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Abstract: Land cover products are an indispensable data source in land surface process research,
and their accuracy directly affects the reliability of related research. Due to the differences in factors
such as satellite sensors, the temporal–spatial resolution of remote sensing images, and landcover
interpretation technologies, various recently released land cover products are inconsistent, and their
accuracy is usually insufficient to meet application requirements. This study, therefore, established a
fusion and correction method for multi-source landcover products by combining them with landcover
statistics from the Food and Agriculture Organization of the United Nations (FAO), introducing a
spatial consistency discrimination technique, and applying an improved Dempster-Shafer evidence
fusion method. The five countries in Central Asia were used for a method application and verifi-
cation assessment. The nine products selected (CCI-LC, CGLS, FROM-GLC, GLCNMO, MCD12Q,
GFSAD30, PALSAR, GSWD, and GHS-BUILT) were consistent in time and covered the study area.
Based on the interpretation of 1437 high-definition image verification areas, the overall accuracy
of the fusion landcover result was 85.32%, and the kappa coefficient was 0.80, which was better
than that of the existing comprehensive products. The spatial consistency fusion method had the
advantage of an improved statistical fitting, with an overall similarity statistic of 0.999. The improved
Dempster-Shafer evidence theory fusion method had an accuracy that was 4.86% higher than the
spatial consistency method, and the kappa coefficient increased by 0.07. Combining these two
methods improved the consistency of the multi-source data fusion and correction method established
in this paper and will also provide more reliable basic data for future research in Central Asia.

Keywords: landcover; spatial consistency; improved Dempster-Shafer evidence theory; statistics;
multi-source information fusion

1. Introduction

Landcover (use) changes affect the structure and function of ecosystems and other land
surface processes and are indispensable basic data for studies of ecosystem evaluation [1],
landscape pattern simulation [2], vegetation phenology monitoring [3], and carbon sink
simulation research [4]. With the rapid development of satellite remote sensing technology,
the use of remote sensing images has become the most popular method for large-scale
landcover mapping. Since the land-use and landcover change project was proposed by
the International Geosphere and Biosphere Plan in 1995, major geoscience research insti-
tutions around the world have successively developed a variety of landcover products
with different scales and resolutions based on satellite remote sensing images [5]. There are
now more than 20 sets of global scale and 40 sets of intercontinental or national scale
landcover mapping products [6,7]. Landcover products can be divided into composite and
single types, such as the International Geosphere-Biosphere Program Data and Informa-
tion System Cover (IGBP-DISCover) developed by the United States Geological Survey
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(USGS), Global Land Cover 2000 (GLC2000) developed by the European Commission Joint
(ECJRC), Global Land Cover Map (GlobCover) and Climate Change Initiative Land Cover
(CCI-LC) developed by the European Space Agency (ESA), Finer Resolution Observation
and Monitoring—Global Land Cover (FROM-GLC) developed by Tsinghua University in
China, and GlobeLand30 developed by the National Basic Geographic Information Center
of China [8]. In addition to the comprehensive landcover products, research institutions
have also produced single-type landcover products, such as the cropland product Global
Food Security—support analysis data 30 m (GFSAD30) developed by USGS [9] and the
forest landcover product Advanced Land Observing Satellite Phased Array L-band SAR
(PALSAR) developed by the Japan Aerospace Exploration Agency (JAXA) [10]. However,
the differences among satellite operation, sensor types, classification methods, and ver-
ification methods have resulted in a large inconsistency among the landcover products
from different data sources. Consequently, the accuracy cannot always meet application
requirements [11]. Low precision landcover data will result in greater errors in applications,
leading to greater uncertainty in the research results. Therefore, it is of great significance to
integrate existing multi-source landcover data and improve data accuracy [12,13].

A variety of methods have been proposed for the fusion and correction of multi-
source landcover data. Based on the principle of evidence convergence, Jung et al. used
affinity scores and fuzzy consistency methods to fuse Global Land Cover Characterization
(GLCC), GLC2000, and Moderate Resolution Imaging Spectroradiometer (MODIS) data to
generate comprehensive landcover products with improved characteristics [14]. Bai et al.
fused the MODIS Vegetation Continuous Fields (VCF), MODIS Cropland Probability,
and Advanced Very-High-Resolution Radiometer (AVHRR) Continuous Fields of Tree
Cover (CFTC) datasets based on fuzzy logic to obtain global 1 km landcover fusion data [15].
These studies applied the method of assigning definition rules for multi-source data fusion,
in addition to quantitative methods based on statistics. Fritz et al. used statistics to calibrate
on the basis of determining the type of product sorting possibilities, and fused GLC-2000,
MODIS land cover, GlobCover, MODIS crop likelihood, and AfriCover dataset from the
Food and Agriculture Organization (AfriCover) to obtain a 1 km resolution cropland map
of Africa [16]. According to the consistency between different remote sensing data and
statistics, Dmitry et al. merged GLC2000, VCF, Vegetation Fraction (VF), and Geographic
Information System (GIS) data to generate 1 km resolution landcover data for Russia [17].
Based on the best consistency level and product combination, Lu et al. used statistics
as constraints to integrate GlobeLand 30, CCI-LC, GlobCover2009, MODIS Collection 5
(MODIS C5), and MODIS cropland to generate 500 m resolution arable landcover data for
China [18]. These studies showed that the fusion of multi-source landcover data could
improve data accuracy. However, fusion based solely on fuzzy theory is highly subjective,
while fusion based only on a consistency analysis produces greater uncertainty in regions
with low consistency. In addition, with advances in technology, many high-precision single
landcover products have emerged. Therefore, how to develop the advantages of these
two techniques and also effectively integrate comprehensive and single-type landcover
products are the keys to improve the fusion accuracy of multi-source landcover products.

