples are rejected in the candidate set by comparing their features and the rules
based on local expert knowledge. Finally, based on these automatically collected samples, we train
the model using a random forest (RF)-based algorithm and classify all the geo-objects with labels of
vegetation types. A case experiment of Taibai Mountain in China shows that the methodology has the
ability to achieve good vegetation mapping results with the rapid and convenient sample collection
scheme. The map with a finer geographic distribution pattern of vegetation could clearly promote
the vegetation resources investigation and monitoring of the study area; thus, the methodological
framework is worth popularizing in the mapping areas such as mountainous regions where the field
survey sampling is difficult to implement.

Keywords: vegetation mapping; geo-objects; remote sensing; multi-source geospatial data; sample
collection and purification

1. Introduction

Mountain ecosystems, including rugged plateaus, hills, and mountains themselves,
are important climate regulators of Earth’s landform [1]. Forest vegetation, as the most
important component in mountain ecosystems, is sensitive to climate change and thus can
reveal the dynamics of the local environment [2]. Thus, analyzing the spatial distribution

Remote Sens. 2021, 13, 249. https://doi.org/10.3390/rs13020249 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0178-2342
https://orcid.org/0000-0002-4880-6439
https://orcid.org/0000-0001-8323-2728
https://doi.org/10.3390/rs13020249
https://doi.org/10.3390/rs13020249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13020249
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/2/249?type=check_update&version=1


Remote Sens. 2021, 13, 249 2 of 23

of mountain vegetation will help to reveal the regularity and regional differences of a
mountainous geographic environment. While the information from conventional land
cover mapping is vague for different vegetation, single types, i.e., forests, are rough in
granularity for investigating and planning natural resources [3]. Therefore, the specialized
research on vegetation mapping has been deepened based on a traditional ground-based
survey, which has a high cost, a long cycle, and a heavy workload, which thus makes it
difficult to meet the needs of practical applications [4].

A high-precision vegetation-type map is one of the main inputs of scientific research
on the earth’s surface system. In the past, the compilation of vegetation-type maps was
completed by a large number of ground surveys. Although the ground survey method is
accurate, it is time-consuming and laborious. Moreover, due to the limitation of natural
conditions, the ground survey can only cover a small area. Because of the advantage of full
coverage, remote sensing (RS) data can make up for the limitations of quadrat surveys. In
order to reduce the cost of investigation, early studies on vegetation mapping were mainly
based on low- and medium-resolution remote sensing satellite images, such as moderate
resolution imaging spectroradiometer (MODIS) and Landsat thematic mapper (TM) data [5].
Subsequently, research works based on relatively high-spatial-resolution remote sensing
(HSR-RS) images emerged one after another [6]. In recent years, the spatial resolution of
remote sensing images has been further improved, which makes it possible to monitor
forest vegetation resources in more detail, with a fine classification of vegetation types and
the identification of forest species (groups) [7,8]. With the continuous improvement of the
spatial resolution of satellite RS images, the level of vegetation classification that can be
achieved by remote sensing images in a large area is increasing. For example, India used
IRS LISS-III satellite images with medium-resolution in 2015 to draw a 1:50,000 vegetation
map of about 100 vegetation types in India by combining it with a topographic map, a
digital elevation model, a biogeographic map, and other auxiliary data [9].

In current work, vegetation mapping is mostly conducted using intelligent classifica-
tion technologies with multi-source remote sensing images and auxiliary information [10].
Knowledge mining, expert systems, multitemporal composite classification, object-based
classification [11], and targeted classification strategies [12] have been successfully intro-
duced in vegetation classification, forestland information extraction, and fine forest-type
recognition [13,14]. The research progress in this area is analyzed from the following
four aspects.

First, with the improvement in the spatial resolution of remote sensing images, the
geometric structure and texture information of vegetation is more obvious, and their
spatial heterogeneity is enhanced. However, there are fewer spectral bands, causing
differences in the spectral characteristics of different types of vegetation to become smaller
and weaken the statistical separability in the image spectral domain. Under this condition,
to avoid the noise problem of pixel-based methods, image segmentation and object-based
vegetation classification is currently the main methods in this field. Thus, object-oriented
information extraction has been widely used in vegetation classification because of the
high fragmentation and the “salt and pepper phenomenon” of pixel-based methods. For
example, the results of tree species classification were analyzed by using QuickBird optical
image, lidar, and fusion methods by combining object-oriented segmentation and decision
trees [15]. Gilbertson et al. used machine learning to classify eight crops based on Landsat
8 images of five periods [16]. In this work, compared with pixel-based classification,
the accuracy of object-oriented classification was improved by about 15%. Based on the
HSR GaoFeng No.1 (GF-1) satellite and synthetic aperture radar (SAR) data, object-based
and pixel-based wetland vegetation classification results were compared using a random
forest algorithm, and better results were obtained [17]. Tigges et al. used RapidEye HSR
satellite remote sensing image data and, by using object-oriented classification, realized
the classification of eight types of urban tree species in Berlin, the capital of Germany,
with an overall accuracy of 85% [18]. Although object-oriented classification has achieved
great success, obtaining refined-accurate object units of vegetation from HSR images
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has not been deeply studied, especially in mountainous areas with complex topography
and geomorphology.

Second, considering the relationship between vegetation and environment, many
scholars have found that adding auxiliary data such as altitude, aspect, soil type, and
precipitation to vegetation RS classification can also improve the accuracy of vegetation
classification [19]. For instance, RS images, combined with geological data, a digital
elevation model, and other environmental data, were used to classify nine tree species in
the mountainous area of Southern Turkey [20]. The authors showed that, by additionally
using environmental data, compared with using only optical image classification, the
overall classification accuracy of vegetation classification is improved. Pan et al. classified
47 land cover types in China based on climate, terrain, and spectral data, and the overall
accuracy of classification was 86.3% [21]. In addition, because the growth and development
of different vegetation types have different phenological characteristics, their spectral
information will change with the seasons. The advantage of multitemporal remote sensing
data in vegetation classification is more obvious than that of single temporal remote
sensing data. For example, Immitzer et al. used Sentinel-2 images of 18 periods to classify
5 coniferous trees and 7 broad-leaved trees in Central European forests [22]. Compared
with the best results of single temporal classification, by using their proposed methods, the
average classification accuracy of broad-leaved tree species was improved from 72.9% to
85.7%, and that of conifer species from 83.8% to 95.3%.

