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Abstract: The availability of an unprecedented amount of open remote sensing data, such as Sentinel-
1 and -2 data within the Copernicus program, has boosted the idea of combining the use of optical and
radar data to improve the accuracy of agricultural applications such as crop classification. Sentinel-
1’s Synthetic Aperture Radar (SAR) provides co- and cross-polarized backscatter, which offers the
opportunity to monitor agricultural crops using radar at high spatial and temporal resolution. In
this study, we assessed the potential of integrating Sentinel-1 information (VV and VH backscatter
and their ratio VH/VV with Sentinel-2A data (NDVI) to perform crop classification and to define
which are the most important input data that provide the most accurate classification results. Further,
we examined the temporal dynamics of remote sensing data for cereal, horticultural, and industrial
crops, perennials, deciduous trees, and legumes. To select the best SAR input feature, we tried two
approaches, one based on classification with only SAR features and one based on integrating SAR
with optical data. In total, nine scenarios were tested. Furthermore, we evaluated the performance of
22 nonparametric classifiers on which most of these algorithms had not been tested before with SAR
data. The results revealed that the best performing scenario was the one integrating VH and VV with
normalized difference vegetation index (NDVI) and cubic support vector machine (SVM) (the kernel
function of the classifier is cubic) as the classifier with the highest accuracy among all those tested.

Keywords: crop classification; Sentinel-1; Sentinel-2; NDVI; SAR; optical

1. Introduction

Thanks to the development of Earth Observation (EO) technologies, remotely sensed
data have become accessible for a broad range of users in both the public and private sector
and cover many important application domains [1], such as protecting fragile ecosystems,
managing climate risks, and enhancing food security [2]. Therefore, data derived from EO
information are becoming indispensable in support of many sectors of society, especially for
agronomic applications. Indeed, remote sensing data derived from EO have already proven
their potential and effectiveness in spatiotemporal vegetation monitoring [3,4]; therefore,
monitoring agricultural resources using remote sensing offers the opportunity to estimate
crop areas [5], predict crop yield [6–8], and evaluate water demand [9,10] and to know the
total surface that is cultivated and the precise distribution of crops [11]. Accordingly, in
order to establish the most effective management strategy and adapt agricultural practices
correspondingly, regular precise information is required to find out variations in the field,
so that policymakers, stakeholders, farmers, and researchers can be informed about the
state of agricultural land. Crop classification is one of the most used methods of information
extraction to manage and plan many agricultural activities.

However, the above-mentioned applications are still mostly based on optical remote
sensing [12]. Commonly, the optical remote sensing methods used to assess crop status
rely on combinations of different bands that are used to build relationships with crop
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biophysical parameters of the canopy [13]. Unfortunately, according to [14], two-thirds
of the EO provided data by optical remote sensing sources are often covered by clouds
throughout the year. Hence, it may be a challenge to overcome weather conditions with
the objective of obtaining an acceptable quality of optical remote sensing data. For this
reason, [12] listed out the advantages that synthetic aperture radar (SAR) data have over
optical data, and it can be resumed into three main characteristics. The first one concerns
the ability of SAR sensors to acquire data independently of the weather condition and
at night [15]. The second important property is the sensitivity of SAR data to canopy
structure [16,17]. The third characteristic concerns the SAR sensitivity to moisture or the
water content of the land surface [18–23]. Nevertheless, dealing with radar data for any
land application is a challenging task and many consideration should be taken into account,
such as removing the speckle noise effect from radar images [24,25], and dealing with
the difficulty in interpreting the information [26] and the distortion caused by changes in
topography [27].

To make the most of the aforementioned advantages of SAR data, several authors
considered using them for phenological monitoring of numerous crop types and had
very promising results. One study [28] found that the synergistic integration of SAR
and optical time series offers an unprecedented opportunity in vegetation phenology
monitoring for mountain agriculture management. The central idea of this work was to
derive the main phenological features from time series of Sentinel-1 and Sentinel-2 images.
Results show that Sentinel-1 cross-polarized VH backscattering coefficients have a strong
vegetation contribution and are well correlated with the normalized difference vegetation
index (NDVI) values retrieved from optical sensors, thus allow the extraction of meadow
phenological phases. Likewise, another study [29] analyzed the temporal trajectory of SAR
and optical remote sensing data for a variety of winter and summer crops widely cultivated
in the world (wheat, rapeseed, maize, soybean, and sunflower). The SAR backscatter and
NDVI temporal profiles of fields with various management practices and environmental
conditions were interpreted physically. Accompanied by some in situ measurements
(Green Area Index (GAI) and fresh biomass) as well as rainfall and temperature data, the
time series of optical NDVI and SAR backscatter (VH, VV, and VH/VV) were analyzed
and physically interpreted. As a result, this study pointed out that dense time series
allowed the capture of short phenological stages and, thus, precise descriptions of various
crop developments.