The Dempster-Shafer evidence theory is an evidence-based fusion method proposed
by Dempster and improved by Shafer [19,20]. It can deal with the uncertainties caused
by randomness and ambiguity. Unlike Bayesian probability theory, it does not require
a prior probability density and is therefore widely utilized in artificial intelligence and
multi-source information fusion [21]. Ran et al. merged GIS data with Moderate Resolution
Imaging Spectroradiometer Land Cover Map in 2001 (MOD12Q1) based on evidence theory
to obtain 1 km resolution landcover data for China in 2000 [22]. Based on this theoret-
ical framework, Song et al. integrated products such as GlobCover, MODIS, GLC2000,
and Global Land Cover by National Mapping Organizations (GLCNMO) covering China
and produced landcover data for use in China’s land cover classification system (LCCS) in
2005 [23]. When there is a high degree of conflict between the available evidence, the regu-
larization process during the synthesis of evidence theory may lead to the “Zedeh” paradox.
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This states that even if most of the evidence supports proposition A, the result is that the
synthesized proposition A is also negated as long as one piece of evidence denies proposi-
tion A, which leads to the evidence being affirmed by the proposition that was negated
by the majority of evidence; thus, forming a paradox [24]. Researchers worldwide are
committed to improving the Dempster-Shafer evidence theory algorithm [25,26], but few
studies have applied the results to the integration of landcover products.

In this study, a spatial consistency analysis was introduced with an improved Dempster-
Shafer evidence fusion theory and then a landcover fusion and correction method was
established for comprehensive and single type products combined with the Food and
Agriculture Organization of the United Nations (FAO) statistics. First, we performed a
spatial consistency discriminant analysis on nine landcover products to extract regions
with high spatial consistency. Then we used the improved Dempster-Shafer theory for
data fusion and filled in the results for regions with lower spatial consistency. This method
can effectively avoid the uncertainty that occurs when the spatial consistency is low.
Central Asia was selected as the research area to apply and verify the proposed method.

2. Data and Methods
2.1. Study Area

The five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan,
and Uzbekistan) in this study are located in the middle of the Eurasian continent (35◦N~55◦N,
46◦E~85◦E), which has a temperate continental drought and semi-arid climate, with little
precipitation and strong evaporation (Figure 1) [27]. The total area is about 4 × 106 km2.
The western and central parts of the region are low-lying, and plateaus and mountains
occupy the southeast and northwest. Central Asian landscapes are dominated by deserts
and grasslands. The main water resources are snow meltwater from mountains and inland
lakes, and the area and volume of inland lakes have been greatly reduced due to the
dual effects of climate change and human activities [28]. As the Silk Road passes through
these countries, which are member states of the Belt and Road region, the study of the
ecological environment and surface processes in Central Asia has become an important
research topic [29]. However, due to the huge changes in landcover in Central Asia
since the disintegration of the Soviet Union, the different time phases of various products,
and rough spatial resolution, the uncertainty of remote sensing interpretation has increased,
with a lack of clarity among the landcover types in the fragmented landscape [30,31].
Moreover, the landcover data sets currently used in studies of Central Asia are relatively
old [32,33]. A number of landcover data sets for the period around 2015 have been released
internationally, and these can be used to study the relatively recent landcover distribution
characteristics of Central Asia.

2.2. Data Sources and Preprocessing

We used nine landcover products in 2015, namely CCI-LC [34], Copernicus Global
Land Service (CGLS) [35,36], FROM-GLC [37,38], GLCNMO [39–42], Moderate Resolution
Imaging Spectroradiometer Land Cover Type Product (MCD12Q) [41–43], GFSAD30 [10,44],
PALSAR [45,46], Global Surface Water Data (GSWD) [9], and Global Human Settlement
Layer Built-up area (GHS-BUILT) [47,48]. There were differences between these products in
terms of their spatial resolution, sensors, classification methods, overall accuracy, and clas-
sification systems (Table 1). The overall accuracy of the combined landcover products was
roughly 60–80%, while the accuracy of a single landcover product could exceed 90%.
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Table 1. Basic information on nine landcover products.

Product Source Sensors Classification
Method

Resolution
Ratio

Overall
Accuracy

Classification
System

CCI-LC ESA

MERIS FR/RR
SPOT-VGT

AVHRR
PROBA-V

Neural networks 300 m 71.70% CCI-LC(37)

CGLS ECJRC PROBA-V Random forest 100 m 80.10% UN-LCCS(22)

FROM-GLC
Tsinghua

University,
China

TM ETM+
Support vector

machine, random
forest

30 m 64.92% FROM-
GLC(28)

GLCNMO ISCGM MODIS Decision tree 500 m 74.80% FAO-LCCS(20)

MCD12Q Boston
University MODIS Decision tree,

neural network 500 m 71.60% IGBP(17)

GFSAD30 USGS MODIS Machine learning 30 m 94.80%

PALSAR JAXA PALSAR Supervised
classification 25 m 94.81%

GSWD ECJRC TM ETM+ OLI Supervised
classification 30 m 97.45%

GHS-BUILT ECJRC TM ETM+ OLI Machine learning 30 m 83%

Because the resolution of each landcover product was inconsistent, it was necessary
to project and resample the data to ensure the area was not deformed when merging.
Using the world_cylindrical_equal_area as the benchmark, the nine landcover products
were unified into the same geographic coordinate system and projection. Taking into
account the inconsistency of the spatial resolution of the above products, which ranged
from 25 to 500 m, the mode aggregation method was adopted to upscale the fine resolution
products, and the nearest neighbor pixel interpolation approach was applied to downscale
the coarse resolution products according to previous studies [49]. The increase of the scale
would omit information about the data while decreasing the scale would introduce more
uncertainty into the data. The resolutions ranged from 25 to 500 m, but only MCD12Q
had a resolution of 500 m, while most products had a resolution of less than 100 m.
Therefore, after careful consideration, 300 m was selected as the resolution of the multi-
source products after resampling, which can ensure that high-resolution products do not
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lose much information when merging pixels and can also prevent low-resolution products
from generating wrong information when downscaling. This ensured that high-resolution
products did not lose much information when merging pixels but also prevented the
low-resolution products from generating incorrect information when downscaling.