Third, machine learning (ML) has been used to solve the vegetation classification
problem of remote sensing images. For example, the authors in [23] used GF-1 and GF-2
images to automatically classify crops based on convolutional neural networks, with an
overall accuracy of 95.9%. Based on Landsat EVI data of time-series, the authors in [24] used
deep learning to classify 14 crop types, with an overall accuracy of 85.54%. The authors
in [25–29] adopted an artificial neural network (ANN) models for vegetation prediction
and mapping. Although these applications of ML significantly improved the accuracy of
remote sensing vegetation classification, a higher number of samples is required, and a
large amount of training data needs to be calibrated for each type of vegetation. However,
in the application of vegetation classification, due to the uneven distribution of various
types of vegetation, it is easy to have the problem of uneven distribution of samples when
obtaining samples, which affects the accuracy of the final classification. In recent years,
transfer learning is proposed to solve the problem of insufficient training data and uneven
distribution. At present, some scholars have begun to explore its application to remote
sensing vegetation classification. For example, Gong P. et al. developed the world’s first
set of global land cover products with a 10 m spatial resolution by transferring the 30 m
spatial resolution land cover samples in 2015 using Sentinel-2 images [29].

Fourthly, the acquisition of a sufficient number of representative sample data is
also a neck-jammed procedure affecting the development of classification in vegetation
mapping. Using the visual interpretation results of higher resolution remote sensing
images is one of the most commonly used methods. For example, Pouliot D. et al. used
hydrological, elevation, and highway network data, Google images, and Landsat TM
images as a reference to collect samples for monitoring forests in Canada with MODIS
data [30]. Klein I. et al. employed Landsat TM image interpretation results to sample
MODIS data-based vegetation mapping in Central Asia [31]. Most of these methods consist
of large-scale low spatial resolution mapping, which is not applicable to fine-scale-mapping-
based HSR-RS images. In addition, this kind of method also needs the substantial expert
experience of prior and reliable interpretation. Another sample collection method is based
on survey data. Training samples based on plot surveys and Google data were selected
to extract land cover information of forest vegetation in Northern China [32]. However,
there are also problems with this method, as forest vegetation is mostly distributed in
complex terrain, especially in mountain areas where the accessibility of survey sampling is
limited under complex terrain conditions [33], which makes it difficult to effectively collect
training samples for ML-based classification. Therefore, most of the methods of sample
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selection for supervised vegetation classification rely on professional experience and visual
interpretation sampling combined with artificial survey data. This is time-consuming, and
quickly achieving more automatic detection has become important [34]. However, there
are some studies on fast, automatic sampling methods for mountain areas.

Thus, although there are some studies on vegetation type classification via the fine
recognition of HSR-RS images [7,8], difficulties such as low recognition accuracy, a low
degree of detail, low reliability, and insufficient samples still exist in fine vegetation map-
ping, which makes it difficult to meet the application requirements of accurately grasping
vegetation type information. There are also still difficulties and bottlenecks in the RS infor-
mation extraction of vegetation types, especially in mountainous areas. Meanwhile, in the
context of global change, the compilation of high-precision vegetation type maps is of great
scientific and indicative significance for the in-depth study of the spatiotemporal variation
of vegetation in the earth surface system, which is aimed at revealing natural geographical
and ecological patterns and identifying the characteristics of natural geographical changes
under the background of global change. Fortunately, with the recent development of the
theory and method of RS information extraction, the condition of using multi-source big
data to carry out high-precision vegetation mapping has begun to mature.

Therefore, in order to obtain a fine spatial map with accurate information of vegetation
types in mountainous areas, we are determined to develop a geo-object-based vegetation
mapping technical framework via ML methods with an intelligent sample collection
scheme. The objective of our work is to make the interpretation of vegetation information
more accurate by using some intelligent design. Hence, this paper employs geo-objects
from HSR-RS images as the basic unit of vegetation mapping. Multi-feature extraction
based on multi-source geospatial data is conducted by synthetically utilizing various
types of geographic information from auxiliary data. An automatic sampling method
for ML-based vegetation classification is also designed under the guidance of historical
interpretation maps and achieves the rapid extraction of a large number of vegetation
samples via the combination of prior data. Its innovation lies in reducing the human
intervention in the sampling process, thus improving sampling efficiency in large areas
and the objectivity of samples. The experimental results of a case study in a typical
mountainous area show that the proposed procedure can provide reliable samples for the
rapid extraction of vegetation cover information. It is effective for quick mapping with a
fine spatial distribution of vegetation.

The remainder of the paper is organized as follows: The proposed method is pre-
sented in Section 2. In Section 3, the experiments and their results are described, and
the effectiveness of our method is evaluated. A discussion is presented in Section 4. The
conclusions of the paper are provided in Section 5.

2. Technical Framework and Methods

Mountain vegetation mapping has its own characteristics in the field of spatial map-
ping, including the spatial aggregation of vegetation observed data, the vertical difference
with the elevation change, and the difficulty of collecting samples. Meanwhile, fine and
accurate mountain vegetation mapping have important practical needs in ecological and
other fields. These particularities and requirements, as well as the rapid development of RS
technology and the enrichment of multi-source spatial data, necessitate a new innovative
design for mountain vegetation mapping. To effectively mine the spatial distribution
pattern of vegetation in mountain areas, we propose an intelligent technical mapping
framework of vegetation types based on the basic units of geo-objects from HSR-RS images.
Figure 1 illustrates the entire procedure based on multi-source geospatial data, which
contains five steps, namely, geo-object extraction, multi-feature extraction, geo-object-based
training sample collection, supervised classification, and accuracy assessment. The follow-
ing subsections describe the implementation of these processes, described in Figure 1.
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2.1. Geo-Object Extraction for Vegetation Mapping

