
remote sensing  

Article

Benefits of Combining ALOS/PALSAR-2 and Sentinel-2A Data
in the Classification of Land Cover Classes in the Santa Catarina
Southern Plateau

Jessica da Silva Costa 1,2 , Veraldo Liesenberg 1 , Marcos Benedito Schimalski 1 , Raquel Valério de Sousa 2,
Leonardo Josoé Biffi 2 , Alessandra Rodrigues Gomes 3, Sílvio Luís Rafaeli Neto 2 , Edson Mitishita 4 and
Polyanna da Conceição Bispo 5,*

����������
�������

Citation: Costa, J.d.S.; Liesenberg, V.;

Schimalski, M.B.; Sousa, R.V.d.; Biffi,

L.J.; Gomes, A.R.; Neto, S.L.R.;

Mitishita, E.; Bispo, P.d.C. Benefits of

Combining ALOS/PALSAR-2 and

Sentinel-2A Data in the Classification

of Land Cover Classes in the Santa

Catarina Southern Plateau. Remote

Sens. 2021, 13, 229. https://doi.org/

10.3390/rs13020229

Received: 1 December 2020

Accepted: 5 January 2021

Published: 11 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Forest Engineering, College of Agriculture and Veterinary, Santa Catarina State
University (UDESC), Avenida Luiz de Camões 2090, Lages SC 88520-000, Brazil;
jessica.costa@edu.udesc.br (J.d.S.C.); veraldo.liesenberg@udesc.br (V.L.); marcos.schimalski@udesc.br (M.B.S.)

2 Department of Environmental and Sanitation Engineering, College of Agriculture and Veterinary, Santa
Catarina State University (UDESC), Avenida Luiz de Camões 2090, Lages SC 88520-000, Brazil;
raquel.sousa@udesc.br (R.V.d.S.); leonardo.biffi@udesc.br (L.J.B.); silvio.rafaeli@udesc.br (S.L.R.N.)

3 Amazon Regional Center, Brazilian National Institute for Space Research (INPE), Avenida Perimetral 2651,
Belem PA 66077-830, Brazil; alessandra.gomes@inpe.br

4 Graduate Program in Geodetic Sciences, Federal University of Paraná (UFPR), Avenida Coronel Francisco
Heráclito dos Santos 210, Curitiba PR 81531-990, Brazil; mitishita@ufpr.br

5 Department of Geography, School of Environment, Education and Development, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

* Correspondence: polyanna.bispo@manchester.ac.uk

Abstract: The Santa Catarina Southern Plateau is located in Southern Brazil and is a region that
has gained considerable attention due to the rapid conversion of the typical landscape of natural
grasslands and wetlands into agriculture, reforestation, pasture, and more recently, wind farms.
This study’s main goal was to characterize the polarimetric attributes of the experimental quad-
polarization acquisition mode of the Advanced Land Observing Satellite/Phased Array type L-band
Synthetic Aperture Radar (ALOS/PALSAR-2) for mapping seven land cover classes. The polarimetric
attributes were evaluated alone and combined with SENTINEL-2A using a supervised classification
method based on the Support Vector Machine (SVM) algorithm. The results showed that the intensity
backscattering alone reached an overall classification accuracy of 37.48% and a Kappa index of 0.26.
Interestingly, the addition of polarimetric features increased to 71.35% and 0.66, respectively. It
shows that the use of polarimetric decomposition features was relatively efficient in discriminating
land cover classes. SENTINEL-2A data alone performed better and achieved a weighted overall
accuracy and Kappa index of 85.56% and 0.82. This increase was also significant for the Z-test.
However, the addition of ALOS/PALSAR-2 derived features to SENTINEL-2A slightly improved
accuracy and was marginally significant at a 95% confidence level only when all features were
considered. Possible implications for that performance are the accumulated precipitation prior
to SAR data acquisition, which coincides with the rainy season period. The experimental quad-
polarization mode of ALOS/PALSAR- 2 shall be evaluated in the near future over different seasonal
conditions to confirm results. Alternatively, further studies are then suggested by focusing on
additional features derived from SAR data such as texture and interferometric coherence to increase
classification accuracy. These measures would be an interesting data source for monitoring specific
land cover classes such as the threatened grasslands and wetlands during periods of frequent cloud
coverage. Future investigations could also address multitemporal approaches employing either
single or multifrequency SAR.

Keywords: SAR mapping; data fusion; polarimetric attributes; mapping purpose; supervised classifi-
cation; classification accuracy; Coxilha Rica; Southern Brazil
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1. Introduction

Optical orbital sensor systems, such as those in the Landsat series, are generally used
in mapping land use and land cover (LULC). However, the frequent cloud cover in tropical
regions ends up restricting the acquisition of information based on the exclusive use of
these sensors. Nonetheless, the use of a radar system becomes a viable alternative to this
limitation due to the ability to collect data in almost all climatic conditions [1–4].

Unlike sensors that record electromagnetic radiation reflected or emitted by objects
in the optical range of the electromagnetic spectrum, synthetic aperture radar (SAR) op-
erates in the microwave range. Radars are active sensors; that is, they do not depend
on solar energy and can operate day and night with the transmission and reception of
electromagnetic radiation in this spectral range. Depending on the selected frequency and
the polarization mode used, the information collected can reveal geometric properties of
soils and plant canopies [5–7]. Single and double polarization modes are the most common
acquisition modes. The full data acquisition mode, with four polarizations, also known as
quad-polarization, is still experimental.

Polarimetry records the amplitude and phase information that allows inferring about
the geometric and dielectric properties that can be useful in characterizing tropical en-
vironments. Techniques for decomposing polarimetric data can reveal backscattering
mechanisms that occur during SAR data acquisition. Therefore, they reveal geometrical
properties whose information can serve as additional information in land cover mappings
reported in different studies [3,8–13].

SAR data has been widely used in land cover mapping initiatives, including the study
conducted by Freitas, Sano, Souza [14]. These researchers analyzed ALOS/PALSAR images
(L band, HH, HV, and VV polarizations) to discriminate different land cover classes in the
middle Taquari region, in the municipality of Corumbá (Mato Grosso do Sul State). The
study conducted by Camargo et al. [10] evaluated the use of ALOS/PALSAR-2 images in
mapping classes of land use and land cover in the Cerrado biome. More recently, in the
study led by Wiederkehr et al. [11,15], who analyzed the potential of attributes derived
from intensity backscattering coefficients and target decomposition techniques from the
ALOS/PALSAR-2 full polarimetric data for the discrimination of land cover classes in the
region of Tapajós National Forest (Eastern Amazon, Brazil).

The biggest problem related to using and exclusively analyzing the SAR images is the
complex interpretation inherent to this type of data [16–18]. It is difficult to understand the
interaction that effectively occurs between the radiation emitted by the SAR sensor and the
target due to the frequent unavailability of reliable data on the dielectric and geometric
conditions of the soils and vegetation at the moment the sensor system passes. SAR signals
are also dependent on imaging parameters related to wavelength, incidence angle, and
polarization mode [18].

Thus, using a single type of sensor (optical or SAR) does not provide enough infor-
mation about the phenomena and/or objects under study. Optical data is related to the
chemical, physical, and biological characteristics of targets. In contrast, SAR data is associ-
ated with shape, texture, structure, and dielectric properties. Thus, the combined use of
both optical and SAR data can result in improvements in classifying the land cover in com-
plex environments [2,3,19,20]. Such studies were carried out by, Pavanelli et al. [3], Souza
Mendes et al. [4], Pereira et al. [20], and Liesenberg et al. [21]. All these initiatives were
developed to analyze the ability to integrate SAR data with optical data in the classification
of the land use and land cover classes in the Amazon biome (Brazil).