2.3. Multi-Source Land Cover Data Fusion and Correction Method

We developed a method based on the combination of a spatial consistency analysis and
the improved Dempster-Shafer evidence theory (Figure 2). The main steps were as follows.
(1) The existing multi-source landcover products were subjected to a unified classification
system, spatial referencing, and resolution. (2) Following the collection of FAO statistics,
a spatial consistency analysis method was used for data fusion and regions with a higher
consistency were extracted. (3) The fusion results from the application of the improved
Dempster-Shafer evidence theory were employed to fill the area of low consistency in the
spatial consistency method. (4) High-definition image interpretation samples from Google
Earth were applied to evaluate the accuracy of the fusion result. A spatial consistency
analysis has the advantage of drawing homogeneous areas of large landscapes, and the
improved Dempster-Shafer evidence theory fusion method can effectively deal with the
uncertainty of low-consistency areas. Therefore, we established a multi-source landcover
product fusion and correction method combining the two methods.
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2.3.1. Unified Classification System for Multi-Source Land Cover Products

Due to the different production units and sensors, the classification systems and defi-
nitions of landcover types were also different for each landcover product. We defined the
fusion result as nine classes, and the landcover types of each product were also grouped
into nine classes according to the classification system used for the comprehensive land-
cover products (Table 2). The specific definitions of each single-type product were as
follows: GFSAD30 is a single product for cultivated land, in which cultivated land was
defined as planted crops and fallow land. Fallow land referred to farmland that had not
been cultivated in a season or a year and included planting equipment and plantations
(such as orchards, tea gardens, etc.). PALSAR is a single-type product for forest land,
which included forest coverage areas with a canopy density ≥10%. GSWD is a single-type
product for permanent and seasonal water bodies. If there was water throughout the whole
observation period (which was the thawing period), the lake was regarded as a permanent
water body. If the area of the lake shrank during the thawing period, the pixels around the
lakeside no longer represented water, and the feature was regarded as a seasonal water
body. GHS-BUILT is a single-type product for artificial surfaces, namely built-up areas.
Built-up areas referred to closed buildings on the ground that were used to shelter humans,
animals, and goods or for the production of economic commodities. This category also
includes refugee settlements, slums, and other temporary settlements.

Table 2. Definition of landcover type in different landcover products.

CCI-LC [32] UN-LCCS [33,34] FAO-LCCS
[40–43] IGBP [42–44] FROM-GLC

[38,39]

Cropland

10 Cropland, rainfed
20 Cropland,
irrigated or

post-flooding 30
Mosaic cropland
(>50%)/natural
vegetation (tree,

shrub, herbaceous
cover) (<50%)

40 Cultivated and
managed vegeta-
tion/agriculture

(cropland)

10 Cropland and
paddy field 12

Cropland/other
vegetation mosaic

10 Croplands 13
Cropland/natural
vegetation mosaics

11 Rice paddy 12
Greenhouse 13

Other cropland 14
Orchard 15 Bare

farmland

Forest

50 Tree cover,
broadleaved,

evergreen, closed to
open (>15%) 60 Tree
cover, broadleaved,

deciduous, closed to
open (>15%) 70 Tree
cover, needle-leaved,
evergreen, closed to
open (>15%) 80 Tree
cover, needle-leaved,
deciduous, closed to
open (>15%) 90 Tree

cover, mixed leaf
type (broadleaved
and needle-leaved)
100 Mosaic tree and

shrub
(>50%)/herbaceous

cover (<50%)

111 Closed (>70%)
evergreen needle
leaf 112 Closed to

open (>70%)
evergreen, broadleaf
113 Closed (>70%)
deciduous needle

leaf 114 Closed
(>70%) deciduous

broadleaf 115 Closed
forest, mixed 116

Closed forest,
unknown 121 Open
(15–70%) evergreen

needle leaf 122 Open
(15–70%) evergreen
broadleaf 123 Open
(15–70%) deciduous
needle-leaf 124 Open
(15–70%) deciduous
broadleaf 125 Open

forest, mixed 126
Open forest,

unknown

20 Open
(40–(20–10)%) trees

(Woodland) 21
Broadleaved

evergreen closed to
open (>40%) trees

22 Broadleaved
deciduous closed

to open (>40%)
trees 23

Needle-leaved
evergreen closed to
open (>40%) trees
24 Needle leaved
deciduous closed

to open (>40%)
trees 25

Broadleaved/
needle-leaved
closed to open

trees

20 Woody
savannas 21
Evergreen

broadleaf forests
22 Deciduous

broadleaf forests
23 Evergreen

needle-leaf forests
24 Deciduous

needle-leaf forests
25 Mixed forests

21 Broadleaf,
leaf-on 22

Broadleaf, leaf-off
23 Needle-leaf,

leaf-on 24
Needle-leaf,

leaf-off 25 Mixed
leaf, leaf-on 26

Mixed leaf, leaf-off
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Table 2. Cont.