With the improvement of the spatial resolution of HSR-RS data, geo-objects with clear
polygon edges have been universally recognized as basic units of various geographic infor-
mation mapping [35–38]. The advantages of the geo-object-based image analysis (GEOBIA)
framework lie in the possibility of using expert knowledge, multi-source object-related
features, such as spectrum, shape, texture, and context features, and ancillary data [39–41].
Hence, the first step of our method is extracting internally homogeneous geo-objects for
vegetation mapping, which is typically generated by the bottom-up segmentation of HSR-
RS images. However, there are special requirements for geo-object extraction in mountain
areas, as some spatial distribution regularities such as the inherent boundaries of ridges
and valleys should be followed [42,43]. Therefore, we designed a geo-object extraction
process by combining a top-down partitioning according to terrain data with the tradi-
tional bottom-up segmentation of HSR-RS images [43]. Topographic partitioning was
first performed in order to partition a large mountain area into several smaller zones,
and segmentation was then implemented in each individual zone. Thus, we could obtain
initial geo-semantic objects with terrain, spectrum, and texture homogeneities. Utilizing
these spatial distribution characteristics for a top-down partitioning, combined with the
traditional bottom-up segmentation process, was expected to provide semantic objects
with surrounding information for mountain vegetation mapping. Next, we explain the
relevant details of the two main steps.

2.1.1. Topographic Partitioning

First, we partitioned a targeted mountainous area into several smaller zones as in-
dependent units for subsequent segmentation by analyzing the topographic features of
mountains that are reflected in digital elevation model (DEM) data [44]. The slope aspect
feature calculated from DEM data was selected as the key factor to generate topographic
zones due to its significant impact on the temperature variation and the species distribu-
tion in mountain areas [45–47]. A top-down spatial partitioning was conducted based on
the slope aspect, and some topographic zones represented by large-scale polygons were
generated as boundary constraints of the following image segmentation step.
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2.1.2. Constrained Segmentation

Second, to generate small-scale geo-objects within each topographic zone, we further
carried out a mean-shift segmentation via bottom-up region merging based on spectral
and texture homogeneity from HSR-RS images [48–50]. In this process, the pixels in each
topographic zone were clustered into several meaningful image objects according to the
given scale parameter. Finally, the segmentation boundaries of geo-objects were extracted
as basic mapping polygons within each topographic zone, and a whole geo-object-based
map could be structured in the mountain areas. We assumed the vegetation type of each
geo-object was unique and needed to be identified according to the following stages.

2.2. Multi-Feature Extraction for Geo-Objects

The terrain in mountainous areas is always complex, and the phenomenon of a “dif-
ferent type of object with the same spectrum and the same type of objects with a different
spectrum” is more serious for vegetation on HSR-RS images. It is difficult for recogni-
tion with one data source to meet the application requirements of a fine identification of
vegetation types. It was necessary to overlay multi-source data on these mapping units
(i.e., geo-objects) to enrich their feature description. Hence, we made full use of various
spatial data to design a multi-source feature of geo-objects as auxiliary information.

First, three types of image-based features of geo-objects, i.e., spectrum, shape, and
texture features, were extracted from HSR-RS images. Typical features in this part included
the mean and standard deviation of spectral signals, the normalized difference water
index (NDWI), the normalized difference vegetation index (NDVI), the length–width
ratio, the main direction, the shape index [51], and texture measures based on gray-level
co-occurrence matrices (GLGMs) [52].

Second, several topographic and geomorphological features of geo-objects were ex-
tracted based on DEM data and a geomorphological map. The elevation, slope, slope
direction (north or south), aspect, the degree of hill shade, and the geomorphological type
were collected within each geo-object.

Third, meteorological factors, soil factors, land cover type, the net primary productivity
(NPP) layer, and the vegetation index sequence of annual, quarterly, and monthly averages
were also added as covariate features according to the calculation using relevant spatial
information products.

After integrating these multi-source spatial data into each geo-object, we could obtain
a multi-feature description of each geo-object. Thus, a high-dimensional attribute table was
constructed for the subsequent discrimination of vegetation types using ML algorithms.

2.3. Geo-Object-Based Training Sample Collection

For ML-based supervised classification, adequate training samples are prepositive
information. However, as we stated in the introduction, it was difficult to collect a large
number of vegetation samples by field surveys in mountainous areas. Therefore, this step
concerns the method of rapidly collecting geo-object-based training samples from historical
material of interpretations. Historical maps of vegetation type were easy to be obtained,
but they were often outdated and made in large-scales with a rough spatial resolution.
Although these previous products do not match the current requirement of vegetation
mapping based on HSR-RS images, they do contain effective information from previous
expert interpretations [53,54]. Thus, rapidly transferring labels of different vegetation types
(i.e., the values of the target variable in the ML framework) was feasible if the incorrect or
outdated information could be effectively found and filtered out. The implementation of
this part is shown in Figure 2 with 4 steps.
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of vegetation types.

Step 1: The spatial uniform selection of one geo-object was carried out by randomly
thinning among every eight geo-objects and ensuring the uniformity of candidate geo-
objects in spatial distribution.

Step 2: A conversion from vector data to raster data was first conducted on a vegeta-
tion type map (vector format with a rough-scale) from historical interpretation. Then, the
grids and their labels of vegetation types in the raster data were overlaid on the polygons
of geo-objects. Candidate geo-objects for sampling were selected if all the girds in one
polygon were labeled by the same label. This step was referred to as the first round of
checking. Geo-objects that do not satisfy this restriction were filtered out and could not
be selected as training samples. There may have been a large number of such geo-objects
due to the scale differences (i.e., the transfer from the rough-scale historical map to the
fine-scale of geo-objects from HSR-RS images).

Step 3: Purification operation was further performed on the candidate geo-objects, as
some incorrect labels may exist in the sets. Those geo-objects could be referred to as reliable
samples if their concerned features (i.e., elevation, slope aspect, etc.), spatial positions,
distribution pattern, and vegetation labels were in accordance with the rules of vegetation
distribution from local expert knowledge. Some unreliable samples were rejected in the
candidate set, and the purified geo-objects were collected as the final training samples with
transferred labels of vegetation types. This step was referred to as the second round of
checking. According to this rapid sampling scheme via prior label transfer and selection
constraint under two rounds of checking, we could automatically collect a large number
of geo-object-based training samples by viewing pre-interpreted vegetation maps as an
important reference.

