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Abstract: Hydrological modeling has always been a challenge in the data-scarce watershed, espe-

cially in the areas with complex terrain conditions like the inland river basin in Central Asia. Taking 

Bosten Lake Basin in Northwest China as an example, the accuracy and the hydrological applica-

bility of satellite-based precipitation datasets were evaluated. The gauge-adjusted version of six 

widely used datasets was adopted; namely, Precipitation Estimation from Remotely Sensed Infor-

mation using Artificial Neural Networks–Climate Data Record (CDR), Climate Hazards Group In-

frared Precipitation with Stations (CHIRPS), Global Precipitation Measurement Ground Validation 

National Oceanic and Atmospheric Administration Climate Prediction Center (NOAA CPC) 

Morphing Technique (CMORPH), Integrated Multi-Satellite Retrievals for GPM (GPM), Global Sat-

ellite Mapping of Precipitation (GSMaP), the Tropical Rainfall Measuring Mission (TRMM) and 

Multi-satellite Precipitation Analysis (TMPA). Seven evaluation indexes were used to compare the 

station data and satellite datasets, the soil and water assessment tool (SWAT) model, and four in-

dexes were used to evaluate the hydrological performance. The main results were as follows: (1) 

The GPM and CDR were the best datasets for the daily scale and monthly scale rainfall accuracy 

evaluations, respectively. (2) The performance of CDR and GPM was more stable than others at 

different locations in a watershed, and all datasets tended to perform better in the humid regions. 

(3) All datasets tended to perform better in the summer of a year, while the CDR and CHIRPS per-

formed well in winter compare to other datasets. (4) The raw data of CDR and CMORPH performed 

better than others in monthly runoff simulations, especially CDR. (5) Integrating the hydrological 

performance of the uncorrected and corrected data, all datasets have the potential to provide valu-

able input data in hydrological modeling. This study is expected to provide a reference for the hy-

drological and meteorological application of satellite precipitation datasets in Central Asia or even 

the whole temperate zone. 

Keywords: satellite datasets; accuracy evaluation; hydrological applicability; SWAT; Bosten Lake 

Basin 

 

  

Citation: Peng, J.; Liu, T.; Huang, Y.; 

Ling, Y.; Li, Z.; Chen, X.; Kurban, A.; 

De Maeyer, P. Satellite-Based  

Precipitation Datasets Evaluation 

Using Gauge Observation and  

Hydrological Modeling in a Typical 

Arid Land Watershed of Central 

Asia. Remote Sens. 2021, 13, 221. 

https://doi.org/10.3390/rs13020221 

Received: 7 December 2020 

Accepted: 6 January 2021 

Published: 11 January 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://cre-

ativecommons.org/licenses/by/4.0/). 



Remote Sens. 2021, 13, 221 2 of 26 
 

 

1. Introduction 

The importance of precipitation in the water cycle and energy sector has been repeat-

edly emphasized [1–3]. More specifically, the accurate observation of the precipitation 

process is crucial for modeling the water cycle and forecasting extreme weather events at 

local, regional, and even global scales [4,5]. However, the understanding of this critical 

process is limited due to the low coverage of survey stations [6,7]. In many parts of the 

world, the density of the weather stations is very low or even nonexistent due to technical 

difficulties or political factors [8,9]. Besides this, the data accessibility of the existing sta-

tions is limited as a consequence of the conservative data sharing mechanism, and other 

reasons such as short record history or deficient data quality, all of which hinder the ap-

plication of the observed data in hydro-meteorological research [10–12]. 

Fortunately, with the release of the satellite-based precipitation datasets, the gauge 

observation can be well supplemented in the data-scarce regions, such as arid depopu-

lated zones and alpine areas [13,14]. The launch of the Tropical Rainfall Measuring Mis-

sion (TRMM) satellite in 1997 made significant progress in tropical and subtropical satel-

lite precipitation estimation [15–17]. Since then, a growing number of high-precision and 

wide-coverage satellite precipitation datasets have been released. TMPA (TRMM Multi-

Satellite Precipitation Analysis) and GPM (Global Precipitation Measurement) are the 

continuation of TRMM [18,19]. PERSIANN (Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks) and CHIRP (Climate Hazards In-

frared Precipitation) mainly rely on infrared remote sensing technology [20,21]. In addi-

tion, there are multi-source datasets such as GSMaP (Global Satellite Mapping of Precipi-

tation) and CMORPH (Climate Prediction Center Morphing Technique) and many others 