Interestingly, almost all of the studies mentioned above are carried out inside the Brazilian
Amazon region, where several quad-polarization acquisition modes from ALOS/PALSAR-2
scenes are also available. As a result, studies aiming to use this data in the country’s
southern region are still incipient, more precisely in the Santa Catarina Southern Plateau.
This region is inserted in the “Coxilha Rica” region, which presents the largest remnant area
of natural grasslands in Southern Brazil. It consists of shrubby wetlands and preserved
araucaria forests remnants of the State of Santa Catarina. It also has a historical and
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cultural significance as part of “The Merchants’ Road”, a route used by “tropeiros” in
the 18th century to transport cattle from Rio Grande do Sul to Sao Paulo (Southeastern
Brazil). This activity was responsible for developing the region’s trade and economy.
Still, it is a region with great cloud coverage incidence that hinders mapping initiatives
based purely on optical images, highlighting the need to develop studies to carry out
mappings of this region’s land cover. Thus, the hypothesis is formulated that the use
of microwave data would perform similarly to optical images for land cover mapping
initiatives. However, their combined use allows even better land cover classes and benefits
land cover mapping initiatives.

In this context, the objective of this study is to extract polarimetric attributes from
data acquired in the experimental “full” polarimetric mode of ALOS/PALSAR-2 and its
potential and combined with optical data from the SENTINEL-2A sensor for mapping
purposes at higher southern latitudes in Southern Brazil.

2. Materials and Methods
2.1. Study Area Description

The study area covers the Santa Catarina Southern Plateau, and it is located at longi-
tude 50◦7′36.34” W and latitude 27◦54′12.76” S, covering a territorial area of approximately
3000 km2 (Figure 1). It is a region that has gained considerable attention due to the rapid
conversion of the typical landscape of natural grasslands and wetlands into agriculture,
planted forests, pasture, and, more recently, wind farms for energy production.
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Figure 1. Location of the study area within the national context (a). The letters show the ALOS/PALSAR-2 data (R:HH,
G:HV, B:VV) (b), PlanetScope images (R:3, G:2, B:1) (c), SENTINEL- 2A image (R:4, G:3, B:2) (d) and the SRTM digital
elevation model (e) for the study area.
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The study site is also partly located in “Coxilha Rica” and is part of the southern
portion of the municipality of Lages, corresponding to approximately 43% of the munic-
ipality’s area, comprising a large undulating plateau of native grasslands with typical
wetlands and with remnants of the uneven-aged mixed ombrophilous forests (MOF). MOF
is one of the Atlantic Forest Biome’s most characteristic formations in which Araucaria
angustifolia (Bertol.) Kuntze is the dominant tree species. Still, the region is characterized by
the development of livestock activities, such as extensive cattle farming practiced in native
grasslands with several grass species [22,23]. The region has an average altitude of 740 m
above sea level and a climate classified as Cfb (subtropical temperate), with an average
temperature of 16 ◦C [24]. According to the mapping of Brazil’s vegetation, produced
by IBGE [25] at a scale of 1:5,000,000, the study region has a natural vegetation cover of
MOF (Araucaria Forest) and Native grasslands (Southern Brazilian Grasslands). Landscape
perspectives of the study area and containing different land cover classes are shown in
Figure A1 (Appendix A).

2.2. Remote Sensing Datasets

This study used radar data from the Advanced Land Observing Satellite (ALOS-2)
of the Phased-Array L-Band Synthetic Aperture Radar (PALSAR-2) sensor developed
by the Japanese Space Agency (Japan Aerospace Exploration Agency—JAXA) (Table
1a; Figure 1b). To interpret the existing features and sample collection, images of the
constellation PlanetScope acquired on the same date and covering more than 95% of the
study area (Table 1b; Figure 1c) were used. Both PALSAR-2 and PlanetScope were acquired
on February 23, 2018. A clear sky image from the SENTINEL-2A sensor (Table 1c; Figure
1d) with an imaging date of June 09, 2018, was also used. It shows few changes in land
cover compared to the image of the same sensor of February 23, 2018, thus facilitating its
visual interpretation and selecting both training and validation datasets for the statistical
assessment and classification procedures. The Digital Elevation Model (DEM) from the
Shuttle Radar Topography Mission (SRTM) is shown in Figure 1e.

Table 1. Characteristics of ALOS/PALSAR-2 (a), PlanetScope (b) e SENTINEL-2A (c) sensors.

(a) ALOS/PALSAR-2

Acquisition Date 02/23/2018 (experimental mode)
Wavelength (approx. 23 cm) L band

Operating mode Full Polarimetric (PLR)
Polarizations Quad-pol (HH, VV, HV, VH)

Orbit Ascending
Pixel spacing 2.79 m (range) × 2.86 m (azimuth)

Angle of incidence 33.2◦

Final spatial resolution 20 m in range × 20 m in azimuth
Number of rows and columns 25,960 × 8816

(b) PlanetScope

Acquisition Date 02/23/2018
Central wavelength (nm) VIS: 485, 545, 630 nm.Near-infrared(NIR): 820 nm

Spatial resolution (m) ~3.0
Radiometric resolution (bits) 12

Temporal resolution Daily

(c) SENTINEL-2A

Acquisition Date 06/09/2018

Central Wavelength (nm)/Spatial
Resolution

10 m: VIS (B2: 492.4, B3: 559.8, B4: 664.6), NIR (B8: 832.8)
20 m: red-edge (B5: 704.1, B6: 740.5, B7: 782.8), NIR

(B8A: 864.7), shortwave-infrared (SWIR) (B11: 1613.7,
B12: 2202.4)

Radiometric resolution (bits) 12
Temporal resolution 10 days
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It is noteworthy that in the seven days preceding the acquisition dates of the ALOS/
PALSAR-2 and SENTINEL-2A images, 14.30 mm and 21.5 mm of accumulated precipitation
were recorded, according to the rain data recorded in the Coxilha Rica pluviometric
station (code 2850004) [26]. The characteristics of the aforementioned sensors are shown in
Table 1, respectively.

2.3. Image Processing

In this work, several processing steps were performed, such as the extraction of po-
larimetric attributes, the analysis of the selected land cover classes’ spectral characteristics,
and the classification outcomes of different data input models. All the steps are shown in
Figure 2 and are further detailed in the forthcoming subsections.
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2.3.1. ALOS/PALSAR-2 Data Processing

The processing steps of the ALOS/PALSAR-2 full experimental images, acquired at
the slant range processing level (level 1.1), included: (1) multi-look processing to obtain
data in resolution elements and compatibility with the other stages; (2) application of the
filter to minimize the speckle effect; (3) calculation of polarimetric decompositions; and (4)
geocoding for orthorectification of the data and insert cartographic information.

From the single look complex (SLC) HH, HV, VV, and VH polarization images, the
elements of the scattering matrix [S] were calculated to perform the calculation of the
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covariance [C] and coherence [T] matrices [27,28]. In this step, the images were processed
in multi-look mode, using seven looks in the range direction and four looks in the azimuth
direction. The images’ resolution elements of 2.79 m × 2.86 m (range × azimuth) were
resampled in pixels of approximately 20 × 20 m (range × azimuth). This procedure is
justified to make both SAR and SENTINEL-2A data compatible. In this way, ground range
images were generated for the four polarizations analyzed.

The Refined Lee polarimetric filter was applied to matrices [C] and [T] with a 5 × 5
pixel size window, preserving the edges between objects and at the same time smoothing
the speckle effect in homogeneous regions [29]. The window size selection was based on
both visual interpretation and the speckle suppression index [30]. Thus, this polarimetric
filter with this window size was also chosen because it presents good results, according to
the reported studies by Mendes et al. [4] when working on the transitional area between
Savanna and the Amazon forest, and Mishra et al. [31] by investigating a complex rural
and urban area environment in India. After, the Freeman-Durden polarimetric decom-
position was calculated from the matrix [C]. The Cloude-Pottier and Touzi polarimetric
decompositions were then computed using matrix [T] [8]. In the three decompositions,
a 5 × 5 pixel spatial average window was used. These steps were performed using the
computer application PolSARpro 6.0® [32].