Step 4: An upsampling was further conducted to balance the numbers of training
samples for different vegetation types. Thus, a structured geo-object-based table, including
multiple features (i.e., environmental variables), several labeled geo-objects (i.e., training
samples), and a larger number of unlabeled geo-objects (i.e., test samples), was prepared
for the ML methods in the next step.

2.4. Supervised Classification of Vegetation Types

Next, we needed to train a classification model using ML methods to construct the
relationship between the multiple features (i.e., the explanatory variables) and the vege-
tation type (i.e., target variable). In this study, tree-based ML methods were employed to
generate spatial classifiers for vegetation types that train samples as decision trees (DTs,
i.e., prediction models) of discriminant rules. Among these tree-based ML methods, a
random forests (RF) algorithm was relatively efficient to fit DTs [55]. The RF method has a
wide application prospect, as it outperforms most other classification methods, such as the
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ANN and support vector machine (SVM), in terms of accuracy by overcoming the issue of
overfitting. Its essence is to use a variety of tree-based classifiers to vote and determine
the results of integration. That is, N trees will have N classification results for an input
sample. The RF method then integrates all the classified voting results and specifies the
type with the most voting times as the final output. In the field of remote sensing, its
advantages are that it can achieve better extraction results without setting many parameters
and can effectively run on large datasets, thus meeting the requirements of large-scale
learning. It has been proven to be robust, presenting high prediction accuracies, and thus
was beneficial for fitting in our framework when modeling nonlinear relationships between
a large number of variables with vegetation types. Hence, in this paper, this RF algorithm
was selected for a training classification model due to its robustness of learning within a
high dimensional feature space. More detailed descriptions and implementations of this
algorithm can be found in the literature [55].

After the RF-based training, supervised geo-object-based classification was conducted
to predict the labels (i.e., vegetation type) for all the geo-objects without vegetation type
information. Their predicted vegetation type was revised with a label check using the rules
of vegetation distribution from local expert knowledge. Finally, a geo-object-based map of
vegetation type was produced with their variation of species.

2.5. Accuracy Assessment

Accuracy assessment was further conducted to evaluate the geo-object-based mapping
results. Some points with determined vegetation types were pre-collected from field survey
observations, and their spatial matched geo-objects were referred to as verification samples.
By comparing classified resulted with these verification samples, measures of overall
accuracy (OA) and kappa coefficient based on the confusion matrix [56] were retrieved to
evaluate the accuracy of vegetation classification. The OA was computed by dividing the
number of correctly classified geo-objects by the number of entire validation samples, while
the kappa coefficient was calculated to determine whether the resulted were significantly
better than those of a random assignment. As the measures of the kappa coefficient were
considered a bad metric in remote sensing classification tasks [57], OA was mainly used as
a measure of accuracy evaluation in this paper, and a larger value denotes a better result,
and vice versa.

3. Experiments and Result Analysis
3.1. The Study Area and Its Vegetation Classification System

The experimental study area was selected in Taibai Mountain, the main peak of the
Qinling Mountains (see Figure 3). It is one of the most famous mountains in Central
China with an altitude of 3767.2 m, and its relative height difference is more than 3000 m
(see Figure 4).

The Qinling Mountains are the natural dividing boundary line between the north and
the south of China. Horizontally, they have a transitional nature from one physical geo-
graphical condition to another and transitional properties of evolution from one geological
tectonic unit to another. Vertically, they have unique vertical landscapes with clear vertical
zones of climate distribution, soil distribution, and vegetation distribution. This kind of
transition and complexity is most obvious in Taibai Mountain.

Its characteristics are formed due to its special geographical location, the southern
margin of the warm temperate zone and the northern boundary of the subtropical zone. It is
controlled by the Mongolian cold air mass in winter and affected by the Pacific subtropical
high zone in summer, which causes the north–south transition and alternation of climatic
conditions. Under such circumstances, a wide range of species, rich biological resources,
and special natural landscapes exist in the well-preserved ecosystem of Taibai Mountain.
In particular, the phenomenon of vertical zoning of mountain vegetation is significant,
which makes it a classic study area of vegetation spectrum and mapping in China.
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Thus, the vegetation types in this mountainous area are abundant. According to
the 1:1,000,000 vegetation survey of China, Table 1 presents a vegetation classification
system of Taibai Mountain with a seven vegetation type group and fourteen vegetation
types (including the type of no vegetation). The goal of our research was to realize such
vegetation mapping from a small-scale perspective. The codes were extracted from the
legend of a 1:1,000,000 vegetation map of China.
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Table 1. Vegetation classification system of Taibai Mountain.

Vegetation Type Group Vegetation Type

Needleleaf forest

Needleleaf forests in a temperate zone

Needleleaf forests in a subtropical zone

Needleleaf forests on mountains in subtropical and tropical zones

Needleleaf and mixed broadleaf forest
Needleleaf and deciduous broadleaf mixed forests in a temperate zone

Needleleaf, evergreen, and deciduous broadleaf mixed forests on mountains in a subtropical zone

Broadleaf forest
Broadleaf deciduous forests in a temperate zone

Broadleaf deciduous forests in a subtropical zone

Shrubs

Deciduous scrubs in a temperate zone

Broadleaf evergreen and deciduous scrubs in subtropical and tropical zones

Subalpine broadleaf deciduous scrubs

Grassland
Temperate grass, forb meadow steppes

Kobresia spp., forb high-cold meadows

Cultivated vegetation Two years three ripes or one year two ripes grain fields and deciduous orchards

No vegetation No vegetation (water land, bare land, construction land)

3.2. Experimental Data Set

The accurate identification of vegetation types in the above classification system
relies on multi-source data, as geospatial data can make the modeling factors pluralistic.
The following data were collected for our designed geo-object extraction, multifeature
calculation, and quick sampling.

3.2.1. HSR-RS Images

First of all, HSR-RS images in wide space ranges can provide high-resolution sources
of visual features with the advantages of a fast acquisition speed and high comprehen-
siveness [58], which makes it possible to map vegetation on a fine scale. Therefore, three
phases of Chinese GF-2 satellite images with a 0.8 m spatial resolution were collected and
preprocessed in our study. They were acquired in July 2016 (i.e., Figure 3), November
2016, and January 2017, respectively. In addition, four Sentinel-2A images taken from four
different seasons were downloaded as auxiliary data. Based on these data, three types of
image features, i.e., the spectrum, shape, and texture features introduced in Section 2.2,
were further extracted according to the spectral reflectance, geometric shape, and texture
representation of geo-objects. The relevant calculation steps are described in Section 2.2.