Therefore, SAR data may offer valuable information that can reinforce optical remote
sensing data and can be especially advantageous to crop classification application. That is
the reason why several classification studies used both SAR and optical remote sensing
products [30–32] in order to assess the potential of their complementary use. For instance,
a study was carried out with the objective of joining the use of Sentinel-1 radar and
Sentinel-2 optical imagery to create a crop map for Belgium [33]. The obtained results
showed that the combination of radar and optical imagery outperformed classification
based on single-sensor inputs. These results were obtained following a methodology that
highlighted the role of each remote sensing component. This procedure relied on the use of
18 incremental classification schemes, and the classification was performed by a random
forest (RF) classifier. Another work [34] used 9 Sentinel-1 SAR images and 11 optical
Landsat-8 images (used as a surrogate for Sentinel-2). Further, classification was done by
the RF classifier and the methodology was set to highlight the impact of SAR image time
series when they were used as a complement to optical imagery. In addition, this work
evaluated the most relevant SAR image features and the use of temporal gap-filling of the
optical image time series. The study presented two main conclusions. First, SAR image
time series allowed significant improvements in the classification process, and second, they
allowed the use of optical data without a gap-filling process, because a methodology was
used to replace the missing values that were eliminated by a cloud screening filter [35].
In agreement with the previous studies, it was revealed in [36] that the synergic use of
Sentinel-1 and Landsat-8 data enhanced the accuracy of classifications compared to those



Remote Sens. 2021, 13, 243 3 of 21

performed with optical or radar images alone. Moreover, the classification in this study
was performed by RF. Furthermore, a series of studies was conducted in [37] to improve
the classification efficiency in cloudy and rainy regions using Sentinel-1 and Landsat-8, but
they built a recurrent neural network (RNN)-based classifier suitable for remote sensing
images on the geo-parcel scale. They succeeded in designing an improved crop planting
structure map in their specific study area.

The current work is based on the results reported in [38], the main objective of
which was to assess the contribution of Sentinel-2A and Landsat-8 information to crop
classification. Moreover, 22 classification algorithms were evaluated to determine which
was the most robust. The use of combined Sentinel-2A and Landsat-8 information did not
contribute much to improve crop classification accuracy compared with using only Sentinel-
2A information. Further, large differences in accuracy were found depending on the
machine learning algorithm that was used, which also depends on the type of information
used. Consequently, the interest of the present work is in integrating multitemporal SAR
data, Sentinel-1, and optical data obtained with Sentinel-2A, together with determining
the best machine learning algorithm to perform accurate crop classification in a semiarid
region. The following are the main objectives:

n Establish a simple and efficient methodology that allows the incorporation of SAR
data with optical data to perform classification over a large area and with a dense
time-series of Sentinel-2 (22 different acquisition date) and Sentinel-1 (39 different
acquisition date) data, so that the phenological temporal dynamics of the studied
crops can be detected completely, with the purpose to provide the maximum amount
of information that allow the differentiation between the crops.

n Select the best SAR feature that allows the best classification results.
n Evaluate the performance of 22 nonparametric classifiers that were tested in our

previous work with only optical data. In this current work we added SAR data to
the optical. The novelty that this paper can bring is that a large number of these
algorithms have not been tested with SAR data, so depending on their performance,
we will assess them and select the best one.

2. Materials and Methods
2.1. Study Area

The study area covers the agricultural fields in the province of Castilla-La Mancha,
southeast Spain (Figure 1). It is located in the south of the north temperate zone, although
it presents a continental nature due to its mean elevation (700 ma.s.l.) and distance from
sea. Farmland is the most common type of land use in the study area The most limiting
factor for farming is the weather. This area is classified as semiarid (aridity index (AI) 0.26).
Annual reference evapotranspiration values (ETo) are from 1165 mm year−1 in the central
area of the aquifer to more than 1300 mm year−1 in the northwest and southeast. Agro-
climatic stations showed precipitation values from 336 to 413 mm year−1 with a maximum
value of 82 mm in summertime. The analysis of thermal characteristics shows variations
from 19.3 to 20.8 ◦C for annual mean daily maximum temperature and from 6.3 to 6.6 ◦C
for annual mean daily minimum temperatures. The proposed methodology was carried
out in area spread over a surface equal to 7200 km2. This extension can be considered
a wide area that can provide trustful results compared with other studies performed in
smaller areas [39–43].
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Figure 1. Locations of the reference data.

2.2. Sentinel-1 and -2 Datasets
2.2.1. Sentinel-2A Dataset

Sentinel-2A products were acquired in 22 different occasion (Figure 2) during the
period March–October 2016. For each acquisition date we downloaded three different
Sentinel-2A tiles SXJ, SWJ and SWH (Figure 3) to cover the whole study area. The Sentinel-
2A products were downloaded from the European Space Agency (ESA) Copernicus Open
Access Hub subsequently were atmospherically corrected using Sen2cor algorithm imple-
mented in the Sentinel Application Platform (SNAP).Then, our selected vegetation Index
VI was the normalized difference vegetation index NDVI, because it is the most widespread
used VI in the literature and very accurate in the monitoring of the crop phenology. NDVI
at the bottom of the atmosphere (NDVIBOA) was calculated as the following equation:

NDVIBOA =
Band 8− Band 4
Band 8 + Band 4

(1)
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Figure 3. A zoomed normalized difference vegetation index (NDVI) scene composed by three
Sentinel-2A tiles SXJ, SWJ, and SWH (obtained in 2016.03.05) over the study area.

2.2.2. Sentinel-1A Dataset

A total of 39 Sentinel-1 images were acquired between March and October 2016
(Figure 2). The Sentinel-1 dataset comprises Level-1 Ground Range Detected (GRD) data
in Interferometric Wide (IW) swath mode that was projected to ground range using the
WGS84 Earth ellipsoid model. The resulting images in dual polarization (VH and VV)
had dimensions of 270 × 270 km, resolution of 10 m, and temporal resolution of 6 to
12 days. (Images were downloaded from https://earthdata.nasa.gov/eosdis/daacs/asf.)
All images were processed by SNAP using the Sentinel-1 toolbox.