[22,23]. In the field of hydrological modeling, countless studies had proved the applica-

bility of these satellite datasets in many watersheds of the world [24–26]. Meanwhile, 

though, these datasets inevitably showed their uncertainty in the application of different 

watersheds. In some watershed, the streamflow simulation performance of satellite pre-

cipitation is even better than the observed precipitation, e.g., Ziway Lake Basin in Ethiopia 

and the Adige river basin in Italy [7,9], while performing worse in others, e.g., the Mekong 

river basin in Southeast Asia and Xiangjiang River Basin in Southeast China [26,27]. As a 

result, the accuracy and hydrological modeling adaptability evaluation of the satellite da-

tasets in different regions is critical for their application, which is also crucial for the da-

taset’s improvement. Central Asia is one of the most data-scarce regions around the world 

due to its complex terrain and underdeveloped economy [28]. For many years, most of 

the hydrological research in this area has been carried based on limited gauge stations 

[29,30]. There have been a large number of research cases that refer to the evaluation of 

satellite precipitation datasets in this area, and Guo et al. reported that the gauge-adjusted 

versions of four datasets performed better than their unadjusted version, and believed 

that the GSMaP performed better than others in five Central Asia countries [31]. Gao et al. 

evaluated the CHIRPS and PERSIANN-CDR in Xinjiang, China, and the results showed 

that the performance of these two datasets was similar as a whole, but slightly different 

in the rainfall season and snowfall season [32]. However, the studies on the datasets’ ac-

curacy and hydrological modeling adaptability are rare at the watershed scale, and the 

comparison of different datasets is even less. Most of the existing limited research was on 

the application of a single dataset, such as the application of the TMPA in two river basins, 

including the Hotan River and Syr Darya River [33,34]. At present, several datasets in-

cluding a new generation of TMPA (GPM) have been applied in many tropical and sub-

tropical basins around the world; thus, evaluating and comparing various satellite precip-

itation datasets on a watershed scale is meaningful for the hydrological research in Central 

Asia. 

The Bosten Lake Basin is a typical arid inland river basin in Central Asia, where water 

resources are mainly produced in the high-altitude mountainous areas and evaporate in 

extremely arid plain areas. In this study, the Bosten Lake Basin was selected as the re-
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search area, and six widely used satellite precipitation datasets were adopted for evalua-

tion. The time scale differentiation and the spatial heterogeneity of the datasets were eval-

uated by multiple indexes, and a distributed hydrological model (soil and water assess-

ment tool) was used to evaluate the dataset’s adaptability in monthly hydrological simu-

lation. For the first time, the encrypted rain gauge station of the local meteorological de-

partment was used for satellite datasets evaluation, and the hydrological applicability of 

the five satellite datasets (only TMPA had already been reported) in the inland river basin 

of Central Asia has been proven. The main contents include the following: 1. Introduction 

of the study and the study area (Section 1 and Section 2.1); 2. Data (Section 2.2 and section 

2.3); 3. Methods (Section 2.4 and Section 2.5); 4. Results (Section 3.1 and Section 3.2) and 

discussion (Section 3.1 and Section 3.2) of the comparison between datasets and observed 

data; 5. Results (Section 3.3) and discussion (Section 4.3) of the applicability evaluation of 

the hydrological models; 6. Main conclusions (Section 5). This case study is expected to be 

meaningful for the hydrological and meteorological application of satellite precipitation 

datasets in Central Asia, or even the whole temperate zone. 

2. Data and Methods 

2.1. Study Area 

Lake Bosten is a freshwater lake on the northeastern rim of the Tarim Basin, and it is 

also the largest inland freshwater lake in China. The whole basin is located between lati-

tude 41.25°–43.21° N and longitude 82.56°–88.20° E, with an area of 4.40 × 104 km2. The 

main tributaries to the lake are the Kaidu River, Huangshui Ditch, and Qingshui River, of 

which the Kaidu River accounts for more than 90% of its water inflow. The sources of the 

Kaidu River are located on the Eren Habirga Mountain of the eastern Tian Shan from 

where it flows through the Yulduz Basin and the Yanqi Basin into the Bosten Lake. The 

basin has a large vertical drop with the highest elevation in the upper reaches of 4796m 

and the lowest elevation in the downstream of 1037m. 

The grassland and water areas (mostly glaciers) are the primary land-use types in the 

upper reaches of the basin, accounting for about 61% and 21% of the total upstream area, 

respectively. In the middle and lower reaches, except for the unused land, the main land-

use types are arable land and water area, accounting for about 25% and 15% of the total 

area, respectively. Like other basins in the arid areas, the Bosten Lake Basin has a clear 

distinction between dry and wet areas. The average annual precipitation and temperature 

can reach 504.57mm and –4.27 ℃ in a mountainous areas weather station, and the corre-

sponding values in a plain areas station were 67.16mm and 9.64 ℃, respectively. The av-

erage annual actual evapotranspiration in the upstream mountain area is about 200 mm, 

while in the plain area, it can reach 500mm and 1000mm in the arable land area and the 

water area, respectively.(Figure 1) 
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Figure 1. Study area (based on map sources: Department of Natural Resources of Xinjiang Uygur Autonomous Regions 

Xin S (2019) No.044). 