3.2.2. Topographic and Geomorphic Data

Topography and elevation affect the vegetation distribution, as the general trend is
that species richness decreases with the increase of altitude [59]. Here, five commonly used
modeling factors, including elevation, slope, aspect, degree of hill shade, and geomorpho-
logical type, were, respectively derived from a conterminous 30 m ASTER GDEM dataset
(see Figure 4, http://www.gdem.aster.ersdac.or.jp/) and a public geomorphic dataset with
a 1 km spatial resolution provided by the Data Center for Resources and Environmental
Sciences (DCRES) of the Chinese Academy of Sciences (http://www.resdc.cn). The mean
values in the DEM-derived data were used as topographic features.

In addition, the mountain area was artificially divided into south and north slopes
according to the ridgeline (see the yellow line in Figure 5). Thus, whether the slope direction
was the south or the north was an important factor of geo-objects in the study area. Besides
the north–south slope division, topographic partitioning of Section 2.1.1 was further carried
out along the ridges and valleys (i.e., the green lines in Figure 5) for extracting constraint
boundaries of topographic zones. Moreover, image segmentation based on a GF-2 HSR-RS
image was further conducted in each topographic zone (see Step of Section 2.1.2 and the
red lines in Figure 6). Segmentation boundaries of geo-objects were extracted in the vector

http://www.gdem.aster.ersdac.or.jp/
http://www.resdc.cn
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format of polygons (see the white lines in Figure 6). The geo-objects with clear boundaries
were generated as basic polygons of mapping in this study. The relevant calculation steps
are described in Section 2.1.
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3.2.3. Sample Points for Verification

For accuracy assessment, it was necessary to collect some sample points to evaluate
the geo-object-based mapping resulted. Thus, in May 2018, we selected several points
along the sampling lines located in the forests around the roads and where we could enter.
As shown in Figure 4, our sampling points were mainly distributed on a cross-section in
the north–south direction, the slopes on the top of Taibai Mountain, and the periphery of
the main road into Taibai Mountain. More than one sample plot needed to be be set for
each 150 m elevation along the sample line. We recorded the number, survey date, altitude,
longitude, latitude, slope direction, and slope of each sample site. Their vegetation type
labels were labeled by local vegetation experts on the spot. In October 2018, some points
were supplemented along the sampling lines. After this, all collected points were organized
and linked into corresponding geo-objects, and the vegetation types of 204 geo-objects
were thus labeled in the study area. They accounted for about 1% of all the geo-objects and
were used for validation of the mapping results. The relevant calculation step of accuracy
assessment is described in Section 2.5.

3.2.4. Land Cover Data

To distinguish the influence of different land cover types on vegetation mapping,
we also collected a land cover product to mask some geo-objects for training sample
collection. Here, the product with a 10 m spatial resolution [29,60], FROM-GLC10
(http://data.ess.tsinghua.edu.cn), was employed to be integrated into geo-objects as
prior land cover information. The geo-objects with four land cover types of forest,
shrubland, grassland, and cropland were referred to as focus targets for the training
sample collection of Section 2.3, and those with the land cover types of wetland, water,
tundra, impervious surface, bare land, and snow/ice were removed, being areas of no
vegetation. The transferred land cover information was also employed as a prior feature
of geo-objects for our supervised classification.

3.2.5. Meteorological and Climate Data

There is always a certain relationship between the distribution of vegetation and the
meteorological and climatic conditions, especially in the areas of Taibai Mountain, a moun-
tain with a large elevation difference. Here, the annual average rainfall, annual average
sunshine hours, cumulative annual accumulated temperature, and mean temperature were
obtained from the datasets of DCRES (http://www.resdc.cn) as well as the dryness and
wetness index products with a 1 km spatial resolution. They were used to calculate the
corresponding features of the geo-objects.

3.2.6. Soil-Related and NPP Data

Soil products with a 250 m spatial resolution were also collected in the feature stack.
The grids in the SoilGrids 250 m products [61] with the datasets of soil types, soil physical
properties, and soil chemical properties were downscaled to a 0.8 m resolution using bicubic
resampling and averaged within each geo-object using their mode values or mean values.

In addition, NPP is a key parameter in characterizing terrestrial ecological processes
and has a great connection with vegetation. Thus, an NPP dataset produced by DCRES
was further employed to extract an indicator of the process of a surface carbon cycle.

3.2.7. Vegetation Index Sequence Data

The NDVI can well reflect the vegetation cover on the surface and has great signifi-
cance for monitoring of vegetation resources. The NDVI dataset can be used to study and
monitor the regional vegetation and its change. Therefore, three public vegetation index
sequence datasets inversed from SPOT-4 satellite imagery with a 1 km spatial resolution
were collected to characterize the parameters of vegetation and their changes. They were
produced via the average values of the NDVI in China since 1998 within time resolutions of
year, quarter, and month, respectively. Seventeen data in 2016—1 annual datum, 4 quarterly

http://data.ess.tsinghua.edu.cn
http://www.resdc.cn
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data, and 12 monthly data—were used to extract the geo-objects’ covariate features of the
vegetation index sequence.

3.2.8. Vegetation Type Map from Historical Interpretation and Rule Set from Local
Expert Knowledge

As a typical research area of the north–south transition zone of China, the spatial distri-
bution of vegetation in Taibai Mountain was previously studied with a rough scale, such as
the 1:1,000,000 vegetation map [62]. Figure 7 presents a collected 1:500,000 vegetation type
map of Taibai Mountain from historical interpretation. This was the vegetation mapping
result at the highest resolution in the region. However, although most of the results are
correct, there are many wrong labels of vegetation types based on our verification sample
points. Furthermore, its spatial scale is not fine enough for a high-resolution survey. The
intuitive mapping errors are caused by the fact that the distribution of vegetation does not
follow the knowledge of local experts well, which must be referred to in the classification
process [63].
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The vegetation types and their vertical distribution range on the north slope and
south slope of Taibai Mountain have been carefully investigated by local vegetation experts.
The ranges of elevation values for different vegetation groups in Taibai Mountain are
summarized in Table 2. It can be concluded that the vertical variation of vegetation on the
north slope and south slope of Taibai Mountain is only a little different. For example, the
basal zone of the north slope is different from that of the south slope, as their intervals of
elevation of cultivated vegetation are different. This is due to the different geographical
locations and climatic conditions on the north slope and south slope. The factors such as
wind, light, precipitation, soil properties, temperature, longitude and latitude, and slope
direction have an impact on the vertical distribution of vegetation.