For all Sentinel-1 images, the study site was imaged with an incidence angle (θ) in
range of 35◦ to 41◦. According to [29], incidence angles between 38◦ and 41◦ are appropriate
for crop parameter retrieval, because angles 35–40◦ increase the path length through vegeta-
tion and maximize the vegetation scattering contribution [44], while steep incidence angles
<30◦ reduce the vegetation attenuation and maximize the ground scattering contribution.
In order to obtain Sentinel-1 images useful for the classification process, a series of steps
must be taken:

1. Orbit correction: This first correction is applied in the case where the orbit state
vector is not accurate. Performing this correction allows the automatic download and
update of the orbit state vectors, providing an accurate satellite position and velocity
information [45].

2. Radiometric calibration: The purpose of radiometric calibration is to convert the digi-
tal number DN values of Sentinel-1 images into backscattering coefficients (σ◦) [46].
Radiometric calibration was applied according to the following equation [47]:

value(i) =

∣∣∣DN2
i + b

∣∣∣
Ai

(2)

where Ai i is the sigmaNought(i), calibration vector (i), and b is a constant offset [47].
3. Speckle filtering: Speckle is random “salt-and-pepper” noise that deteriorates the

image quality [48] and affects the understanding of backscatter responses from surface
features. The refined Lee filter [49] was applied to attenuate the speckle effect.

4. Geometric correction: Topographic variations of scenes and the inclination of the
radar sensor generate distortions in the image. Therefore, performing geometric
correction can mitigate the distortion effect [46]. Range Doppler terrain correction,
through SNAP, was applied for this correction.

https://earthdata.nasa.gov/eosdis/daacs/asf
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5. Conversion to decibel units: The backscatter coefficient σ0, which is on a linear scale,
is converted to the decibel (db) scale, σ0(db) = 10 log10 σ0, where σ0(db) represents
the backscatter coefficient value in decibels.

The mean backscattering coefficient was calculated from the processed Sentinel-1
images by averaging the σ◦ values of all pixels at the level of each reference crop.

2.3. Overview of the Methodology

As mentioned in the Introduction, the objective of this study is to evaluate the ef-
fectiveness of incorporating Sentinel-1 data with Sentinel-2A optical remote sensing data
for crop classification. Further, it was reported that the main methodology line of this
work is based on [38], except that in that work the optical sources of information were
Sentinel-2A and Landsat-8; in the present work we used only Sentinel-2A data, because
it was concluded that integrating Landsat-8 with Sentinel-2A did not bring important
improvements compared to using only Sentinel-2A data in the classification. Additionally,
we evaluated the performance of the 22 nonparametric classifiers by integrating SAR data,
because the type of data determines the selection of the best algorithm. We applied the
developed methodology to the exact same case study in order to eliminate any bias in
the analysis of the contribution of SAR data to classification with only optical data. The
adapted methodology was as follows (Figure 4).Remote Sens. 2021, 13, 243 7 of 23 
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2.3.1. Data Collection

We obtained optical and SAR data from March to October 2016. Concerning reference
data, they were obtained from the field visits performed by the Confederación Hidrográfica
del Júcar, Spain (www.chj.es) during the irrigation season of 2016. They visited 6341 plots
that covered 28, 963 ha. In our previous work [38] we used only plots with an area larger
than 1 ha because we used Landsat 8 and Sentinel-2A data, and given that Landsat 8 have
a spatial resolution equal to 30 m so we performed a spatial analysis to select the reference
plots. This spatial analysis consisted in eliminating plots with a size area less than 1 ha, to
ensure that there was a sufficient number of pixels inside each plot (3pixels×3 pixels for
Landsat-8). To select reference data with pixels that were completely inside the plot, also
to avoid a border effect, a buffer of 30 m inside the plot was implemented. Consequently,
the number of used plots was reduced to 3111 (24,208 ha), and given that we want to
compare the classification results of the previous work with the results of the actual work
we decided to preserve our previous reference data selection.

According to the climatic condition of the study area, we can found four groups of
crops with different culture systems: (1) cold weather crops that are sown in the autumn
or early winter and are harvested at the end of spring or at the beginning of summer;
(2) warm season crops for which the growing cycle develops in the summer; (3) rain-fed
crops that are limited by the rainfall regimes; and (4) irrigated crops. For example, a crop
distribution in 2012 included 14.2% wheat, 14.0% barley, 7.1% maize, 5.8% woody crops,
5.6% opium, 4.9% garlic, 4.4% alfalfa, 3.9% onion, garlic, pea, double crops, and other
vegetables. Therefore, basing on the main crop distribution in the area, the following
land cover class were selected: cereals (barley C1, maize C2, and wheat C3), horticultural
crops (onion C4, purple garlic C5, and white garlic C6), industrial crops (poppy C7 and
sunflower C8), perennials (alfalfa C9), deciduous trees (almond C10 and grapevines C11),
and legumes (peas C12).