The subsequent processing consisted of performing Range-Doppler terrain correction
to transform the slant range images into ground range and geocoding them. In this
way, the DEM from the SRTM was selected. Then the spatial frequency filtering was
applied to the digital model, using the 9 × 9 low-pass convolution filter. This filter is
responsible for emphasizing the low frequencies of the image at the expense of reducing
the high frequencies, being a smoothing filter for attenuating the edges’ regions and
fine details, such as noise, corresponding to the high-frequency components [33]. The
conversion of the geographic coordinate system to the Universal Transverse Mercator
(UTM) plane coordinate system of the World Geodetic System 1984 (WGS-84) datum from
the DEM mentioned above was carried out and scaled to 20 × 20 m. It was then used
as auxiliary information coupled with 12 ground control points (GPC) distributed over
certain geomorphological features captured from high spatial resolution images. The
main objective was to the geocode ALOS/PALSAR-2 data and maintaining compatibility
with other data sources. A cross-check of the spatial agreement among datasets was then
performed using the geocoded ALOS/PALSAR-2 with the two other optical data sources
(SENTINEL-2A and PlanetScope). Such evaluation was conducted between datasets using
some artificial structures such as roads and geomorphological features such as water
streams and elevations.

2.3.2. SENTINEL-2A and PlanetScope Processing Steps

In the SENTINEL-2A image processing stage, atmospheric correction of the images
was performed to obtain reflectance data at the bottom of the atmosphere (BOA). The
image at level 1C contains reflectance data calculated at the top of the atmosphere (TOA).
The spectral images were then converted from digital numbers (DN) into TOA reflectance
by dividing by the 10,000-scale factor. Subsequently, the atmospheric correction was
performed using the Sen2Cor algorithm [34]. Then, all spectral bands were resampled to
the spatial resolution of 20 m to better fit with the ALOS/PALSAR-2 data.

PlanetScope image was used to support the visual analysis of the ALOS/PALSAR-2
data and aid in the collection of both training and validation datasets. The PlanetScope
image was converted from digital numbers (DN) into TOA reflectance. The image was
already orthorectified and referred to the UTM cartographic projection. The atmospheric
effect was minimized using the Fast Line-of-sight Atmospheric Analysis of Spectral Hy-
percubes (FLAASH) algorithm. The visual analysis showed that the displacement among
datasets was imperceptible, and, therefore, no co-registration through manual operation to
prevent misleading of subsequent analysis was necessary.
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2.4. Selection of the Training and Validation Datasets and the Extraction of Polarimetric Attributes

The SAR features’ discrimination potential, such as intensity backscattering coeffi-
cients and polarimetric decompositions, presented in Table 2, was analyzed for seven major
land cover classes. Table 3 shows a description of these land cover classes and their visual
aspect in each remote sensing dataset.

A total of 600 pixels were selected for each land cover class over the ALOS/PALSAR-2
with the aid of the PlanetScope image acquired on the same date. Special attention was
given to the spatial distribution of these points to avoid autocorrelation. The dataset was
then divided using the random criteria into two parts, i.e., 496 pixels for training and 104
pixels for validation. Since all images were well registered to each other, the pixels have
approximately similar locations in each dataset for each land cover class.

The validation dataset was used to evaluate the potential for discrimination through
visual analysis of boxplot graphics, generated in the computer application RStudio® [35],
using non-parametric descriptive statistics, containing minimum, maximum, first and
third quartile, median, and outliers. The precipitation data for February 2018, from the
COXILHA RICA rain station (code 2850004) located in Lages municipality, provided by the
National Water Agency [26], were used to understand the targets’ polarimetric responses.

2.5. Spectral Characterization of the Selected Land Use Classes Using SENTINEL-2A Image

The spectral profile of the seven land cover classes analyzed in this study (Figure 3)
was obtained from the surface reflectance of ten spectral bands of the SENTINEL-2A sensor
(Table 1c). For this, the corresponding surface reflectance values for each spectral band
were collected and averaged from the validation dataset (104 pixels) extracted with the aid
of PlanetScope images for each land cover class.
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Table 2. Polarimetric attributes derived from backscattering and polarimetric decompositions.

Extracted Attributes Equation Description References

Backscatter coefficient
(σ0

HH , σ0
HV , σ0

VH , σ0
VV)

1
σ0

ij= 10
σ0

ij(dB)
10 , where

σ0
ij(dB)= 10 log10

(
I2+Q2

)
+Fc−A

Indicates the orientation of the
forest components. [36,37]

Relation of
Co-Polarization Rco =

σ0
VV

σ0
HH

Highlights different vertical and
horizontal orientations derived
from the structural aspects of

vegetation.

[36]
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Table 2. Cont.

Extracted Attributes Equation Description References

Cross Polarization Ratio Rcross =
σ0

HV
σ0

HH

Sensitive to the volumetric
dispersion of the forest to support

classification and reduce
topographic effects in

backscattering.

[36]

Radar Forest
Degradation

Index
RFDI =σ0

HH−σ0
HV

σ0
HH+σ0

HV

Ratio designed to assess the
strength of the double-bounce
mechanism, which is useful for

differentiating vegetation.

[38,39]

Phase Difference 2
∆ϕHH−VV = arg

(
SHHS∗VV

)
∆ϕHH−HV = arg

(
SHHS∗HV

)
∆ϕHV−VV = arg

(
SHVS∗VV

) Indication of the structure and
quantity of biomass [36]

Entropy
H = −

3
∑

i=1
pilog3(pi);

pi = λi

∑3
j=1 λj

Related to the complexity of the
forest structure. The most complex
and diversified forest has high H,

low A, and close to 45◦.

[40]

Anisotropy A =λ2− λ3
λ2+λ3

Alpha Angle α = ∑
i=1

piαi

Contribution of volume
dispersion Pv = 8fv

3

Proportion of volumetric
backscatter associated with the

forest structure and biomass
content. [27]

Double-bounce dispersion Pd = fd(1+ |α|2
) Indication of canopy opening,

density, and number of trees
(trunks).

Surface dispersion Ps = fs(1+|β|2) Related to the canopy opening.

Magnitude of type of
Scattering (αs)

The magnitude is negatively
correlated with biomass, with the

tendency to single-bounce and
various types of scattering. [41]

Phase of
Scattering (φαs )

Essential for an unambiguous
description of the dispersion of the

forest mechanism.

Orientation Angle (Ψ)

Compensate for the fluctuating
influence of randomly oriented

forest dispersal components and the
slope of the land on scatters.

Helicity (τm)
Expresses the symmetry of forest

dispersion, having an inverse
correlation with biomass.

1 Fc = calibration factor (−83); A = conversion factor (32). 2 arg, S, * and () denote argument function, complex dispersion amplitude,
complex conjugate, and spatial mean, respectively.
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Table 3. Description of the seven major land cover classes with detail to specific subsets encompassing the seven major land
use classes for the three selected remote sensing sensors.

Classes Description ALOS/PALSAR-2 SENTINEL-2A PlanetScope

RHHGHVBVV R4G3B2 R3G2B1

Agriculture (AG)
Includes all cultivated
land types (soybean,

corn, beans, etc).
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2.6. Classification Evaluation based on Different Data Input Models

Nine data input models were established from both the ALOS/PALSAR-2 and SENTINEL-
2A (Table 4) in the classification scheme. To perform the classification, 496 and 104 pixels
were collected and used as training and validation samples for each class, respectively.

Table 4. Combinations of nine different data input models.