2.2. Observed Data of Ground Stations 

The meteorological data include the observation data of 74 rain gauge stations (RG) 

and 6 national weather (NW) stations. The RG stations’ data were obtained from Xinjiang 

Meteorological Service (http://xj.cma.gov.cn/) for the period from 2013 to 2019. The NW 

stations’ data were obtained from China Meteorological Data Service Center 

(http://data.cma.cn/) for the period from the 1990s to 2019. The monthly streamflow data 

of the Dashankou hydrological station were collected from the local watershed authority 

for the period from 1998 to 2019. 

Considering the available period of observed data and satellite datasets (Table 1), the 

observed rainfall (both NW stations and RG stations) and precipitation (only NW stations) 

were compared with the satellite dataset, and the study periods were set as 2013-2019 and 

1998-2019, respectively. 

In this study, it is worth noting that spring refers to March, April and May, summer 

refers to June, July and August, autumn refers to September, October and November, and 

winter refers to December, January and February. In addition, the watershed is divided 

by the elevation of 1100m and 1500m a.s.l., that is, the upper reaches are higher than 

1500m, the middle reaches are from 1100m to 1500m, and the lower reaches are below 

1100m. The division of the watershed is mainly based on the location of the river mountain 

pass and the boundary of the agricultural irrigation area. 

2.3. Satellite Precipitation Datasets 

To avoid the influence of different spatial resolutions on the datasets comparison, the 

dataset with a resolution of 0.25 degrees was selected from different datasets versions as 

far as possible, and all datasets are the daily data of the gauge-adjusted version (Table 1). 

To avoid redundancy, the short names in Table 1 were used to refer to each dataset. It is 

worth noting that the periods in Table 1 refer to the available periods of each dataset, and 

the periods used in this study are explained in detail in Section 2.2. 
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Table 1. Summary of satellite precipitation datasets used in this study. 

Dataset Version Short Name Release Date Resolution Period 

PERSIANN-CDR_V1_R1 CDR 2014 0.25°/1d 1983–present 

CHIRPS_2.0 CHIRPS 2015 0.25°/1d 1981–present 

CMORPH_IFlOODS_V1.0 CMORPH 2013 0.25°/1d 1998–2019 

GPM_IMERGF_V06 GPM 2019 0.10°/1d 2000–present 

GSMaP_V6 GSMaP 2016 0.25°/1d 2000–present 

TMPA_3B42_daily_V7 TMPA 2016 0.25°/1d 1998–2019 

2.3.1. CDR 

The Precipitation Estimation from Remotely Sensed Information using Artificial 

Neural Networks–Climate Data Record (CDR) is a dataset that relies heavily on infrared 

data, and it was converted from a complex PERSIANN algorithm on GridSat-B1 infrared 

satellite data. The CDR was adjusted using the Global Precipitation Climatology Project 

(GPCP) monthly product version 2.2 (GPCPv2.2). The dataset was firstly released on June 

1, 2014, and was created at a spatial resolution of 0.25 degrees in the latitude band 60S–

60N from 1983 to the near-present [35], and the dataset is available on the website of the 

Center for Hydrometeorology and Remote Sensing (https://chrsdata.eng.uci.edu/), Uni-

versity of California. 

2.3.2. CHIRPS 

The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset 

builds on previous approaches to “smart” interpolation techniques and high-resolution 

precipitation estimates from long periods of recording, based on infrared cold cloud du-

ration (CCD) observations. The dataset was first released in 2015, and was created at two 

spatial resolutions of 0.05 degrees and 0.25 degrees in the latitude band 50S–50N from 

1981 to the present [36]. The dataset was obtained from the website of the Climate Hazards 

Center (https://data.chc.ucsb.edu/products/CHIRPS-2.0/), University of California. 

2.3.3. CMORPH 

The CMORPH is a technique that uses precipitation estimates from low orbiter satel-

lite microwave observations to produce global precipitation analyses at high temporal and 

spatial resolutions. The dataset version used in this study (CMORPH IFLOODS V1.0 CRT) 

was released in 2013, which was created at two spatial resolutions of 0.07 degrees and 0.25 

degrees in the latitude band 60S–60N from 1998 to the end of 2019 [37], and the dataset 

was obtained from the file transfer protocol website of NOAA 

(ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/). 