This prior knowledge of vertical distribution is an important law that has been sum-
marized by predecessors. It can be referred to as effective rules that should be followed in
the mapping process. In addition, because the terrain is complex, a comprehensive and
detailed ground investigation is difficult, and there is an insufficient amount of measurable
field samples. In this study, the ranges of elevation values for different vegetation groups
in Table 2 were set as basic rules of vegetation mapping. They were employed in the
second round of checking of geo-object-based training sample collection (see the relevant
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calculation step in Section 2.3). That is, if the vegetation distribution in Figure 7 violates
these rules, the corresponding labels are considered as wrong, and the relevant geo-objects
are removed from candidate geo-objects of training samples. In this way, we can identify
many false labels in Figure 7 and transfer the correct vegetation type information to the
geo-objects so as to quickly collect a large number of reliable training samples.

Table 2. Ranges of elevation values for different vegetation groups in Taibai Mountain.

Slope Cultivated Vegetation Broadleaf Forest Needleleaf and
Broadleaf Mixed Forest Needleleaf Forest Shrubs and Grassland

North slope 300–900 m 500–2800 m 900–3000 m 2000–3400 m 3400–3767.2 m

South slope 200–1300 m 750–2650 m 1150–3000 m 2200–3400 m 3330–3767.2 m

3.3. Result Analysis

In the analysis of the experimental results, we first show the effectiveness of the
sampling scheme and the advantages of our results based on the proposed method by
comparing the traditional historically interpreted vegetation maps.

3.3.1. The Collected Geo-Object-Based Samples and Its Mapping Results

The processed data were input to the mapping procedure of Figure 1. A number of
training samples were immediately collected in a rapid way based on the geo-object-units
of Figure 6. The distributions of the selected training samples for the target mapping are
shown in Figure 8, based on some reliable geo-objects according to the scheme of Figure 2.
After visual cross-examination, we can confirm that these uniformly distributed samples
were basically correct, as the geo-object-based sampling method overcomes the limitation
of salt and pepper noise in the pixel-based method. Furthermore, an upsampling was
further used because the numbers of training samples of different types were unbalanced
in the initial set. Thus, the unlabeled geo-objects in Figure 8 could be classified according
to the training of these collected samples.
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To test the training sample collection, we compared the accuracies achieved using
different sampling schemes. Here, the mapping results of four schemes, i.e., unpurified and
unbalanced sampling (i.e., the implementation without Step 3 and Step 4 in Section 2.3),
unpurified and balanced sampling (i.e., the implementation without Step 3 in Section 2.3),
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purified and unbalanced sampling (i.e., the implementation without Step 4 in Section 2.3),
and purified and balanced sampling (i.e., the implementation with Step 3 and Step 4 in
Section 2.3), are compared in Table 3. The comparisons in accuracy clearly show that
the proposed purification operation (i.e., the second round of checking in Figure 2) can
eliminate erroneous transferring labels to a certain extent and then improve the accuracy
of the classifier. In addition, although the RF algorithm can lightly deal with the imbalance
of different types of samples, this problem affects the performance of classifiers to a certain
extent. The proposed automatic sampling may aggravate this imbalance. Therefore, the
added up-resampling scheme in the collection process balances the number of samples
and improves the performance of the classifiers. Thus, taken together, the combination of
purified and balanced sampling can lead to more reliable training samples for vegetation
classification in the study area. Clearly, it can be seen that pre-interpreted vegetation maps
are important historical bases for updating and contain a substantial amount of expert
knowledge. Prior label transferring and selection constraints using two rounds of checking
are effective ways of collecting samples quickly in mountain areas. This utilization is also
worth popularizing in other mapping fields.

Table 3. Comparison of the accuracies achieved using different schemes in the sampling scheme.

Sampling Scheme OA (%)

Unpurified + Unbalanced 75.87

Unpurified + Balanced 77.49

Purified + Unbalanced 84.32

Purified + Balanced 87.59

3.3.2. Comparison with Historical Interpreted Vegetation Maps

Fine-scale vegetation mapping is relatively rare among previous studies. For this
study area, there are two kinds of historically interpreted vegetation maps, namely a
1:1,000,000 vegetation map of China and our referenced 1:50,000 vegetation map, with
which it is difficult to meet the requirements of a fine vegetation survey.

Table 4 compares different mapping results, where our interpreted vegetation map
was obtained using the optimal experimental setting (see Figure 9). Note that, for Taibai
Mountain, the accuracy is relatively low for the 1:1,000,000 vegetation map, which was
produced several years ago based on a rough, national scale. In addition, the quantitative
accuracy verification also shows that our geo-object-based mapping results (i.e., Figure 9)
are a relatively large improvement in accuracy compared with the 1:50,000 vegetation map
we referred to in the process of sample collection. Clearly, the mapping results using our
framework are better than these public datasets, and the improvement in accuracy for our
fine-scale-based results is remarkable with respect to rough-scale-based results, which are
partly caused by the advantage of our geo-object-based method with HSR-RS images.

Table 4. Comparison of the accuracies achieved by different vegetation maps.