CCI-LC [32] UN-LCCS [33,34] FAO-LCCS
[40–43] IGBP [42–44] FROM-GLC

[38,39]

Grassland

110 Mosaic
herbaceous cover
(>50%)/tree and
shrub (<50%) 130

Grassland

30 Herbaceous
vegetation (tree and

shrub coverage
<10%)

30 Closed to open
herbaceous

vegetation, single
layer

30 Grasslands

31 Pasture 32
Natural grassland

33 Grassland,
leaf-off

Shrubland 120 Shrubland

20 Shrubs (perennial
woody plant without

clear main stem,
height <5 m)

40 Closed to open
shrubland (thicket)

40 Closed/open
shrublands,

savannas

41 Shrubland,
leaf-on 42

Shrubland, leaf-off

Water 210 Water bodies 80 Permanent water
bodies 200 Open sea

50 Artificial/
natural

waterbodies
50 Water bodies 60 Water

Artificial
surfaces 190 Urban areas 50 Urban/built up

60 Artificial
surfaces and

associated area(s)

60 Urban and
built-up lands

80 Impervious
surface

Bare land

200 Bare areas 150
Sparse vegetation

(tree, shrub,
herbaceous cover)

(<15%)

60 Bare/sparse
vegetation (tree
coverage <10%)

70 Herbaceous
with sparse

tree/shrub, sparse
vegetation

70 Barren sparse
vegetation 90 Bareland

Permanent
snow and ice

220 Permanent snow
and ice 70 Snow and ice 19Perennial

snow/ice
80 Permanent
snow and ice 101 Snow 102 Ice

Wetland

160 Tree cover,
flooded, fresh or

brackish water 170
Tree cover, flooded,

saline water 180
Shrub or herbaceous

cover, flooded,
fresh/saline/

brackish water

90 Herbaceous
wetland

100 Mangrove,
Wetland

100 Permanent
wetlands

51 Marshland 52
Mudflat 53

Marshland, leaf-off

Note: The CCI-LC category in table is global classes including its regional categories, i.e., 10 Cropland, rainfed including 11 Cropland,
rainfed, Herbaceous cover, 12 Cropland, rainfed, Tree or shrub cover; 60 Tree cover, broadleaved, deciduous, closed to open (>15%) including
61 Tree cover, broadleaved, deciduous, closed (>40%), 62 Tree cover, broadleaved, deciduous, open (15–40%); 70 Tree cover, needle-leaved,
evergreen, closed to open (>15%) including 71 Tree cover, needle-leaved, evergreen, closed (>40%), 72 Tree cover, needle-leaved, evergreen,
open (15–40%); 80 Tree cover, needle-leaved, deciduous, closed to open (>15%) including 81 Tree cover, needle-leaved, deciduous,
closed (>40%), 82 Tree cover, needle-leaved, deciduous, open (15–40%); 120 Shrubland including 121 Evergreen shrubland, 122 Deciduous
shrubland; 200 Bare areas including 201 Consolidated bare areas; 202 Unconsolidated bare areas; 150 Sparse vegetation (tree, shrub,
herbaceous cover) (<15%) including 151 Sparse tree (<15%); 152 Sparse shrub (<15%); 153 Sparse herbaceous cover (<15%).

2.3.2. Spatial Consistency Analysis

A spatial consistency analysis can accurately express the spatial differentiation of
various landcover products [6,18]. We used the spatial analysis tools in ESRI ArcGIS 10.5
Desktop software (CA, USA) to overlay landcover products and counted the number and
distribution of pixels for the consistency of each class. The classes which had single-type
products were cropland, forest, water bodies, and artificial surfaces, and the number of
products was 6. Therefore, the highest consistency of these land types was 6, and the
highest consistency of the other land types was 5. The higher the confidence, the higher the
probability that the pixel was considered to be the land type, and vice versa. Taking crop-
land as an example, if all the cropland products represented cropland at the same time,
the consistency of cropland in the pixel was 6, which was completely spatially consistent in
space, and the likelihood that the pixel was actually cropland was extremely high. If there
was no product for which the pixel was cultivated land (i.e., consistency = 0), the possibility
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that the pixel was cropland was extremely low (Figure 3). Statistics for the area of cropland,
forest, grassland, and water in various countries were obtained from the FAO, and the
results of each level of integration were compared using statistics. Because statistics were
based on the country as a statistical unit, the integration of each country based on the statis-
tics generated more accurate results at the national scale. The area data for various types of
landcover were obtained from FAO statistics, solely including cropland, forest, grassland,
water bodies, and other areas of each country. Thus, the land types used for comparison
with the statistical area in this study were cropland, forest, grassland, and water. Due to
the lack of statistics for other landcover types, they are not constrained by statistical area
when merging and are superimposed step-by-step according to the level of consistency
until all pixels are assigned a category.

The specific operation undertaken when using spatial consistency analysis for data
fusion was to overlap each product spatially and then use the raster calculator in ArcGIS
software to analyze the consistency of each landcover type. Following this procedure,
a class assignment for each grid was performed to obtain a sequence from high to low
consistency. For grids with a high degree of confidence (consistency ≥4), each grid was
assigned to the class with the highest confidence level, and then the fusion result of the land
type was compared with the landcover statistics. If the aggregated area then exceeded the
statistically reported value, landcover type areas of lower consistency were not added. If the
aggregated area was less than the statistically reported value, landcover type areas of lower
consistency were added until the area was equal to or slightly larger than the statistically
reported area. In the low-confidence (consistency ≤3) grids, there could be several types
of landcover with the highest confidence level at the same time. For example, there were
grids with a confidence level of 3 for both cropland and grassland. In this case, a restriction
was attached, with the use of a certain single-type product restricted in each level of the
consistency analysis. The fusion results of land types were continuously compared with the
statistically reported data, with the comparison method being the same as that described
above. If the remained grid could not be determined by the aforementioned rules, it would
be merged according to the nearest neighbor rule, but the merged area was too small to
have an impact on the overall result.