Model Data Input Feature 1 Number of features

M1 SAR HH, HV, VH, VV 4
M2 SAR M1 + (H, A, α) 7
M3 SAR M2 + (Pv, Pd, Ps) 10
M4 SAR M3 + ( α_s, φ _αs, Ψ,τ_m) 14
M5 SAR M4 + (Rco, Rcroos, RFDI) 17

M6 SAR M5 +
(∆(HH−VV), ∆(HH−HV), ∆(HV−VV)

20

M7 Optical B02, B03, B04, B05, B06, B07, B08, B11, B12,
B8A 10

M8 Optical/SAR M7 + M1 14
M9 Optical/SAR M7 + M6 30

1 HH, HV, VH, VV = Backscatter coefficient; H = Entropy; A = Anisotropy; α = Alpha Angle; Pv = Contribution
of volume dispersion; Pd = Double-bounce dispersion contribution; Ps = Contribution of surface dispersion;
α_s = Magnitude of the type of scattering; φ_αs = Phase of the scattering type; Ψ = Orientation angle; τ_m =
Helicity; Rco = Co-Polarization Ratio; Rcross = Cross Polarization Ratio; RFDI = Radar Forest Degradation Index;
∆(HH−VV), ∆(HH−HV), ∆(HV−VV) = Phase difference; and Bi = spectral bands of the SENTINEL-2A
sensor described in Table 2.

The Support Vector Machine (SVM) classification algorithm was used in this clas-
sification step. It was chosen because it presents better classification results, as shown
in the works by Camargo et al. [10], Mishra et al. [31], Attarchi and Gloaguen [42] and
Üstüner et al. [43]. SVM is a non-parametric technique based on statistical learning theory.
SVM’s main objective is to build an ideal separation hyperplane between linearly separa-
ble classes within a multidimensional resource space. It was designed to maximize the
margin between the ideal separation hyperplane and the closest training samples called
support vectors [31,44]. To perform the classification, the radial base core function (RBF)
was used. This function has two parameters, cost (C) and gamma (g). A high C value can
over-adjust the model to the data while setting the parameter g will influence the way
the hyperplane is separated [45]. Parameters (C) and (g) were adjusted by the computer
application EnMAPToolBox® [46], with search space values between 0.01 and 1000.

Subsequently, the classification accuracy of the different established data input models
was analyzed by calculating from the error matrix, the weighted overall classification
accuracy, the Kappa index, and the Z-test at 95% confidence level with a critical value of 1.96.
After, both user’s accuracy (or commission error) and producer’s accuracy (or omission
error) were obtained for each land cover class and data input model. These metrics were
calculated considering each land cover class’s weight based on their representativeness
in area over the landscape [47,48]. Following the concepts of Olofsson et al. [47,48], the
standard error of the weighted overall classification accuracy and Kappa index and both
upper and lower limit scores at a 95% confidence interval were then determined for each
data input model to support discussion.

Finally, the features used to classify the nine different models were ordered according
to their contribution to each classification. Although this step also utilized the overall
classification accuracy criteria, it was realized without considering the weight for the
individual land cover classes mentioned previously. For this specific step, the direct
selection method was used and provided insights for the best features that contribute to
the final classification. This method starts with an empty set, and the SVM is applied to
each single feature within each data input model (Table 4). The feature corresponding
to the SVM with the best individual performance is then selected. The SVM is then
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applied to each pair of features, consisting of the best-performing one previously and an
additional next one. Once again, the pair of features corresponding to the best performing
SVM is then selected. This step is repeated until all features are selected. It results in
a classificatory list of features with corresponding performances. The computational
application ENMAPToolBox® [46] was used to calculate the classification accuracy and to
perform the ordering of the features used to classify the nine data input models according
to their importance for each classification.

3. Results and Discussions
3.1. Spectral Behavior of Land Cover Classes of SENTINEL-2A Image

Figure 3 shows the spectral behavior of the seven land cover classes analyzed in this
study (Table 3), considering the spectral bands from the SENTINEL-2A satellite (Table 1).
The results showed that in the visible region (490–665 nm), the surface reflectance values
are very close for the selected classes, except for the UA class, indicating that there is a
difficulty in distinguishing the remaining classes in these wavelengths, mainly in the blue
band (490 nm). UA showed a distinguished spectral response from all remaining classes
due to a complex set of specific environments in the study area, ranging from residences to
buildings. Even some residential areas have parcels with small orchards. The infrastructure
consists of bare soil patches to roads with asphalt and paving stone. All these elements
contribute to a stronger reflectance in both visible and SWIR spectral regions [49].

It is possible to observe in Figure 3 that in the wavelengths related to the red-edge (705,
740, 783 nm) and the near-infrared (842 nm), there was an increase in the reflectance curve
for the classes NF, PF, UA, AG, WA, and GL, and with red-edge-4 (865 nm) obtaining the
highest reflectance value for these classes. Still, there was greater discrimination between
the analyzed classes, except between the AG and GL classes that present surface reflectance
values very close to each other, presenting a difficult distinction between these two similar
classes. The WA class showed the lowest reflectance values, and it was easily distinguished
from the other classes between the range of 705 to 2190 nm. The spectral profiles show
that the surface reflectance for the spectral interval corresponding to the SWIR (1610 and
2190 nm) decreased for the classes NF, PF, WT, GL, and AG due to the presence of water in
the leaves. It can still be seen that there is a difficulty in discriminating between classes NF
and PF and between classes WT and AG. In general, the spectral behavior of the land use
classes (Figure 3) is in agreement with that presented in the studies conducted by Herold
et al. [49], Radoux et al. [50], Sothe et al. [51], Prieto-Amparan et al. [52] and Osgouei
et al. [53].

From Figure 4a,b, it is possible to observe by the scatterplots between the surface
reflectance values of the spectral bands of the red (665 nm) and the edge of the red (705 nm)
with the near-infrared (NIR) band (842 nm), respectively, that both WA and UA present
greater discrimination between the analyzed classes. In general, these three spectral bands
seem to be more optimal for land cover mapping. The dispersion between the surface
reflectance values of the Red-Edge bands 2, 3, and 4 with the NIR band shows greater
discrimination of the WA class from the other land cover classes (Figure 4c–e).
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3.2. Discriminatory Analysis of Polarimetric Attributes from SAR Data

In Figure 5, it is possible to observe that the intensity backscattering coefficient values
(σ0) in both the HH and VV polarizations were quite similar to each other. There is a small
tendency for the HH polarization to present higher σ0

HH values, which may be related to
the predominance of oriented branches horizontally in the canopy [14,54]. However, the
HV cross-polarization values were lower compared to the parallel polarizations. In HV
polarization, volumetric backscattering predominates. The multiple backscatters that occur
inside the canopy cause a reduction in the radar signal that returns to the antenna [36].
Still, it can be seen that the PF, NF, and UA classes have higher values of backscatter
coefficient, classes AG and WT with average backscatter values, and classes WT and GL
with low-intensity backscattering coefficient values.

The classes of forest cover NF and PF (Figure 6) present high average values of σ0

for the four polarizations. In these classes, the presence of many leaves, branches, and
trunks stands out, with little soil exposure. The denser green biomass and the higher soil
moisture are mainly responsible for relatively higher values of σ0 [14,55]. The accumulated
precipitation one-week prior SAR data acquisition was 14.3mm. It increased to 64.40 mm
when considering two weeks prior SAR data, which undoubtedly contributed to increasing
the land cover classes’ dielectric constant. The accumulated precipitation is also equivalent
to the historical average precipitation for February month. As the mean values for the
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NF and PF classes were high for all polarizations, it can be concluded that the larger the
vegetation structure, the greater the intensity backscattering coefficients, regardless of
the type of polarization [14]. Thus, the HH, HV, VH, and VV polarizations have a high
potential for discrimination of the NF and PF classes for the study area.
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The PF class has a smooth and homogeneous texture and a well-defined geometric
shape. Most of its total biomass comes from vertical and rectilinear trunks and branches,
which causes a strong reflection in the radar signals [56]. PF intensity backscattering values
presented average values of −7.350 dB, −11.014 dB, −11.260 dB, and −7.462 dB for the
HH, HV, VH, and VV polarizations, respectively. These values were slightly higher than
those obtained for NF what helps discriminating this specific class.