2.3.2. Data Preparation

Once the SAR data were acquired, they had to be preprocessed in order to extract
useful information for the classification process (more details are given in the Sentinel-1
preprocessing section). Prior to the preprocessing process, we extracted three features from
the Sentinel-1 dataset: VH, VV, and the VH/VV ratio. We computed the mean of these
features at the level of plot (plot-based approach) for each available date of Sentinel-1 time
series. Concerning the optical data, the selected vegetation index NDVI was calculated
also at the level of each reference plot.

2.3.3. Classification Process

Given that one of the critical issues in using SAR time series is the choice of features
used for classification, we decided to evaluate all selected SAR features from the previous
step over two approaches. In the first approach, each feature was in a separate scenario,
with the purpose of studying the classification results with only SAR data and comparing
them with the results using optical data. The second approach was about combining these
features with the NDVI. Nine classification scenarios based on the selected input feature
were then applied for all available dates from March to October.

It is important to mention that the first scenario is considered the reference scenario. It
had NDVI (calculated from Sentinel-2A bands) as an input feature. This decision was made
because we wanted to compare it with the results of classification performed entirely with
SAR data and detect the added value that SAR features can bring to classical classification
methodology (which is based on only optical data).

First approach: classification with only SAR data. The scenarios of the first approach
are in Table 1.

www.chj.es
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Table 1. Input data of the scenarios of the first approach.

Scenario Input Data

Second scenario only VV channel
Third scenario only VH channel

Fourth scenario only VH/VV

Second approach: classification with SAR and optical data. The scenarios of the second
approach are in Table 2.

Table 2. Input data of the scenarios of the second approach.

Scenario Input Data

Fifth scenario NDVI and VV channel
Sixth scenario NDVI and VH channel

Seventh scenario NDVI, VV and VH channels.
Eighth scenario NDVI and VH/VV
Ninth scenario NDVI, VV, VH, and VH/VV

As stated above, the 22 nonparametric classifiers evaluated using optical and com-
bined optical and SAR data. The algorithms evaluated are those included in the Clas-
sification Learner application of Matlab® (Table 3). In Table 3 we presented the names
of these classifiers, their abbreviations, and the groups they belong to. We calibrated
and evaluated the performance of these 22 nonparametric algorithms by applying the
aforementioned scenarios.

Table 3. Evaluated classifiers.

Group Abbreviation Method

Decision trees
M1 Complex Tree
M2 Medium Tree
M3 Simple Tree

Discriminant analysis M4 Linear discriminant
M5 Quadratic discriminant

Support Vector Machine (SVM)

M6 Linear SVM
M7 Quadratic SVM
M8 Cubic SVM
M9 Fine Gaussian SVM
M10 Medium Gaussian SVM
M11 Coarse Gaussian SVM

Nearest Neighbour (KNN)

M12 Fine KNN
M13 Medium KNN
M14 Coarse KNN
M15 Cosine KNN
M16 Cubic KNN
M17 Weighted KNN

Ensemble classifiers

M18 Boosted Trees
M19 Bagged Trees
M20 Subspace Discriminant
M21 Subspace KNN
M22 RUS Boost Trees

Decision Trees DT is a non-parametric supervised learning method. DT takes a set of
features as input, and returns an output through a sequence of tests. Trees build the rule
by recursive binary partitioning regions (nodes) that are increasingly homogeneous with
respect to their class variable [50]. DT classifiers create multivariate models based on a
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set of decision rules defined by combinations of features and a set of linear discriminant
functions that are applied at each test node [51].

Discriminant analysis, is also known as the Fisher discriminant, named for its inventor,
Sir R. A. Fisher [52], is a classification method. It assumes that different classes generate
data based on different Gaussian distributions. To train a classifier, the fitting function
estimates the parameters of a Gaussian distribution for each class. To predict the classes of
new data, the trained classifier finds the class with the smallest misclassification cost.

An SVM classifies data by finding the best hyperplane that separates all data points of
one class from those of the other class [53]. The best hyperplane for an SVM means the one
with the largest margin between the two classes. Margin means the maximal width of the
slab parallel to the hyperplane that has no interior data points.

The idea of K-Nearest Neighbors (KNN) is that one uses a large amount of training
data, where each data point is characterized by a set of variables. Theoretically, each point
is plotted in a high-dimensional space, where each axis in the space corresponds to an
individual variable. When a new (test) data point is introduced, the algorithm tries to find
out the K nearest neighbors that are closest. The number K is typically chosen as the square
root of N, the total number of points in the training data set [54]. An ensemble consists of
a set of individually trained classifiers (such as neural networks or decision trees) whose
predictions are combined when classifying to obtain better predictive performance. An
ensemble is itself a supervised learning algorithm, because it can be trained and then
used to make predictions. Many researchers have examined the technique of combining
the predictions of multiple classifiers to produce a single classifier [55]. The resulting
classifier (the ensemble) is generally more accurate than any of the individual classifiers
making up the ensemble. Both theoretical and empirical [56] research has demonstrated
that a good ensemble is one where the individual classifiers in the ensemble are both
accurate and make their errors on different parts of the input space. Two popular methods
for creating accurate ensembles are Bagging [57] and Boosting [58]. Bagging is to have
multiple classifiers trained on different under-sampled subsets and allow these classifiers
to vote on a final decision, contrasting with just using one classifier [57]. The number of
component classifiers of an ensemble has a great impact on the accuracy of prediction.