2.3.3. Improved Dempster-Shafer Evidence Theory

The Dempster-Shafer evidence theory can transform propositional uncertainty into a
set uncertainty, thus clearly express the ignorance of propositions caused by the uncertainty
and incompleteness of the information itself, and is suitable for solving the uncertainty in
the fusion of multi-source information. However, it also has shortcomings, such as the ease
of paradox formation and exponential explosion, meaning that when the rules of evidence
synthesis are calculated, the results grow exponentially in the form of an exponential
function. We, therefore, made appropriate improvements to the synthesis method during
evidence synthesis to avoid paradoxes and used the ArcGIS raster calculator and model
builder to gradually implement each process and so avoid an exponential explosion.
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Construction of the Basic Probability Function

The basic probability assignment (BPA) can convert the input data into evidence.
To obtain the BPA, the process had to define the discrimination framework and calculate
the affinity and accuracy of each class. The discrimination frame was the set of target
feature types. Because the landcover data did not allow mixed pixels, the discrimination
framework was isolated sets of the nine landcover types in Table 2, namely Θ = {cropland,
forest, grassland, shrubland, water, artificial surfaces, bare land, permanent snow and ice,
wetland}. The class accuracy was determined by the producer accuracy of each product,
which was calculated by the validation samples. The Dempster-Shafer theory requires that
the sum of the basic probabilities of each proposition is equal to 1, and therefore the basic
probability function needs to be regularized. The calculation formula is:

Mij(k) =
Eij · Aij(k)

n
∑

i=1
Eij · Aij(k)

Mij(k) =
Eij · Aij(k)

n
∑

i=1
Eij · Aij(k)

(1)

where Mij(k) represents the basic probability that the attribute of the jth pixel in the ith row
is k class; Eij is the class accuracy of the land product at the location of the pixel; Aij(k) is
the affinity of the jth pixel in the ith row to the class k, which is based on the nine classes
of the defined target type, and the affinity score is calculated according to the attribute
characteristics. The affinity score is a quantitative expression method to establish the fuzzy
membership relationship between various types and target types in multi-source landcover
data sets. Based on Table 3, the target landcover type was compared with the input data.
If the values for vegetation/non-vegetation, land/water, and artificial/natural attributes
were the same, the value of the attribute was 1. For life form attributes, if the values were
the same, the value was 1. Otherwise, the following formula was used to calculate the
value [23]:

A =
ai
bj
(i ≤ j), (i, j = 0, 1, 2, 3) (2)

where A is the affinity of the corresponding attribute; ai represents the value of the target
class i, and bj represents the value of the input data class j. After calculating the consistency
value of all the attributes of the target classes and the input data types, Formula (3) was
used to comprehensively calculate the class affinity:

Aij =
4

∑
n=1

ωn An (3)

where Aij is the affinity index, which is to comprehensively process the affinity scores of the
attributes of each classification index; ωn is the weight of the nth attribute (it was assumed
that the four category attributes had the same weight value, and ωn, therefore, took the
value 1

4 ), and An is the affinity score of the nth attribute of the category pair.

Table 3. The assigned values of the category attributes.

Vegetation/Non-Vegetation Land/Water Artificial/Natural Life Forms

Vegetation Non-vegetation Land Water Artificial Natural Bare land, glacial snow,
waters, construction land Forest Shrub Grass

1 0 1 0 1 0 0 1 2 3

Evidence Synthesis

We considered the credibility of evidence, which refers to the degree of support
for each target category and improved it on the basis of the Dempster-Shafer evidence
synthesis rule (Figure 4). Assuming that the basic probability functions corresponding to
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n products were m1, m2, . . . , mn, and the subsets in each function were A1, A2, . . . , An,
the evidence synthesis could be conducted by the following formula [50]:

m(A) = (1− K)
∑

A1∩A2∩...∩An=A
m1(A1)m2(A2) · · ·mn(An)

1− K
+ K · ε · 1

n

n

∑
i=1

mi(A) (4)

K = ∑
Ai∩Bj∩···=∅

m1(Ai)m2
(

Bj
)
· · · (5)

ε = e−k (6)

k =
1

n(n− 1)/2∑
i<j

∑
Ai∩Bj=∅

mi(Ai)mj
(

Bj
)

(7)

where m(A) is the composite probability of category A; K reflects the degree of conflict of
the overall evidence; ε represents the credibility of the evidence, and k is the mean value
of the sum of the conflicts of each pair of evidence items in n pieces of evidence. Finally,
the fusion result was obtained according to the principle of maximum trust.
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2.3.4. Data Comparison and Accuracy Verification
Accuracy Verification

A set of verification plots was produced for the accuracy evaluation and comparison
of multi-source landcover products and fusion correction results. A random sampling
method was adopted, and supplementary sampling was conducted for landcovers that
accounted for a small proportion of the total area. According to the data resolution of the
landcover products, a sample area of 300 × 300 m was randomly arranged in the study
area (Figure 5). We used the high-resolution images in Google Earth for 2015 to determine
the type of features in the plot. The high-resolution remote sensing images in Google earth
are mostly high-definition images from Worldview satellites, with a spatial resolution of
0.3~0.5 m. If high-resolution images for 2015 were not available, a high-resolution image
of the time phase closest to 2015 was selected. There were 1437 plots in total, including
187 cropland plots, 30 forest plots, 675 grassland plots, 84 shrubland plots, 107 water plots,
33 plots containing artificial surfaces, 183 plots containing bare land, 118 plots containing
permanent snow and ice, and 20 wetland plots.
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We adopted an accuracy verification method derived from a confusion matrix. The over-
all accuracy (OA), producer accuracy (PA), user accuracy (UA), and kappa coefficient were
used to measure the accuracy and consistency of the fusion results. The calculation formula
was as follows [1,6,12]:

OA =
∑9

i=1 nii

N
× 100% (8)

PA =
nii
n+i
× 100% (9)

UA =
nii
ni+
× 100% (10)

Kappa =
OA− Pe

1− Pe
(11)

Pe =

n
∑

i=1
n+i · ni+

N2 (12)

where N is the total number of verification samples; i is the ith landcover type; nii is the
number of correctly classified samples; n+i is the plot number of type i in the reference
data, and ni+ is the number of plots of type i in the verification data; Pe is the proportion of
misinterpretation caused by accidental factors.