The WT class (Figure 6) presented the following average values of−9.550 dB,−17.700 dB,
−17.747 dB, −10.500 dB for the HH, HV, VH, and VV polarizations, respectively. This class
has a lower layer stratum of leaves, and these areas are periodically flooded. Due to this
low density of green biomass, the σ0 values associated with this class are low compared to
the two classes mentioned previously.

In the crossed polarizations, the GL class (Figure 6) presented the lowest mean values
of σ0 −23.053 dB and −23.256 dB for HV and VH, respectively. This class has a pre-
dominantly regular surface, with the presence or absence of shrubs, depending on the
management practices applied over these areas. It showed low biomass levels and low soil
moisture, associating this class with lower values of σ0 [14].

As for the HH and VV polarizations, the lowest mean values of σ0
HH and σ0

VV
obtained were for class WA (Figure 6) with −15.752 dB and −16.299 dB, respectively. The
low values on WA are explained by the predominance of specular reflection of incident
radiation. In fact, WA is identified on radar images because of their low amplitude values
and smooth texture [36]. Thus, obtaining a great discriminatory potential of this class in
these polarizations.

The UA class (Figure 6) presented relatively high-intensity backscattering values for
the polarizations, standing out in the HH polarization, obtaining the highest value of σ0

HH
(−6.227 dB) compared to the other classes. The high values over urban areas are due to the
predominance of corner reflections associated with artificial structures such as buildings
and residences [18].
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The AG class (Figure 6) showed high-intensity backscattering values, with average
values of −7.678 dB, −14.708 dB, −14.909 dB, and −9.438 dB for HH, HV, VH, and VV,
respectively. Agriculture areas, depending on the type of existing crop, have a planting
dynamic that varies over time. When the analyzed images of the study region were
collected, the agricultural area showed well-structured characteristics, thus obtaining
high-intensity backscattering values [57].

It is worth noting that the effects of moisture caused by accumulated precipitation can
alter intensity backscattering significantly. Unfortunately, there was only a single scene
acquired at the quad-polarization mode in the study area. In the SAR data, the ability to
capture moisture may vary according to the frequency used. At lower frequencies, such as
the L-band, the scattered signal interacts predominantly with branches, trunks, and the
soil surface. Before SAR date acquisition, precipitation events increase canopies’ moisture
content and their components (for example, leaves, branches, trunks, and the soil surface).
Thus, the dielectric constant increases and affects the information of the volumetric scat-
tering mechanism. With the increase in moisture, there is less penetration of the canopy
incident energy, therefore a greater signal return [21,58]. The accumulated precipitation
value recorded, considering the seven days before acquiring the ALOS/PALSAR-2 image
was 14.30 mm [26], influencing the intensity backscattering values of the land cover classes
registered for this image. Therefore, more studies are recommended taking into account
quad-polarization scenes in different seasonal conditions such as the dry season. Interest-
ingly, the acquisition of experimental quad-polarization mode occurs only during the first
months of each year what coincides with the rainy season [21].

In Figure 7a, it can be seen that the Co-Polarization Ratio (Rco) attribute, extracted
from the backscatter coefficients, presented a higher mean value for the GL class (1.178),
obtaining a greater contribution from the VV polarization and showing a surface dominant
scattering [36]. However, the other classes’ averages for the Rco attribute show a small
difference between them, indicating a lower capacity of this attribute to differentiate these
cover classes.
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Analyzing the Cross-Polarization Ratio (Rcross) attribute (Figure 7b) for the land cover
classes, class AG showed the highest average value for this attribute with 0.617, presenting
a greater potential to discriminate this class, with a greater contribution from the superficial
scattering in relation to volumetric. Analyzing the average values obtained for the attribute
Radar Forest Degradation Index (RFDI) (Figure 7c), the classes WT (0.717), GL (0.709), AG
(0.652), and UA (0.642) presented higher values compared to the other land cover classes.
This attribute has a greater sensitivity to distinguish areas with little green biomass [38].

From the values of the Alpha-Entropy decomposition attributes presented in the
boxplot graphs of Figure 8, it can be analyzed that the classes PF, NF, WA, and UA present
the highest mean values of alpha angle (Figure 8a), with values close to 45◦, featuring a
volumetric scattering. The highest mean value recorded in the Anisotropy attribute (A)
(Figure 8b) was for the UA class (0.475). The reduced number of complex scatters (branches
and leaves) contributes to the signal’s low depolarization or the low volumetric scattering
mechanism. Therefore, surface scattering and double-bounce mechanisms are highlighted
in this class [59]. For the Entropy attribute (H) (Figure 8c) the PF, NF, and WA classes
presented high average values of 0.888, 0.854, and 0.826, respectively, compared to the
other classes. Higher entropy values (H) are expected in more complex targets and with a
well-developed geometric structure [59,60].

Figure 9 shows the two-dimensional Entropy plane (H) and alpha angle proposed
by Cloude and Pottier [40], showing different backscattering mechanisms for the classes
analyzed. The WT class presented average H values, and most of the alpha angle values
were less than 45◦. With these results, the class covered zone 5, presenting vegetated
surfaces, zone 6, reflecting the increase in entropy due to changes in surface roughness and
the effects of canopy propagation, and zone 9, corresponding to a superficial scattering
that characterizes water in the L band. It can be observed that the PF and NF classes
reached high and medium H values and alpha angle values greater than 45◦, covering
the mechanisms of scattering vegetation layers with a well-developed geometric structure
and scattering of vegetated surfaces, characteristics of zones 1, 2, 4, and 5. The GL class is
distributed in zones 5, 6, and 9, covering surface scattering mechanisms with medium and
low H and alpha angle values less than 45◦.
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The UA class is distributed in zones 2, 4, and 5. It presents high and medium H values
due to the predominance of the double-bounce scattering mechanism. However, some
values are also distributed in zones 6, 7, and 8, with predominance of surface scattering
mechanisms due to its medium and lower H. The high variability reported for this specific
land cover class is well in agreement with the spectral profiles shown in Figure 2.

The WA class is mainly distributed in zones 5 and 6, with characteristics of a surface
scattering. Class AG is distributed in zone 5 and it presents scattering with average H and
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anisotropic scatters. These results show that the scattering mechanisms identified through
the two-dimensional plane are in accordance with the classes described and analyzed in
this study.

Figure 10 presents the boxplot graphs of the values of the decomposition attributes
of Freeman and Durden. Analyzing the Pv attribute (Figure 10a), the PF and NF classes
with high green biomass were the land cover classes that showed a high average value
for this attribute with a magnitude of 0.520 and 0.401 heightened discrimination capacity
of these classes. For the Pd attribute (Figure 10b), the UA class had the highest values,
as previously mentioned. This class has a predominance of corner reflections related to
buildings’ presence, highlighting the ease of discrimination of this class in this attribute.
In the Ps attribute (Figure 10c), the classes that presented the highest values were the
UA (0.098) and WT (0.082) classes, with a superficial backscattering characteristic, with a
greater potential for discrimination in this attribute.