Vegetation Map OA (%)

1:1,000,000 vegetation map 44.51

1:50,000 vegetation map 73.23

Our interpreted vegetation map 87.59

Furthermore, Figures 10 and 11 show comparisons in the subareas A and B of Figure 9,
respectively. Obviously, the results from the 1:50,000 vegetation map were visually coarse
and cannot produce the information consisting of the geographical entities. It is conceivable
that such rough-scale maps were artificially interpreted by visually combining medium-
and low- resolution remote sensing images. On the contrary, our geo-object-based mapping
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can provide fine vegetation type information by homogeneous polygons with irregular
boundaries (see Figures 10c and 11c). In addition, large areas of vegetation were generally
mapped into a whole one polygon with non-smooth and coarse boundaries via the rough-
scale-based mapping (see Figures 10b and 11b). Therefore, compared with conventional
mapping, our geo-object-based mapping can provide visually superior maps by showing
more abundant vegetation information and spatial details in pattern differences. It is
conducive to the discovery of knowledge of geographic patterns is based on vegetation
spatial variation law.
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4. Discussions
4.1. Analysis of Vertical Distribution of Vegetation on the North and South Slopes of Taibai Mountain

The variation of vegetation diversity with altitude has always been an interesting
issue for ecologists. According to our vegetation mapping results in Figure 9, we can
further analyze the vertical distribution of the vegetation of Taibai Mountain. An intuitive
comparison of the mapping results of Figure 9 and the DEM data of Figure 4 shows
there is a high correlation between elevation and vegetation distribution in this area. The
effect of vertical distribution is also very obvious for different types of vegetation. Taibai
Mountain is the highest peak in the eastern part of the mainland of China. The vertical
height difference from the foot to the top of the mountain is larger than 3000 m. With the
increase of altitude, variant climate zones are formed. Similar to the latitude gradient,
the altitude gradient, as another geographic gradient, has become an important aspect of
the gradient pattern of biodiversity due to its inclusion of various environmental factors
such as temperature, humidity, and light [64]. Thus, under the comprehensive action of
various environmental factors (geology, landform, climate, soil, etc.), the vegetation in
Taibai Mountain also changes with the elevation and forms the vegetation belt. According
to the existing literature, the vegetation in the experimental area can be divided into four
vegetation belts, namely, an alpine shrub meadow belt, a coniferous forest belt, a birch
forest belt, and a deciduous oak forest belt. Each vegetation belt can be further divided
into several vegetation subzones according to the different main species. This is basically
consistent with the results of Figure 9. Our designed sample collection scheme, using the
ruleset from local expert knowledge from Table 2, plays an important role in these results.

Additionally, there are similar vegetation community types between the north and
south slopes of Taibai Mountain. Their difference in vegetation distribution is small, which
is mainly reflected in the upward movement of vegetation formed by the change in natural
conditions in terms of climate and meteorology, such as heat and precipitation. That is, the
upper limit of the distribution of the main vegetation communities on the south slope is
generally higher than that on the north slope. Moreover, compared with the south slope,
the north slope is steeper, and its relative height difference is larger, which makes its vertical
distribution of vegetation relatively complete and clear. While the boundary of the reserve
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is generally high in the south slope, the area of broadleaf forests forest is not as large as
that of the north slope. These phenomena can also be clearly seen in Figure 9.

4.2. Relative Importance Analysis of Environmental Variables

As mentioned above, the difference in environmental factors affected the vegetation
distribution in the experimental area. Therefore, we further analyzed the role of different
environmental factors in the employed vegetation classification model. Based on the multi-
source data we used, 73 features (i.e., environmental variables) were input into the RF
classifier for learning. We used this algorithm to extract the relative importance of different
features in the modeling based on the measure of information entropy. The estimated
importance of the top 20 significant environmental variables is shown in Figure 12, from
which the following conclusions can be drawn.
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Figure 12. The relative importance of the top 20 significant environmental variables extracted from
the RF model (1. ta: annual temperature; 2. im: wetness index; 3. geotype: geomorphological type;
4. elev-mean: mean value of elevation; 5. ndvi: normalized difference vegetation index (NDVI) from
GF-2 data; 6. ndvi_q1: average value of NDVI in the first quarter from SPOT-4 data; 7. glcm_asm:
angular second moment of a GLCM from GF-2 data; 8. pa: annual rainfall; 9. npp: net primary
productivity; 10. lucc-type: land cover type; 11. south-north: south or north slope; 12. elev-dev:
standard deviation value of elevation; 13. aat10: annual accumulated temperature; 14. glcm-cont:
contrast of a GLCM from GF-2 data; 15. ndvi-m7: average value of NDVI in July from SPOT-4 data;
16. border-leng: border length of the polygon of geo-object; 17. erosion: soil erosion value; 18. aridity:
dryness index; 19. spectrum-1: mean spectrum value of the first band from GF-2 data; 20. ndvi-m4:
average value of NDVI in April from SPOT-4 data).

First, the climate-related factors are most important for the distribution of vegetation,
as there is a large proportion of this kind of variables, such as the annual temperature
(ranking 1st), wetness index (2nd), annual rainfall (8th), annual accumulated temperature
(13th), and dryness index (18th). It is understood that the variant climate zones are critical
for the formed vegetation distribution.

Second, the terrain-related factors, including the variables of geomorphological type
(ranking 3rd), the mean value of elevation (4th), the south or north slope (11th), and the
standard deviation value of elevation (12th), are also important features influencing the
vegetation classification. As stated above, elevation and slope direction play a key role in
the distribution of vegetation in Taibai Mountain.
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Third, many indicators indicating vegetation growth and ecological status are highly
correlated with vegetation distribution. For example, the features of the NDVI from GF-2
data (ranking 5th), the average value of the NDVI in the first quarter (6th), July (15th),
and April (20th) from SPOT-4 data, and the net primary productivity (9th) have great
significance for prediction. These indicators show the growth degree of different types of
vegetation. Meanwhile, the variables of land cover type (ranking 10th) and soil erosion
value (10th) also determine the external surface of land cover and internal soil conditions
of vegetation growth.

Fourthly, some image-extracted features, such as two measures of a Gray-level Co-
occurrence Matrix (GLCM) from GF-2 data (angular second moment (ranking 7th) and
contrast (14th)), the border length of the polygon of the geo-object (16th), and the mean
spectrum value of the first band from GF-2 data (19th), have a certain correlation with the
determination of vegetation types. This can be explained by the fact that some types of
vegetation are reflected in the texture and spectrum of HSR-RS images [65].

Finally, the importance of other variables is relatively small. However, undoubtedly,
they marginally improve the accuracy of vegetation classification. Overall, the analysis
results of the importance of variables are basically consistent with previous knowledge of
the vegetation characteristics of Taibai Mountain.