2.3.4. Quality Assessment

A calibration–validation procedure was implemented. The split in calibration and
validation was as following: 70% of the reference data was dedicated to calibration process
and 30% to the validation process. A confusion matrix of classical performance indicators
of producer’s accuracy (PA), user’s accuracy (UA), and F1 score was generated to carry out
the evaluation.

Producer’s accuracy PA results from dividing the number of correctly classified plots
in each class (on the major diagonal) by the number of reference plots to be of that class (the
column total) [59]. User’s accuracy UA can be simply computed by dividing the number
of correctly classified plots in each class by the total number of plots that were classified for
that class (the total row) [59].

The weighted F1 score statistic was used for classification algorithm selection [60] and
this accuracy metrics was calculated using a Python library called Scikit-Learn. F1 score
was calculated according to the following equation:

F1 score = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) (3)

where Precision gives the measure of correctly predicted class values over the total predicted
class values. Recall is a ratio of correctly predicted class values to the actual class values.

3. Results
3.1. Analysis of Temporal Signatures of Crops

Figures 5 and 6 represent the NDVI profile and temporal signatures of six of the
studied crops for the three backscatter channels (VH, VV, and VH/VV) of descendant
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and ascendant orbits. We decided to comment briefly on the general tendency of the
selected crops.
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and ascendant (asc) orbits are represented in black and blue, respectively.

As a general observation for all crop types, the curves of both ascendant and descen-
dant orbits have the same general tendency.

When considering the maize crop (Figure 5, left column), generally in the study area it
is sown in April and the harvest period can extend from the end of August to the end of
September (Figure 7). From 15 May to the start of July, the VH backscatter and VH/VV
steadily increased. According to [61], this observation can be explained by an increase
in volume scattering when newly formed leaves are unfold, and subsequently by the
accumulation of biomass. VV also rises constantly during the vegetation development
phase. This increase may be due to the augmentation in double bounce scattering [62].
During the ripening phase, from mid-July to the end of September, it can be noticed that
VH/VV, VH, and VV remain stable, indicating that maize reaches its maximum height and
the fruit is in the development phase [61].
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In the case of barley (Figure 5, center column), in this study area it is seeded at the
start of January and harvested at the end of June or beginning of July (Figure 7). It is
important to mention that barley and wheat have very similar growing seasons, phenology,
and crop structure [63]. At the early and late growth stages, when the crop emerges
and after the harvest, the backscatter is essentially determined by the condition of the
soil, but between the start and end of the growth cycle, vegetation scattering becomes
significant and the relationship between radar backscatter and vegetation biophysical
parameters is considerably influenced by the dynamics of the canopy structure, including
orientation, size, and density of the stems, and the dielectric constant of the crop elements,
which depends on the phenological stage [29,64]. Vegetation starts to increase at the
beginning of March, which corresponds to the tillering stage until the beginning of April,
which corresponds to the stem elongation period. So, as consequence of this vegetation
development, VH and VV increase, while from 10 to 15 April, both backscatter signals
decrease due to the rising attenuation from the predominantly vertical structure of the
barley stems [29,63]. At the beginning of May, we again observed an increase in VH and
VV polarization, which is related to the heading stage [65,66], and this can be explained by
the increase in fresh biomass. VH/VV starts to increase at the tillering phase (beginning
of March) and continues to rise during the stem extension phase (corresponding to the
period 20 March to 10 April). Further, a decrease is noticed from 10 April until the start of
May, related with VH and VV to the vertically rising structure of the crop, as commented
previously. Around the start of May, the VH/VV ratio starts to increase again, indicating
the start of the heading and flowering phase. As heading takes place, the flag leaves become
less dominant within the canopy, and as a consequence, the crop develops a more open
vertical structure. During the end of the phenological cycle, which starts at the beginning of
June, VH/VV, VV, and VH are characterized by a steady decrease because the canopy dries
out, which generates higher penetration of the backscattering signal [62], and increases the
influence of the soil.

Looking at the grapevines (Figure 5, right column), observing the VV and VH curves,
we can detect the start of vegetative development between the end of April and the start of
May coinciding with the increase of VH. However, we cannot detect any other important
indicator marking the transition between phenological stages. Generally the backscatter
VV, VH, and especially VH/VV, did not show a clear increasing or decreasing pattern,
because in the case of woody crops, there is a predominance of soil backscatter due to the
open spaces between vine trees [67].

Purple garlic in our study area is planted in January and harvested in mid-June
(Figure 7). According to the left column of Figure 6, the NDVI and VH/VV are similarly
sensitive to garlic phenology. The NDVI and VH/VV increase in the same way until the
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harvest, and after that, they decrease. Generally, VV and VH behave mostly the same, and
this observation can be explained by the fact that the garlic crop does not totally cover the
soil even at its maximum phenological development. So, it seems that the effect of ground
scattering is not attenuated during the entire crop cycle.

Poppy is cultivated from mid-January to the start of July (Figure 7). It can be seen
that the general tendency of VH/VV corresponds to the NDVI behavior (Figure 6, center
column). VH starts to increase at the beginning of April, decreases slightly at the beginning
of June and increases again, and then finally decreases by the end of the cycle. Contrary to
VH, VV decreases at the beginning of April until June, and after that it increases slightly
until mid-June, to finally decrease.

Peas are cultivated from the start of January until mid-June (Figure 7). According to
the right-hand column of Figure 6, VH and VV have the same general behavior. They start
to increase from March to April, decrease slightly by mid-April, increase until mid-June,
and finally decrease by the end of the crop cycle. VH/VV is relatively more stable than VH
and VV, but distinguishing the important phase of the cycle during the study period can be
easily done.