As shown in Figure 11a, the alpha_s angle of the Touzi decomposition presented very
similar responses with values close to 45◦ considering multiple scattering. The class that
obtained the highest response for this attribute was the UA class (48.6◦). The Phi angle
(Figure 11b) showed the greatest potential to separate the classes WT and GL from the other
classes, presenting intermediate values close to 45◦, indicating that the scattering is derived
from multiple interactions [41]. For the Psi angle, the highest mean value was for the GL
class (2.802). The other classes presenting values very close to zero indicate that there is
a low target rotation. The Tau angle presents very similar responses for all cover classes,
with values close to zero, indicating that the targets have symmetrical scattering [41].
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3.3. Classification of Land Cover Classes in Different Data Input Models

In Figure 12, it is possible to visually analyze the difference in classification accuracy
from Model 1 (M1) (Figure 12b) to Model 6 (M6) (Figure 12c), which are the extreme data
input models that present only SAR input data. M6 showed a greater discrimination
capacity of the land cover classes than the M1, emphasizing the WT, WA, AG, and NF
(Figure 13a,b; Table A1).
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M1 data input model presents only the intensity backscattering coefficients of the
studied polarizations (HH, HV, VH, and VV). The M6 presents the σ0 data added with the
polarimetric features. The initial values achieved for the overall accuracy and Kappa index
were 37.48% and 0.26 in M1. It increased to 71.35% and 0.66 for M6 (Figure 13c; Tables 5
and A1). Therefore, the addition brought an increase of 90.36% and 53.84% for the global
accuracy and Kappa index, respectively. This increase was also significant for the Z-test
(Table 6). In summary, the reported results corroborate well with the studies carried out
by Zou et al. [61], Longepe et al. [62], Mishra et al. [31] and Liesenberg et al. [21], showing
that the classification accuracy of specific land use and land cover classes tends to increase
from a single dataset for the complementary use of parameters derived from SAR data.
This aspect reveals the relevance of polarimetric attributes for mapping initiatives.

The increasing performance from M1 to M6 is also confirmed by the results presented
in Figure 13a,b. In both Figure 13c and Table A1, which shows the user and producer
accuracy, the land cover classes showed an increase in the classification accuracy with the
increase of the polarimetric attributes. In general, M6 presented a good individual class
classification accuracy since most classes achieved user accuracy and producer accuracy
above 70% (Figure 13c, Table A1). The UA class presented the highest user accuracy
with 90.36%, whereas the GL reached the highest producer accuracy, with 84.15%. These
measures would be an interesting data source for monitoring specific land cover classes in
the study region because these areas are often affected by cloud coverage.
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Table 5. Summary of the Weighted Overall Accuracy (a) and Kappa index (b) results for each of the
nine data input models with the standard error and upper and lower limit scores at a 95% confidence
interval.

(a) Weighted Overall Accuracy

M1 M2 M3 M4 M5 M6 M7 M8 M9

OA 0.3748 0.5393 0.6843 0.6920 0.7080 0.7135 0.8556 0.8744 0.9029
Var(OA) 0.0003 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002
Lower
limit 0.3396 0.5004 0.6480 0.6561 0.6727 0.6782 0.8233 0.8448 0.8770

Upper
limit 0.4100 0.5781 0.7206 0.7279 0.7433 0.7489 0.8879 0.9040 0.9288

(b) Weighted Kappa Index

M1 M2 M3 M4 M5 M6 M7 M8 M9

Kappa 0.2638 0.4520 0.6242 0.6333 0.6522 0.6587 0.8177 0.8439 0.8804
Var(K) 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
Lower
limit 0.2363 0.4214 0.5930 0.6020 0.6209 0.6273 0.7817 0.8095 0.8464

Upper
limit 0.2912 0.4826 0.6555 0.6646 0.6836 0.6900 0.8537 0.8784 0.9144

Table 6. Z-test scores applied to the Kappa index of the nine different data input models.

M1 M2 M3 M4 M5 M6 M7 M8 M9

M1 - 8.97 16.99 17.40 18.27 18.57 23.99 25.80 27.66
M2 - - 7.72 8.12 8.96 9.24 15.17 16.66 18.35
M3 - - - 0.40 1 1.24 1 1.52 1 7.96 9.26 10.88
M4 - - - - 1.92 1.12 1 7.58 8.87 10.48
M5 - - - - - 0.28 1 6.80 8.06 9.67
M6 - - - - - - 6.53 7.79 9.40
M7 - - - - - - - 1.03 1 2.48
M8 - - - - - - - - 1.48 1

1 Non-significant difference for 95% confidence level with a critical value of 1.96 and the description of acronyms
and models is in Table 4.

Although still showing satisfactory overall classification accuracy and Kappa indices
(Figure 13c; M1 to M6), the additional use of SAR derived texture applied over the intensity
backscattering coefficients would indeed render an increase of the classification accuracy
scores. This initiative was reported recently by Attarchi [63] when studying different urban
environments with a single date acquisition of the quad-polarization ALOS/PALSAR.
Interestingly would be the use of seasonal SAR quad-polarization in the classification
scheme. Seasonal aspects were also considered by Furtado et al. [8] and more recently by
Guimarães et al. [64] in the discrimination of complex environments containing wetlands.

Alternatively, the addition of interferometric coherence that can be explored from two
or more SAR acquisitions sounds also like the right choice for future studies, as reported by
Pulella et al. [65]. However, multitemporal quad-polarization ALOS/PALSAR-2 datasets
are unfortunately still not available for the specific study area and are therefore encouraged
for further studies once they become available.

The use of SENTINEL-2A data alone (M7) performed well with a weighted overall
accuracy and Kappa index of 85.56% and 0.874, while M6 performed with 71.35% and 0.66,
respectively (Tables 5 and A1). This increase was also significant for the Z-test (Table 6)
and resulted from a substantial increase in user accuracy and producer accuracy for almost
all selected land cover classes. The use of SENTINEL-2A would indeed render the best
classification reports. However, in the absence of optical images, ALOS/PALSAR-2 could
also reach satisfactory results, mainly for WT and GL what could be of interest for ecological
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studies. Besides these two vegetation physiognomies, monitoring UA and its expansion
in this specific region are also recommended to prevent houses’ construction in irregular
areas, such as those affected by flooding events.

Interestingly would-be monitoring initiatives of both the WT and GL that are currently
suffering from land conversion into planted forest and agriculture. The region is known
as being one of the last agricultural frontiers in Southern Brazil. The gentle topography
allows using agricultural machinery intensively. The monitoring in specific timeframes
in the so-called cloud coverage period, which coincides with the mowing and plowing
events, would surely hinder the conversion of these specific physiognomies into agriculture
and facilitate earlier interventions and administrative fines by the environmental policy.
More recently, some SAR initiatives reported using SAR coherence time-series to target
these particular agricultural activities with relative success [66]. This practice is strongly
recommended for the specific study area in the near future. This procedure could consider
plotting such locations with the georeferencing of rural properties’ compulsory initiative of
the Brazilian Government, which has the primary purpose of locating each rural property
within the Brazilian Geodetic System (SGB).

It can be seen in Figure 13c and Table 5 that throughout the addition of the polarimetric
attributes and the optical data in the respective models, it tends to increase the values
of global accuracy and Kappa index. However, the addition of SAR-derived features to
SENTINEL-2A, such as M8 and M9 datasets, slightly improved the overall classification
accuracy. In summary, it did not bring many advantages in this particular study (Table 6).
The classification of M9 (Figure 12d), which presents all the data of the polarimetric
attributes and the optical data, shows slightly discriminatory potential for the land cover
classes compared with the optical image outcomes alone (M7). Although obtaining a
better delimitation of the selected land cover classes compared to the other classifications,
the slight improvements were not significant at a 95% confidence level (Tables 5 and 6).
The exception occurs very marginally for the M9, although both upper and lower limits
for overall accuracy and Kappa indices of M7 still overlap. Such results did not follow
the results achieved by Mendes et al. [4], Pereira et al. [20], and Liesenberg et al. [21].
These studies showed a significant increase in land cover classes’ classification accuracy by
combining SAR and optical data. Possible reasons for that behavior would most probably
be related to a large amount of precipitation recorded prior to SAR data acquisition that
coincides with this specific area’s rainy season period.