Similarity Analysis of Land Cover Type Area

A landcover type area similarity analysis was applied to compare the differences
between products, fusion results, and landcover statistics. This cannot only quantitatively
analyze the degree of similarity between the two types of landcover data but also quantita-
tively describe the difference between landcover data and statistics for a certain landcover
type. The coefficient of determination R2 can reflect the degree of fit between the land
area of each country calculated by the landcover products and the statistical landcover
area. The greater the value, the higher the degree of fit [18]. The root-mean-square error
(RMSE) can reflect the difference between the estimated landcover area from the products
and the statistics [18]. For the analysis of the similarity between landcover products and
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statistics for a certain landcover type, the correlation coefficient R was used for evaluation.
The larger the R, the more significant the correlation [18].

R =
∑n

k=1 (xki − x)(yki − y)√
∑n

k=1 (xki − x)2∑n
k=1(yki − y)2

(13)

RMSE =

√
∑N

k=1(xki − yki)
2

N
(14)

where xk is the area of ith landcover type in the kth country determined by a landcover
product, yk is the area of ith landcover type in the kth country determined by landcover
statistics; x and y are the average areas of various landcover types in each country (km2)
determined by the landcover product and statistics, and n is the number of items involved
in the calculation.

2.3.5. Confusion Analysis

Confusion analysis is to observe whether there is a mixture of other landcover types
for the specific landcover type and analyze the degree of confusion. It used the verification
sample to verify the classification accuracy of the fusion result, recorded the landcover
types of the fusion result corresponding to each verification sample, and calculate the
degree of consistency between each category and the verification sample by category. Then,
we can record and calculate the ratio of misclassified land type number to the total number.
The degree of confusion can indicate the accuracy of the classification of each area and its
confusion with other landcover types in order to conduct a more detailed accuracy analysis
of the fused landcover product.

3. Results and Analysis
3.1. Accuracy Verification Based on High-Resolution Image Plots

The accuracy of the five existing landcover comprehensive products and the three
fusion products generated in this study (we define: the fusion result using only spatial
consistency analysis is CON, the fusion result using only Dempster-Shafer evidence theory
is DS, and the fusion result using the combination of the two methods is CONDS.) was
verified, and the OA, PA, and UA of each product and the fusion results were obtained.
Among the various products, the OA was highest for CGLS, reaching 76.27%, and the OA
of the fusion result was higher than that of each product (Table 4). There was an obvious
improvement in accuracy following the fusion based on spatial consistency and Dempster-
Shafer evidence theory, and the consistency with the real surface was higher than for any
product, with an overall accuracy of 85.32%. In the PA verification, shrubland and wetland
had the lowest values, and the fusion result increased the PA of these two landcovers
by 36.67–40.24% and 9–29%, respectively (Figure 6). The UA of each product and the
fusion result were generally high, although the values for bare land and wetland were low,
with average accuracies of 49.67% and 37.56%, respectively. The fusion result indicated
an increase in accuracy by 8.35–29.72% and 0.54–33.87%, respectively. Except for artificial
surfaces and forest, the PA values following the fusion were significantly lower than the
results obtained for CGLS, while the accuracy was improved to varying degrees for the
other landcover types (Figure 7). The accuracy of the various landcover products for
forest land was not high, except for CGLS. When performing a spatial consistency analysis,
it is easy to overlook the presence of forests using the various products, and therefore,
the accuracy for forest land was low.
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Table 4. The overall accuracy and kappa coefficient of multi-source landcover products and fusion results in Central Asia.

Data CCI-LC CGLS FROM-GLC GLCNMO MCD12Q CON DS CONDS

Overall accuracy 61.24% 76.27% 66.53% 62.01% 74.39% 79.00% 83.86% 85.32%
kappa coefficient 0.51 0.67 0.53 0.52 0.62 0.70 0.77 0.80
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3.2. Accuracy Verification Based on Land Cover Statistics

We calculated and compared the RMSE, R2, and correlation coefficient R of the land-
cover areas obtained from the five comprehensive products and the fusion results obtained
using the landcover statistics. The relationship between the land area of each product,
the fusion results, and the landcover statistics is shown in Figure 8. It can be seen that
the fusion result based on spatial consistency discrimination had the highest consistency
with the landcover statistics, with an R2 value of 0.99 and the lowest RMSE. The results
based on the fusion of the two methods were consistent with the 1:1 line. Among the
five products, CGLS and FROM-GLC had the best-fitting relationship with the 1:1 line,
which may be due to their higher spatial resolution. The CCI-LC results deviated greatly
from the 1:1 line, which was related to the existence of mixtures of landcover types in its
definition system, and indicated that the product significantly underestimated the area
of certain landcover types. When the similarities among areas of certain landcover types
were calculated, each product was found to have a high similarity for cropland, forest,
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and grassland but a low similarity for water. The fusion process could effectively improve
the categorization of water (Table 5).
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Table 5. Similarity test between landcover products and fusion results with statistical data.

CCI-LC CGLS FROM-GLC GLCNMO MCD12Q CON DS CONDS

Cropland 1.000 ** 0.994 ** 0.895 0.997 ** 0.980 ** 1.000 ** 0.990 ** 1.000 **
Forest 0.994 ** 1.000 ** 0.999 ** 0.992 ** 0.997 ** 0.997 ** 0.973 ** 1.000 **

Grassland 0.978 ** 0.993 ** 0.990 ** 0.986 ** 0.990 ** 0.998 ** 0.992 ** 0.992 **
Water 0.738 0.765 0.754 0.782 0.845 0.995 ** 0.821 0.859

Note: ** means significant correlation at the 0.01 level.