3.2. Evaluation of Classification Methods with Only SAR Data

The results of the classification scenarios using only Sentinel-1 information were
obtained for the evaluated classification methods and are shown in Figure 8. In this section,
we compare the F1 score between the scenarios of the first approach and the reference one
(only Sentinel-2 NDVI). In general, VH/VV underperforms compared with NDVI, VV, and
VH. Regarding SAR derived information, VH in general presents better performance than
VV. Further, when comparing NDVI and VH information, depending on the classification
algorithm, one performs better than the other. Decision tree algorithms perform better
with NDVI values than with SAR derived information. The same conclusions are obtained
with nearest neighbor algorithms. However, the use of support vector machines with VH
information in general improves the results of the classification process, leading to the best
results for the M8 algorithm. Regarding ensemble classifiers, there are different results
depending on the selected algorithm, but the best performing algorithm, M21, slightly
improves the classification performance compared to NDVI. Thus, according to our results,
SAR derived information for classification can outperform optical information if adequate
classification algorithms are selected.
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The classification algorithm that obtained the best F1 score in any scenario is the M21
ensemble classifier of type KNN subspace (Table 4). Using SAR data slightly improves the
classification results (0.87 over 0.88), mainly when VH polarization is utilized. So, it can be
concluded that for M21, crop classification with only optical data or only SAR information
performs similarly. This is relevant because the Sentinel-2A mission started in 2015, while
Sentinel-1 started in 2014. This makes it possible to perform crop classification from earlier
dates, taking advantage of the 10 m resolution of this mission.

Table 4. Best performing algorithms in the first approach for each scenario and their F1 scores.

Scenario Best Algorithms F1 Score

NDVI (first scenario) M17, M21 0.87
VV (second scenario) M10, M21 0.86
VH (third scenario) M8, M21 0.88

VH/VV (fourth scenario) M21 0.83

3.3. Evaluation of Classification Methods with SAR and Optical Data

The results of the classification scenarios incorporating Sentinel-1 and Sentinel-2
information were obtained for the 22 algorithms, as shown in Figure 9. In this section, we
compare the different scenarios of the second approach and the reference one in order to
evaluate the added value that SAR features can bring to classical classification methodology
(based on only optical data).
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When combining NDVI and VV information, we noticed that for the majority of
classifiers this incorporation improved the F1 score results compared to using only NDVI
information, except for M3 and M9. The same observation can be made when comparing
the scenario using NDVI combined with VH with the one using only NDVI information.
Concerning the eighth scenario (VH/VV incorporated with NDVI), for the majority of the
classifiers it presented only a slight improvement in F1 score compared to using only NDVI
information, except for M1 and M2, which had the same F1 score in both scenarios. Further,
the eighth scenario registered the lowest F1 score among all scenarios. Thus, the VH/VV
ratio did not contribute to improving the classification results, and for some classifiers it
deteriorated the accuracy compared to scenarios incorporating VV or VH with NDVI.
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According to our results, it can be inferred that the fifth (NDVI+VV) and sixth
(NDVI+VH) scenarios provided, for almost all classifiers, equal or very similar results.
Thus, VV and VH contribute equally to improving the classification process. Furthermore,
it can be noticed that generally the difference between F1 scores of the fifth (NDVI+VV),
sixth (NDVI+VH), seventh (NDVI+VH+VV), and ninth (NDVI+VH+VV+VH/VV) scenar-
ios is very narrow, but it is important to mention that the majority of classifiers presented
their best F1 score with the seventh scenario. Therefore, we conclude that using the seventh
scenario (NDIV+VV+VH), integrating VH and VV, both, polarization channels with NDVI
may offer the best option to improve classification accuracy.

Regarding the algorithm with the best performance for the crop classification task,
Table 5 shows that when integrating optical and SAR information, the M8 (cubic SVM)
algorithm returns better results than M21. Furthermore, combining optical and SAR
information increases the F1 score from 0.87 to 0.93, highlighting the improvement of crop
classification with the proposed approach. The classification results obtained with the best
classifier M8 when applying the seventh scenario (NDVI+VH+VV) are shown in Figure 10.

Table 5. Best performing algorithms in the second approach for each scenario and their F1 score.

Scenario Best Algorithm F1 Score

NDVI (first scenario) M17, M21 0.87
NDVI+VV (fifth scenario) M8 0.92
NDVI+VH (sixth scenario) M8 0.92

NDVI+VV+VH (seventh scenario) M8 0.93
NDVI+VH/VV (eighth scenario) M7 0.89

NDVI+VV+VH+VH/VV (ninth scenario) M7, M8 0.92
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3.4. Evaluation of Best Method of Crop Classification with First and Seventh Scenarios

The following section provides a demonstration of the confusion matrix of M8, the
best performing classifier, in the seventh scenario (Table 6) and the first one (Table 7) in
order to highlight how the incorporation of VH and VV with NDVI improved UA and PA,
and to evaluate the misclassified cases.

Table 6. Confusion matrix of the best performing classifier, M8, in the best scenario, NDVI+VV+VH (seventh scenario).