M8 and M9 present a weighted overall classification accuracy of 87.44% and 90.29%
and a weighted Kappa index of 0.84% and 0.88%. Although the M8 and M9 models do
not significantly differ in classification accuracy values, the M9 model showed slightly
better discrimination, mainly of the AG, WT, and GL classes compared to the M8 model.
However, when M6 is compared with M8 or even M9 directly, the increase in overall
accuracy is 22.55% and 26.54%. Whereas for the Kappa index, it is 27.27% and 33.33%,
respectively.

Figure 14 and Table 7 show the percentage of coverage of the analyzed land use and
occupation classes. It can be interpreted that in the classification of the M1 model, the
GL class has the largest coverage area. As the polarimetric attributes were added, the GL
pixels were then assigned to other classes. It shows that additional features from SAR are
necessary to label this specific land cover class and other physiognomies correctly.
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Figure 14. Percentage of coverage of the seven land cover classes in nine different data input models.
The classes’ description is in Table 3. The description of acronyms and models in Table 4.

It can be analyzed that in the M6 model, which was the model with the highest
overall classification accuracy and Kappa index, it showed that the classes GL (21.79%),
WT (19.55%), NF (18.20%), and WA (18.10%) presented the most significant percentage of
land cover classes (Figure 14 and Table 7). M6 is the data input dataset that contains only
SAR data.

In general, M9 obtained the highest Kappa index and overall accuracy compared to
other models. It presents the combination of polarimetric attributes with optical data, and
it was observed that the GL classes (24.84%), NF (23.79%), and WT (21.92%) continue to
be the land cover classes with the highest coverage in the study area. However, the WA
class (6.44%) showed a reduction in land cover percentage than the M6 model. The results
confirmed both GL and WT as the most representative land cover classes in the study
area. Such findings corroborate with previous studies conducted by Magalhães et al. [22],
Pôlese et al. [23], and Almeida et al. [67]. These researchers conducted local studies in this
specific region and reported the large presence of native grasslands and wetlands.

Table 7. Area and percentage of the land cover classes in each data input model.

M1 M2 M3

Classes Area
(km2)

% land
cover

Area
(km2)

% land
cover

Area
(km2)

% land
cover

AG 77.47 2.64 347.13 11.81 301.00 10.24
WT 569.43 19.38 268.92 9.15 528.30 17.98
GL 1397.71 47.57 922.78 31.40 674.80 22.96
WA 26.91 0.92 471.54 16.05 569.22 19.37
NF 282.41 9.61 493.20 16.78 523.24 17.81
PF 416.28 14.17 352.81 12.01 267.30 9.10
UA 168.25 5.73 82.09 2.79 74.60 2.54

Total 2938.47 100.00 2938.47 100.00 2938.47 100.00
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Table 7. Cont.

M4 M5 M6

Classes Area
(km2)

% land
cover

Area
(km2)

% land
cover

Area
(km2)

% land
cover

AG 315.04 10.72 342.79 11.67 329.39 11.21
WT 575.82 19.60 580.98 19.77 574.44 19.55
GL 640.47 21.80 621.06 21.14 640.20 21.79
WA 536.39 18.25 533.16 18.14 531.91 18.10
NF 547.41 18.63 532.38 18.12 534.82 18.20
PF 252.24 8.58 254.45 8.66 250.90 8.54
UA 71.11 2.42 73.65 2.51 76.82 2.61

Total 2938.47 100.00 2938.47 100.00 2938.47 100.00

M7 M8 M9

Classes Area
(km2)

% land
cover

Area
(km2)

% land
cover

Area
(km2)

% land
cover

AG 312.06 10.62 290.25 9.88 340.20 11.58
WT 591.14 20.12 569.74 19.39 644.20 21.92
GL 847.41 28.84 791.72 26.94 729.80 24.84
WA 65.54 2.23 148.45 5.05 189.27 6.44
NF 794.10 27.02 795.35 27.07 699.20 23.79
PF 280.16 9.53 251.22 8.55 261.90 8.91
UA 48.07 1.64 91.75 3.12 73.90 2.51

Total 2938.47 100.00 2938.47 100.00 2938.47 100.00

3.4. Importance of Features for Classification Accuracy

The features that most contributed to the classification of M6 and M9 are shown in
Table 8 and Figure 15a,b, respectively. The feature that most contributed to the classification
accuracy of the M6 model was the volume dispersion contribution (Pv), representing
40.88% of the classification accuracy, as can be seen in Figure 15a. This feature presents a
high discrimination capacity of the selected land cover classes, mainly classes with dense
vegetation. This is due to the multiple scattering processes that occur in cover classes. It
can be analyzed in Table 8 that after adding the second feature (Double-bounce dispersion
contribution (Pd)) in the classification of Model M6, the classification accuracy increased
to 55.77%. As shown in Figure 14 and Table 7, the M1 model considered a large area of
land occupation for the CP class, and as the features were added, the pixels of this class are
correctly classified. As noted in Table 8 and Figure 15a, the main features that influenced
this result were the geometric attributes such as Pv and Pd for M6.

Analyzing Table 8 and Figure 15b, the feature that most contributed to the classifica-
tion of the M9 model was the B12 band (SWIR-2), providing a classification accuracy of
47.50% and, after adding the feature Pv, the classification accuracy increased to 69.01%.
Interestingly is the role of both NIR and red-edge spectral bands ranked in third and fifth
places corroborating with previous spectral analysis shown in Figure 4c. For the M6 and
M9 models classification, the first six variables already provided the highest classification
accuracy. It can be seen in Figure 15 that the global accuracy increases if more features are
included in the classification until an ideal number of features is reached, after which the
accuracy remains constant. Similar features from either SAR or optical datasets were also
reported in the studies of Pal and Foody [68], Rabe et al. [69], Waske et al. [70], and van
Beijma [71].

According to the results presented, the exclusive use of different polarimetric attributes
from ALOS/PALSAR-2 data have potential use in mapping specific land cover types of
Santa Catarina Southern Plateau. It shows the importance of using this type of data for
mapping initiatives at the regional level where a large cloud coverage during the year
exists, as in the Santa Catarina Southern Plateau.
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Although not statistically significant compared with optical images alone, the com-
bined use of SAR data with the optical images must be further investigated. Unfortunately,
the P band is still not available on the orbital level to allow further investigations. Simi-
larly, the quad-polarization acquisition mode at L band SAR systems acquired on regular
intervals covering both rainy and dry seasons is still limited for complementary studies.

Table 8. Contribution of features to the SVM supervised classification of M6 and M9.

M6 M9

Classification Feature Overall Acc. Feature Overall Acc.

1 Pv 40.88 B12 47.5
2 Pd 55.77 Pv 69.01
3 A 65.83 B8A 79.17
4 α_s 69.22 Ps 83.47
5 φ_αs 70.85 B05 85.92
6 HH 72.3 B11 87.74
7 Rcroos 72.59 RFDI 88.73
8 VV 73.68 α_s 89.14
9 H 73.75 B07 89.46

10 ∆(HH-HV) 74.02 H 89.71
11 HV 74.19 B4 90.06
12 Pd 74.21 B2 90.13
13 α 74.69 VV 90.24
14 VH 74.9 α 90.48
15 τ_m 75.24 VH 90.65
16 ∆(HV-VV) 75.09 ∆(HH-VV) 90.6
17 RFDI 74.82 Pd 90.42
18 Ψ 74.22 Rcroos 90.5
19 ∆(HH-VV) 74.38 ∆(HH-HV) 90.38
20 Rco 73.7 B06 90.34
21 - - τ_m 90.57
22 - - φ_αs 90.51
23 - - A 90.54
24 - - Ψ 90.26
25 - - ∆(HV-VV) 89.89
26 - - Rco 89.65
27 - - HV 89.78
28 - - B03 89.68
29 - - B08 89.49
30 - - HH 89.75
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Additional experiments can be conducted exploring different sizes of training and
validation datasets. Varying the size of both training and validation datasets according to
the spatial representativeness of each of the land covers classes in the given landscape is
also an important aspect that could be evaluated as reported by Olofsson et al. [48].