4.3. The Achievements and Novelty of This Study

Although it seems that the proposed methodology is tailored for the particular case
that we are dealing with, the designed pipeline in this paper can be generalized to a
large number of mountainous areas. That is, the genericity of the proposed pipeline is
acceptable in a broad sense. The reasons for this as follows: First of all, with the continuous
improvement of the spatial and spectral resolution of remote sensing images, fine and
accurate vegetation mapping has become possible. Meanwhile, the multi-source auxiliary
data, such as the historical interpretations of vegetation survey maps, are accumulated
continuously and obtained easily. How these data can be used in the intelligent mapping
of vegetation has been of wide concern among scholars. The proposed method in this
paper was designed based on the latest available data. In addition, due to the complexity
of mountainous terrain, it is difficult to obtain basic mapping units and vegetation samples
from field surveys. This problem is generally recognized as a difficult challenge. In order
to overcome these bottlenecks, we developed new methods of geo-object extraction and
training sample collection. These are designs oriented to actual needs and situations.
Furthermore, the popular-inference-method-based ML was introduced into the process of
vegetation type classification. This way is reliable via an automatic pattern and has good
generalization ability.

Based on these illustrations, the novelty of this research can be further summarized
as follows: First, the basic mapping units in this study were geo-objects with finer poly-
gon boundaries. They were extracted from H-RS images and DEM data according to
topographic partitioning and constrained segmentation, which are more consistent with
our cognition on the distribution unit of vegetation in mountainous areas and reflect the
continuity and spatial gradient characteristics of the vegetation distribution. Meanwhile,
multi-source data were integrated with these geo-object-based units, and mapping on a
micro-spatial scale was conducted to meet the requirements of fine vegetation surveys.
Second, multi-source auxiliary data were applied synergistically in the mapping process
via data association to these geo-object units. Potential correlation factors were identified to
improve vegetation classification accuracy by designing high-dimensional environmental
variables. Meanwhile, nonlinear modeling based on the RF-based ML algorithm was
employed in the domain of vegetation mapping, which was demonstrated to be robust for
multi-variable relational analysis in accurate spatial predication. Third, a geo-object-level
sample collection method based on prior label transfer from a historically interpreted map
was ingeniously designed by combining it with a rule set from local expert knowledge.
This provides an effective procedure for rapid vegetation sample selection in mountainous
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areas. This formalized vegetation mapping strategy is cost-effective for ML-based mapping,
where sample collection is difficult. In addition, the mapping results can be further updated
via this kind of rapid production.

5. Conclusions

Fine and accurate vegetation mapping results have important practical needs in the
current survey. To realize effective vegetation mapping in mountainous areas, some intelli-
gent technical solutions need to be introduced with the support of multi-source auxiliary
data. Therefore, based on the background of the fast and accurate extraction of vegetation
cover information in mountain areas via the supervised classification method, this paper
combined HSR-RS images and multi-source spatial data to realize a geo-object-based vege-
tation mapping technical framework. Several technological steps of the procedure were
designed with the following three aspects: geo-object extraction considering terrain zoning
and constraints, the utilization of multi-source geospatial data influencing the spatial distri-
bution of vegetation and a nonlinear model of a tree-based ML algorithm, and quick sample
collection using local expert experience and vegetation information from historical interpre-
tations. The experimental results of Taibai Mountain, China, demonstrated its effectiveness
in rapid mapping, where samples from field surveys are not easy to collect. The advantages
of the proposed method, compared with traditional vegetation mapping technologies, are
mainly reflected in the following two aspects: First of all, although there are mapping units
at the geo-object level, this paper focuses on a mountainous area and considers the topo-
graphic partition and spatial constraints in the acquisition of refined-accurate geo-object
units, which is different from the traditional land cover mapping technology. Second, in
the acquisition of samples for ML, we designed a set of intelligent and convenient schemes
to automatically collect samples from interpretations of historical maps, which is more
beneficial when it is difficult to collect samples in the actual mountain areas. Combined
with these two aspects of innovation, we can produce relatively fine and reliable mountain
vegetation maps. Moreover, this kind of fine mapping result will serve as an important
information reference for the investigation of vegetation in mountain areas.

Based on the above analysis, the proposed methodology can be further studied in the
following directions. First, semi-supervised learning making use of unlabeled samples or
unreliable labeled samples [66], active learning solving informative sample selection [67,68],
and reinforcement learning focusing on iterative improvement of samples and classification
accuracy [69] are innovative methods that are worthy of further applying into our frame-
work for acquiring robust learning. Second, the recent deep learning (DL) approaches are
becoming pervasive in the domain of RS [24,70]. Integrating DL methods into our technical
framework is a potential development direction. One possible way is to design certain DL
architectures to fuse multi-source data or replace the RF classifier. Another way is to adopt
DL techniques to calibrate our model outputs, as uncertainty often exists in the model
parameters, thus resulting in errors in model outputs. We believe that the combination of
our proposed technical framework and DL may boost not only the model accuracy but also
improve the mapping of vegetation types. Third, more efficient features, such as the corre-
sponding index for a specific vegetation type, and more data sources, such as hyperspectral
and LiDAR data, could be introduced [71]. The rules of filtering geo-object-based samples
shown in Figure 2 could be further optimized by integrating more domain knowledge,
such as spectral libraries and biological laws. Fourthly, we assume the vegetation type of
each geo-object is unique in the proposed technical framework. This assumption can be
well guaranteed on the basis of the proposed geo-object extraction process in this paper. In
other words, the types and characteristics of the land cover are relatively consistent in the
spatial scope of each geo-object. However, although we have not made a comprehensive
assessment, we believe that there is a certain idealism in this assumption. In an actual
experiment, it is possible that there are multiple vegetation types in a geo-object. This can
impact the mapping accuracy of our method. We cannot deny this, but we believe that the
proportion of this impact will not be too large and can be allowed to exist. Therefore, when
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this happens, we can further optimize our technical solutions in future work. For example,
we can consider the re-decomposition of the geo-object and carry out research works of
sub-geo-object mapping similar to sub-pixel mapping. These are challenging problems in
our proposed framework that are worthy of further investigation, the solutions to which
are expected to yield better results.
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