Reference Data

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Total UA * Modification of UA (%)

C1 120 0 5 1 0 0 0 2 0 0 0 2 130 92.3 6.1
C2 0 73 0 1 0 0 0 0 0 0 0 0 74 98.6 1.3
C3 5 0 111 0 0 0 0 1 0 0 0 2 119 93.3 11.8
C4 0 0 0 35 0 0 1 0 0 1 0 1 38 92.1 2.6
C5 0 0 0 0 28 1 0 0 0 0 0 0 29 96.6 13.8
C6 0 0 0 0 1 28 0 0 0 0 0 1 30 93.3 0
C7 0 0 0 0 0 0 37 0 0 0 0 1 38 97.4 −2.6
C8 1 0 0 0 0 0 0 8 0 1 2 0 12 66.7 33.4
C9 0 1 4 0 0 0 0 1 38 0 0 0 44 86.4 −4.5

C10 0 0 0 0 0 0 0 0 0 29 2 0 31 93.5 0
C11 0 0 1 1 0 0 0 0 0 2 35 0 39 89.7 2.5
C12 1 0 0 0 0 0 0 0 0 0 0 29 30 96.7 36.7
Total 127 74 121 38 29 29 38 12 38 33 39 36
PA 94.5 98.6 91.7 92.1 96.6 96.6 97.4 66.7 100.0 87.9 89.7 80.6

* Modification of PA (%) 15.1 1.3 5.1 9.2 10.9 0 −2.6 −13.3 2.4 7.3 0.2 22.5

* Modification of user’s accuracy (UA) and producer’s accuracy (PA; %) were calculated with respect to UA and PA of the confusion matrix
of M8 in the first scenario.

Table 7. Confusion matrix of M8 with only NDVI information (first scenario).

Reference Data

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Total UA

C1 112 0 10 0 1 0 0 0 0 0 0 7 130 86.2
C2 0 72 0 2 0 0 0 0 0 0 0 0 74 97.3
C3 18 0 97 0 1 0 0 0 1 0 0 2 119 81.5
C4 0 0 0 34 1 0 0 1 0 0 1 1 38 89.5
C5 1 0 0 0 24 1 0 0 0 0 0 3 29 82.8
C6 1 0 0 0 1 28 0 0 0 0 0 0 30 93.3
C7 0 0 0 0 0 0 38 0 0 0 0 0 38 100.0
C8 1 1 0 3 0 0 0 4 0 2 1 0 12 33.3
C9 1 1 2 0 0 0 0 0 40 0 0 0 44 90.9
C10 0 0 0 0 0 0 0 0 0 29 2 0 31 93.5
C11 1 0 0 0 0 0 0 0 0 4 34 0 39 87.2
C12 6 0 3 2 0 0 0 0 0 1 0 18 30 60.0
Total 141 74 112 41 28 29 38 5 41 36 38 31
PA 79.4 97.3 86.6 82.9 85.7 96.6 100.0 80.0 97.6 80.6 89.5 58.1

Our analysis is based on the distribution of crops into groups according to the im-
provement or deterioration brought by the seventh scenario compared to the first one:

• First group: barley C1, maize C2, wheat C3, onion C4, purple garlic C5, grapevines
C11, and peas C12. For these crops, the seventh scenario improved both UA and PA.

• Second group: sunflower C8. The seventh scenario improved only UA.
• Third group: alfalfa C9, and almond tree C10. The seventh scenario improved only PA.

Analyzing the results of the first group, we noticed that the introduction of VH and
VV significantly improved UA and PA for peas, barley, wheat, and purple garlic. Indeed,
the improvement between the reference and seventh scenarios for UA ranged between
6.1% and 36.7% and for PA ranged between 5.1% and 22.5%.

The second group contained only sunflower C8. UA was improved by 33.4% and PA
decreased to 13.3%. The sunflower also had the lowest PA value with the best performing
classifier because of the small number of visited plots, which led to worse calibration and
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validation of the algorithm, this can be the reason for the obtained result for this specific
crop type.

Focusing on the third group, concerning alfalfa C9, PA was enhanced by 2.4% and UA
deteriorated by 4.5%. Indeed, it was wrongly classified as wheat C3 four times, and one
time each as maize C2 and sunflower C8. All this misclassification may be explained by the
fact that these crops have coinciding phenological phases. In the case of permanent crops,
almond tree C10 the classification results were good although that permanent crops have
special temporal signatures because they are predominated essentially by soil backscatter
due to the open spaces between trees.

4. Discussion

In this current work, we assessed the potential of integrating Sentinel-1 information
(VV and VH backscatter and their ratio VH/VV) with Sentinel-2A data (NDVI) to improve
the crop classification and to define which are the most important input data that provide
the most accurate classification results. Furthermore, we evaluated the performance of
22 nonparametric classifiers on which most of these algorithms had not been tested before
with SAR data.

As a general tendency when using only Sentinel-1 information, the classification
performance of the majority of classifiers achieved very similar accuracy with VH and VV
polarization channels, while classification using the VH/VV ratio as the input obtained
lower accuracy. Similar results were obtained in [36] in which the principal objective was
to evaluate the performance of a supervised crop classification approach based on only
crop temporal signatures obtained from Sentinel-1 time series without optical data.