Alternatively, reducing the number of land cover classes in the classification scheme
by applying masks and focusing only on those land cover classes that are very similar in
terms of horizontal and vertical structures would also help to achieve better results.

Although SVM is a reliable approach in classification, as shown in this research, it will
be more useful if the results are compared by other recent classification algorithms such
as random forest, convolutional neural network (CNN), and eXtreme Gradient Boosting
(XGBoost). Public domain libraries like Scikit-learn and TensorFlow provide a simple way
for this operation and are also suggested for further studies.

3.5. Further Research Perspectives

According to the results found in this study, there are some perspectives for future
studies. Much of the research using ALOS/PALSAR-2 full polarization and experimental
data is used to map land cover in the Amazon region due to the intense cloud cover during
most of the year. However, this type of data’s potential also needs to be explored in other
environments affected by frequent cloud coverage. Besides, it is still vague to develop
studies to combine multiple sensors in southern Brazil.

It is recommended to use other SAR sensors in full and dual experimental mode for
mapping the land cover, such as the TerraSAR–X satellite, launched in June 2007, and the
Tandem-X satellite, launched in June 2010. These two systems feature sensors operating
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in the X band. Hence, small satellites for the Mediterranean basin observation COSMO-
Skymed consist of four SAR systems at X band acquiring data at single or dual-polarization.

The RADARSAT Constellation Mission (RCM), a constellation of 3 satellites launched
in 2019, provides continuity of C band SAR data for RADARSAT-2 users. This mission
mainly collects data from Canada with a daily revisit and has daily access to 95 % of the
Earth’s surface. Additionally noteworthy is the Sentinel-1 mission, which consists of two
satellites, Sentinel-1A, launched in 2014, and Sentinel-1B, launched in 2016, operating in
band C. It is also recommended to develop research aimed at analyzing the potential of
using multi-frequency SAR data to discriminate land use and land cover classes. Still, it is
important to emphasize the need to elaborate works analyzing the possibility of integrating
Sentinel-1 data with Sentinel-2 data to map land cover.

Research involving the use of SAR data combined with Light Detection and Ranging
(LiDAR) data can assist in discriminating land cover classes, such as LiDAR data provided
by the GEDI (Global Ecosystems Dynamics Investigation Lidar) instrument, launched in
December 2018. This instrument offers a complete 3D view, in high resolution, of the Earth’s
forests. Complementary, the data made available by the ICESat-2 satellite, which measures
the variation in the Earth’s ice thickness, as well as characteristics of the topography and
terrestrial vegetation, launched in September 2018.

A future perspective to assist in mapping land cover using SAR data is in the use of
satellite images that are yet to be launched, such as the Tandem-L mission concept that is
based on the use of two SAR satellites operating in L-band and planned to be launched
in 2024. Interestingly, the NISAR satellite (NASA-ISRO SAR) whose launch is scheduled
for December 2021. It is an InSAR (Interferometric SAR) mission from the USA and India
dedicated to studying global environmental hazards and changes. NISAR will be the first
satellite mission to use two different SAR frequencies (L and S bands). In addition to this,
the BIOMASS satellite is scheduled for launch in 2021, which will take the first SAR in the P
band that has been showing the most accurate land cover mapping initiatives. The mission
aims to carry out forest biomass measurements to assess stocks and flows of terrestrial
carbon to understand the carbon cycle better.

4. Conclusions

This study showed that the full polarimetric images of ALOS/PALSAR-2 are satis-
factory in discriminating the classes of land use and occupation in the Santa Catarina
Southern Plateau region. These classes’ classification accuracy has improved significantly
with incorporating different polarimetric features derived from the intensity backscatter-
ing coefficients and phase information that were also important ranked features in SVM
classification.

The sole use of intensity backscattering coefficients had an overall accuracy of 37.48%
and a Kappa index of 0.26. The addition of polarimetric features increased it to 71.35% and
0.66, respectively. Although the scores are not very high, the use of parameters derived
only from SAR data presents itself as an interesting alternative for the discrimination of
specific land cover classes such as grasslands and wetlands. This is especially true when
clouds frequently cover a particular environment or no optical data is available in the
region.

SENTINEL-2A data alone outcome all experiments with an overall accuracy and
Kappa index of 85.56% and 0.82, respectively. It resulted from a significant increase in
user accuracy and producer accuracy for almost all selected land cover classes. It also
overcomes the performance of the SAR dataset according to the Z-test.

Interestingly, the addition of SAR-derived features into the optical dataset slightly
improved overall classification accuracy. However, statistically, it was not significant.
Possible implications for that performance are the accumulated precipitation prior to SAR
data acquisition, which coincides with the study area’s rainy season. Therefore, new
experiments are required to confirm the results.
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In this sense, new experiments are still necessary to increase classification accuracy,
indicating the advantages of integrating more SAR features such as texture and interfero-
metric coherence. In this way, this research can help public agencies to improve methodolo-
gies for mapping specific land cover classes at the regional level. This is especially true in
periods where clouds’ occurrence is high, and information about unauthorized agriculture
practices over grasslands, wetlands, and native forests is required regularly.
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Figure A1. Landscape overview of the study area with detail to grassland (GL), wetland (WT) and
planted forest (Pinus taeda) in the back view (a) and grassland (GL), agriculture (AG) and native
forest (NF) with predominant Araucaria angustifolia trees (b).
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Table A1. The classification accuracy results in terms of weighted User’ Accuracy (UAc) and
Producer’ Accuracy (PAc) for the seven land cover classes and the nine different data input models.
The weighted Overall Accuracy (OA) and Kappa index (K) are also shown.

M1 M2 M3

Classes UAc (%) PAc (%) UAc (%) PAc (%) UAc (%) PAc (%)

AG 37.50 6.49 46.55 38.67 70.45 50.03
WT 34.42 44.67 57.33 34.25 72.83 69.56
GL 30.80 86.69 55.32 84.74 67.72 82.73
WA 14.29 0.82 44.92 49.89 71.07 84.51
NF 32.14 23.35 48.31 55.78 55.88 69.40
PF 60.14 73.98 66.40 69.14 72.17 65.55
UA 60.00 27.95 90.16 26.68 90.00 31.26

OA (%) 37.48 53.93 68.43
K (%) 0.26 0.45 0.62

M4 M5 M6

Classes UAc (%) PAc (%) UAc (%) PAc (%) UAc (%) PAc (%)

AG 74.42 54.39 73.91 59.14 73.63 57.08
WT 73.00 74.68 75.26 76.05 74.23 74.64
GL 69.60 83.29 72.36 84.06 71.54 84.15
WA 71.30 78.65 73.87 79.96 72.17 80.43
NF 54.05 71.24 55.45 72.55 60.36 76.24
PF 75.47 61.92 72.90 60.57 77.14 64.67
UA 90.24 32.05 89.41 33.80 90.36 35.04

OA (%) 69.20 70.80 71.35
K (%) 0.63 0.65 0.66

M7 M8 M9

Classes UAc (%) PAc (%) UAc (%) PAc (%) UAc (%) PAc (%)

AG 86.41 83.09 89.00 77.93 91.00 87.53
WT 82.18 76.36 83.81 82.14 89.00 87.20
GL 80.37 89.47 83.33 90.92 88.68 92.89
WA 97.00 61.68 99.02 87.09 97.03 87.10
NF 88.07 97.43 88.18 97.84 88.99 97.63
PF 95.96 80.74 93.00 75.62 94.95 81.78
UA 95.28 73.16 100.00 86.97 92.73 87.44

OA (%) 85.56 87.44 90.29
K (%) 0.82 0.84 0.88

The description of the land cover classes is given in Table 3, and the description of acronyms and
data input models are found in Table 4.
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