3.3. Analysis of Land Cover Characteristics in Central Asia

The analysis method based on the combination of spatial consistency discrimina-
tion and the improved Dempster-Shafer evidence theory combines the advantages of
each method and takes into account the expression of spatial consistency and statistical
consistency, and therefore the results produced were selected as the final fusion results.
A confusion analysis of the landcover types revealed that each category had different
degrees of confusion with other categories. Forest and grassland, and shrubland and
bare land had the highest degrees of confusion, reaching 36.67% and 32.14%, respectively.
Wetland had the next highest degree of confusion, which was mainly manifested through
the wrong classification of cropland, grassland, and bare land. The appearance of ar-
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tificial surfaces was confused with cropland, forest, and grassland, with the reason for
the confusion being a misclassification due to the abundant green landscape in the city.
Permanent snow and ice can be confused with bare land, and it may be considered to be
bare ground when the snow melts to expose the surface (Figure 9).
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Figure 9. Multi-source landcover data fusion results in confusion of landcover types.

The main landcover types of the five Central Asian countries were grassland (58.17%)
and bare land (22.31%), followed by cropland (12.08%), water (2.74%), shrubland (2.68%),
forest (1.05%), permanent snow and ice (0.41%), and wetland (0.37%), while artificial
surfaces accounted for the lowest proportion of landcover (Figure 10). Grassland was
mainly distributed in central and southeastern Kazakhstan, which accounted for about
80% of the total grassland area. The remaining 20% of grassland was more evenly dis-
tributed in eastern Uzbekistan, western Kyrgyzstan, western Tajikistan, and northern
Turkmenistan. About 90% of the bare land was distributed in the southwestern part of
the region, namely southwestern Kazakhstan, western Uzbekistan, and northern Turk-
menistan. The bare land was mainly desert, with the Karakum Desert in Turkmenistan
being the largest desert in the region. Shrublands were often distributed around bare
land, with most shrubs growing in desert areas along river basins and other locations.
Cropland was mainly distributed at higher latitudes in the northern plains of Kazakhstan,
which accounted for 75.39% of the total cropland area. Other countries had lesser amounts
of loosely distributed cropland. The water bodies of the five Central Asian countries were
mainly inland lakes, including Karabogazgor Bay in Turkmenistan, Sarygamysh Lake on
the border of Turkmenistan and Uzbekistan, the Aral Sea on the border of Uzbekistan and
Kazakhstan, Balkhash Lake in Kazakhstan, and Issyk-Kul Lake in Kyrgyzstan. The area of
permanent snow and ice was mostly distributed in the Pamirs and Tianshan Mountains on
the border between central Tajikistan and the eastern part of Kyrgyzstan, which is an area
of high altitude. Around 80% of the forest land was concentrated in the Altai Mountains
on the eastern border of Kazakhstan.
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4. Discussion

Based on an analysis of spatial consistency and the improved Dempster-Shafer evi-
dence theory, we integrated the results obtained from various landcover products for the
five countries in Central Asia. The results proved that a data fusion could improve the data
accuracy to varying degrees. An accuracy evaluation of the landcover data revealed that
the accuracy improvement (from large to small) of the various methods followed the order
of the combination of two methods > improved Dempster-Shafer evidence theory > spatial
consistency discrimination. Compared with the other two methods, the accuracy of the
combined method increased by 1.46% and 6.32%, respectively, and the similarity between
the area of each category and landcover statistics was improved when compared with
the use of the improved Dempster-Shafer evidence theory. According to previous stud-
ies, the results obtained using spatial consistency discrimination can be compared with
FAO statistics during the fusion process, resulting in an improvement in the accuracy of
landcover type determination. However, due to the varying qualities of the different land-
cover products, their accuracy was significantly affected in areas with a low consistency of
multi-source products, i.e., the method was not sensitive to areas with high spatial location
uncertainty [16,18]. The improved Dempster-Shafer evidence theory could better man-
age this spatial position uncertainty. For regions with low spatial consistency, the fusion
result was more consistent with the real surface, and the accuracy was improved [22,23].
The combination of the two methods could comprehensively consider landcover statistics
and spatial information, and therefore the fusion results not only improved the accuracy of
plot evaluation but also matched the landcover statistics.

The method proposed in this study based on the combination of spatial consistency
discrimination and Dempster-Shafer evidence theory could effectively integrate and mod-
ify the existing multi-source landcover products to produce high-precision landcover data.
Taking the FAO landcover statistics as a baseline, regions with a higher spatial consistency
were extracted, which ensured that the extracted regions had high spatial accuracy and
statistical consistency [17,18]. The improved Dempster-Shafer evidence theory could effec-
tively deal with the uncertainty of low-consistency areas. The Dempster-Shafer evidence
theory has been used to integrate landcover products in previous studies, but in studies
where there was a high degree of conflict in the evidence, paradoxes were prone to ap-
pear [24,50]. Considering that the landcover in Central Asia is dominated by grassland,
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of which desert grassland is the main component [51], the difficulty of distinguishing
between bare land and grassland may lead to such conflicts of evidence. Therefore, we in-
troduced the concept of credibility and improved the Dempster-Shafer evidence theory to
avoid abnormal results caused by these conflicts of evidence.