According to our classification results, the seventh scenario (NDVI+ VH+VV) is consid-
ered the best scenario. Then, the integration of both polarization channel VH and VV with
NDVI has improved the classification accuracy, and this can be explained by the fact that
radar signals interact differently with land cover components [68], therefore it is important
to choose adequate polarization channels that allow the representation of the most impor-
tant backscatter mechanisms. Indeed, according to [29,69], the VH backscatter is dominated
by the attenuated double bounce (when targets and ground surface are perpendicular, they
can act as corner reflectors, providing a “double-bounce” scattering effect that sends the
radar signals back in the direction they came from) and volume scattering mechanisms
(volume scattering occurs when the radar signal is subjected to multiple reflections within
three-dimensional matter; at the shorter C-band wavelength, it can take place within the
canopy of lower or sparse vegetation types), while the VV backscatter is dominated by
direct contributions from the ground and the canopy. Consequently, the integration of
both VH and VV allowed the capture of all the important backscatter mechanisms during
the phenological cycle of the observed crops. However, looking in the literature, we did
not find a consensus about the most pertinent features derived from SAR imagery. In [34]
it was found that Haralick texture features (entropy and inertia), the VH/VV ratio, and
the local mean together with the VV imagery contain most of the information needed for
accurate classification. However, in [36] it was found that the most important features in
the classification scheme are VH/VV and Haralick texture. Another study [33] did not find
any clear difference in importance between the two polarization channels (VV and VH).

As mentioned previously in the results section, all the results of the tested scenarios
in the second approach (when integrating optical and SAR information) show that M8
(cubic SVM) was the best performing classifier and showed better results than M21.In [38]
it was concluded that M21 provided the best classification result using optical data (NDVI
derived from Sentinel-2 and Landsat-8), and in the present work this classifier showed slight
improvement with the seventh scenario, rising from 0.87 to 0.90. Therefore, incorporating
SAR information (VV and VH polarization) can only improve the performance of the
classifiers; with a non-robust classifier (M4) it generates important improvements and with
a robust classifier (M21 and M12) it generates slight improvements. However, even with
the best scenario, we notice that M9 and M10presented the worst results. M9 presented an
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F1 score of 0.35 in all scenarios, but a relatively high F1 score of 0.77 in the first scenario
(only NDVI). Based on this observation, we can conclude that probably the M9 classifier,
medium Gaussian SVM, is not adequate for classification with SAR data. This conclusion
can also be applied to M3.

Additionally, this study compared the performance of the best classifier M8 with the
reference (only NDVI as input) and Seventh (NDVI+VH+VV) Scenarios. This comparison
revealed that the introduction of VH and VV significantly improved both UA and PA
for peas, barley, maize, wheat, and purple and white garlic. Indeed, the improvement
between the reference and seventh scenarios for UA ranged between 5.9% and 23.4% and
for PA ranged between 7.3% and 12.3%. The resulting enhancement was noted especially
for cereals (barley and wheat). This observation can be explained by the fact that cereals
have a quite distinctive temporal signature, as found in [67], and as shown in Figure 4.
Furthermore, the presence of more clouds in spring could lead to SAR supplying more
information for classification. Corn C2 achieved good classification results; both UA and PA
were slightly improved despite the temporal signature of VV and VH being distinguished
from other crops. In fact, the patterns of VV and VH of corn in our study area were very
similar to the pattern described in [70]: VH increased because of volume scattering during
the vegetative period until reaching the maximum height, and after that stayed constant,
and the VV curve has the general tendency of VH, but its main characteristic is that it is
rather higher than the other VV crop curves. Moreover, for peas C12, the improvement of
UA and PA in the seventh scenario were very notable, actually they increased by 23.4%
and 9.6%, respectively. This may be due to the volume backscatter produced by the
heterogeneous shrub-like structure of legume canopies as found in [66].

5. Conclusions

In this paper, we evaluated the performance of 22 nonparametric classifiers with SAR
Sentinel-1 and optical Sentinel-2A data employing a simple and efficient methodology that
allows the incorporation of dense time-series of datasets (22 Sentinel-2A and 39 Sentinel-1
different acquisition date), so that the phenological temporal dynamics of the studied crops
can be completely detected. The simple methodology consisted in computing the mean of
the optical feature (NDVI) and SAR feature (VV, VH and VH\VV) at plot level (plot-based
approach) for each available date without recourse to the calculation of other feature like
Haralick texture features (entropy and inertia). Nine classification scenarios based on the
selection of input features were then applied.

The results of the first approach based on the use of only SAR data as the input feature
revealed two important conclusions. The First one is that classification results, in general,
presented better performance with VH than with VV or with VH\VV. The second one is
that SAR-derived information VH can outperform optical information NDVI if adequate
classification algorithms are selected (the case of M5, M7, M8, M10, M12, M20, and M21).

The results of the second approach, which is based on integrating SAR with opti-
cal data, showed that the best tested scenario was the integration of VH and VV with
NDVI. Consequently, we recommend the use of both VH and VV as input features to
take advantage of the different information that these two polarization channels can pro-
vide. Concerning the tested classifiers, we found that the best performing one was cubic
support vector machine SVM (F1 score = 0.93); indeed, with this classifier the F1 score
was improved by 6% compared to the results provided by the best performing classifier
M21 (F1 score = 0.87) in the reference scenario (the first one). Furthermore, we concluded
that some classifiers (M3 and M9) are not adequate to deal with SAR data, except these
two classifiers, incorporating SAR information (VV and VH polarization) can only im-
prove the performance of the classifiers; with a non-robust classifier (for example M4)
generated important improvements and with a robust classifier (M21 and M12) generated
slight improvements.
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