The accuracy assessment based on high-resolution plots showed that the OA of the ex-
isting landcover products in the five Central Asian countries was 60% to 80%. The accuracy
of the products used in the study is generally not high [32], with only CGLS reaching more
than 75%. Accurate unification and redefinition of classification systems before fusion can
reduce the impact of any differences in classification systems on data consistency [12,15,22].
The accuracy of the input data is also one of the factors that affect the fusion of multi-
source landcover data [52,53]. If there is a certain type of landcover and only one of the
input products has high accuracy, the high-precision products will be ignored, resulting in
low accuracy of the fusion results. This issue needs to be considered in future research,
single-type landcover products have higher accuracy, and the differences in the accuracy
of each product category in a comprehensive product can complement each other in the
integration process. Although CCI-LC and GLCNMO had the lowest OA, they had the
highest PA for cropland. CGLS had the highest OA, while the PA for cropland and bare
land were lower than the values of the other products. The forest category accuracy for
most products was low, although the accuracy of the PALSAR product was high. The dif-
ference between PA and UA reflects the accuracy of the product’s estimation of landcover
type [54]. The PA of cropland in FROM-GLC is very low (26.2%), while its UA is very
high (73.13%), which shows that this product over-underestimates the area of cropland.
Because the interpretation of shrubland, wetland and artificial surfaces are easy to be
confused with other categories, their PA and UA are also quite different. Among them,
the PA-UA difference of shrubland is 27%, the PA-UA difference of wetland is 30%~35%,
and the difference in PA-UA of artificial surfaces is 53%. It shows that each product also has
a relatively obvious underestimation of shrubland, wetland and artificial surfaces. At the
same time, in the accurate evaluation of each category, the importance of user accuracy
should also be emphasized. Both CCI-LC and GLCNMO had a low user accuracy for crop-
land, indicating that they overestimated the cropland area to a certain extent, while CGLS
underestimated the cropland area. The results of this study integrated the high-precision
categories of landcover products, and compared the results with the input data, improving
the accuracy in areas with high landscape heterogeneity (Figure 11). Wetland is the most
difficult landcover type to map worldwide, but the ecosystem services provided to human
society by wetlands have the greatest monetary value [55,56]. The accuracy of the fusion
result for wetland was significantly improved, and the ability to map wetland has therefore
been improved. Compared with the input data, the PA and UA of each category of the
fusion result were more consistent, which effectively compensated for the overestimation
of the input data.

The degree of confusion between forest, bare land, and grassland is relatively high.
This may be because landcover changes in Central Asia have accelerated since the disin-
tegration of the Soviet Union and have mainly been manifested in the transfer of forest
to grassland, grassland to cropland, and bare land to forest and grassland [29,57]. The ac-
curacy of the shrubland area in terms of the input data and fusion result was very low,
which could be due to the fact that shrubs are easily confused with bare land and grass.
Shrubland is a landcover type that transitions from grassland to bare land (land deserti-
fication) or from bare land to grassland (desert shrub). To a certain extent, the spectral
characteristics and phenological characteristics of shrubland, grassland, and bare land are
very similar [58]. There was also a certain degree of confusion between wetland, cropland,
and grassland. Therefore, the ability to distinguish shrublands and wetlands as well as
the ability to distinguish between shrublands and bare lands, wetlands and croplands,
grasslands needs to be improved in future landcover products.
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Compared with ground surveys, the use of high-resolution images stored in Google
Earth as reference data to evaluate the accuracy of products and datasets is not limited to
the current time period, and it takes much less time to conduct. Thus, these images have
become widely used in studies, and their scientific validity can be guaranteed. There are
limitations in comparing input data and fusion results with statistics. First, the statistics
obtained from the FAO statistical database are national-level statistical data, while sub-
national data are difficult to obtain. Second, the quality of statistical data is affected by
human factors and may be insufficient for use. These are factors that could affect the com-
parison of data sets with statistics [59,60]. Liu et al. proposed the use of planetary boundary
theory and net primary productivity (NPP) data to correct statistics, improving the calcula-
tion method of human appropriation of net primary production (HANPP), and combined
MODIS NPP products with observations and models of physical factors that restrict crop
growth to explore the prevalence of data misreporting, which may provide a method for
the accuracy of statistical data [61].
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Although the spatial resolution of landcover products is constantly improving, data fu-
sion is still recognized as an effective method to improve the quality of landcover informa-
tion. Considering the problems of existing fusion methods, improvements should be made
in several areas in the future. First, when unifying the spatial resolution, attention should
be given to the matching of plot size and product resolution, and appropriate upscal-
ing and downscaling methods should be adopted to reduce information loss. Second,
statistical data can be corrected in certain areas using data such as NPP and night light
remote sensing to avoid false positives during a census. Finally, each fusion method has
its own advantages and disadvantages, and the combined use of multiple methods is,
therefore, the development direction of multi-source land data fusion. The spatial consis-
tency discrimination technology and the improved Dempster-Shafer theory used in this
paper also have some limitations. The application of this method is limited to existing data
sets with similar release time. For other applications such as the production of landcover
products, the method remains to be improved.

5. Conclusions

In this study, we selected the five countries in Central Asia as the research area,
integrated multi-source landcover products, introduced spatial consistency discrimination
and the improved Dempster-Shafer evidence theory, set landcover statistical data as the
baseline conditions, and designed landcover product amendment rules and technical
processes to establish a multi-source landcover fusion and correction method. This was
based on the integration of CCI-LC, CGLS, FROM-GLC, GLCNMO, MCD12Q, GFSAD30,
PALSAR, GSWD, and GHS-BUILT to obtain 300 m resolution landcover data and verify the
accuracy and landcover statistics. The method of spatial consistency discrimination had
the best agreement with statistical data, with an R2 value of 0.99. The improved Dempster-
Shafer evidence theory fusion method had several advantages in location determination
and accuracy improvement, with the accuracy, increased by 4.86% compared to the method
of spatial consistency discrimination. The kappa coefficient increased by 0.07. The fusion
method proposed in this study used Dempster-Shafer evidence theory to resolve the
uncertainty of low consistency areas based on spatial consistency discrimination technology
and also resolved the paradox problem that exists in the Dempster-Shafer evidence theory.
The OA of the fusion result was 85.32%, which was higher than that of the individual
products used in Central Asia, with an average increase of 16.04, and kappa coefficient of
0.80, The consistency with the real surface was better than that of the individual products,
and the consistency of the statistical data and spatial consistency were taken into account.
The fusion process was, therefore, shown to be effective. Cropland, grassland, water,
bare land, and permanent snow and ice all had a high PA of above 80%. Except for forest,
bare land, and wetland, the UA also reached 80% for the different landcover categories.
The fusion method developed in this study can be used for the fusion of multi-source
data. The combination of multiple methods is the development direction of multi-source
landcover data fusion.
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