2.3.4. GPM 

The GPM was developed as a continuation and improvement of the TRMM mission, 

and the Integrated Multi-satellite Retrievals for GPM (IMERG) is an algorithm of GPM 

which aims to combine multiple types of satellite data including microwave satellite data 

and infrared satellite data, station gauge data, and others. The latest version (GPM IMERG 

Final Precipitation L3 V06) was released in March 2019. The temporal coverage is from 

June 2000 to August 2020, the spatial coverage is in the latitude from 90S to 90N, and the 

spatial resolution is 0.10 degrees [38]. The dataset is available from the Data and Infor-

mation Services Center (DISC) of NASA (https://disc.gsfc.nasa.gov/da-

tasets/GPM_3IMERGDF_06/). 

2.3.5. GSMaP 

The GSMaP is an algorithm of GPM developed by the Japan Aerospace Exploration 

Agency (JAXA). The main feature of the GSMaP algorithm is the utilization of various 
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attributes derived from the TRMM precipitation radar (TRMM PR) and GPM Dual-Fre-

quency Precipitation Radar Ku Band (GPM DPR Ku). It should be noted that the latest 

version of the dataset (GSMaP_V7) has not been adopted due to its short time period 

(2017–present); instead, the GSMaP_V6_Gauge version was adopted in this study [39]. 

This version was released in April 2016, and was created at two spatial resolutions of 0.10 

degrees and 0.25 degrees in the latitude band 60S–60N from March 2000 to the present. 

The dataset was obtained from the transfer protocol website of the JAXA Earth Observa-

tion Research Center (ftp://hokusai.eorc.jaxa.jp). 

2.3.6. TMPA 

The TMPA is the last dataset of the Tropical Rainfall Measuring Mission (TRMM), 

and the main feature of the TMPA algorithm is the dense sampling of high-quality micro-

wave data with fill-ins using microwave-calibrated infrared estimates. The dataset version 

used in this study (TMPA_3B42_daily_V7) was released on May 15, 2016, and was created 

at a spatial resolution of 0.25 degrees by the DISC of NASA [40]. The temporal coverage 

is from 1998 to December 30, 2019, the spatial coverage is in the latitude from 50S to 50N, 

and the data source is the DISC of NASA (https://disc.gsfc.nasa.gov/da-

tasets/TRMM_3B42_Daily_7/). 

2.4. The SWAT Model 

The soil and water assessment tool (SWAT) is a basin-scale distributed hydrological 

model. Since the model was jointly developed by the USDA Agricultural Research Service 

(USDA-ARS) and Texas A&M University in the 1990s [41], it has been applied in many 

aspects, including the hydrological simulation and the environmental impact evaluation 

of land-use, land management practices, and climate change. It has also been widely used 

in the adaptability evaluation of satellite datasets in the hydrological model [9,25,42,43]. 

The input data of the SWAT model consist of meteorological data and grid data, in-

cluding terrain data, land-use data, and soil data. The meteorological data are the NW 

stations and the satellite precipitation datasets mentioned above in Section 2.2 and Section 

2.3. The digital elevation model of the Shuttle Radar Topography Mission (SRTM DEM) 

with a spatial resolution of 90m was adopted as the terrain data, which can be obtained 

from the USGS website (https://earthexplorer.usgs.gov/). The soil data are derived from 

the Harmonized World Soil Database (HWSD), which was created by the Food and Agri-

culture Organization of the United Nations (FAO) at a spatial resolution of 500 m. Since 

the land-use types in the upper reaches are almost unchanged due to limited human ac-

tivity, the land-use data were obtained from the National Cryosphere Desert Data Center 

(NCDC, http://www.ncdc.ac.cn/) in one single year of 2010, and the spatial resolution is 

100 m. 

The model setup includes the establishment, calibration, and validation of the model. 

In the lower reaches of the Kaidu River, there are many diversion canals and drainage 

ditches that lack observation data, and great human interference factors may affect the 

comparison in the SWAT model between datasets, and thus the hydrological model is 

limited to the upstream in this study. Besides this, only the data of three NW stations 

upstream were used to establish the hydrological model for the following reasons: (1) the 

lack of snowfall data in RG stations; (2) the significant climate difference between the up-

per and lower reaches. The monthly hydrological data from 2002 to 2019 was used to ver-

ify the simulated streamflow, and the calibration and validation periods were set at 2002-

2010 and 2011-2019, respectively. The SUFI-2 algorithm in SWAT-CUP software was used 

to calibrate the model. After 2000 samplings, the result of the calibration period reached 

“very good”, and the validation period was “satisfactory” according to a widely used hy-

drological model guideline [44]; thus the model can be used to evaluate the satellite da-

tasets. The sensitive parameters obtained in the calibration of the watershed were sorted 

by P-value in the supplementary material (Supplementary Material Table S1). 
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2.5. Evaluation Indexes and Correction Method 

2.5.1. Evaluation Indexes of Datasets Accuracy 

To evaluate the ability of each dataset in terms of precipitation estimate, 4 accuracy 

evaluation indexes were adopted, including the correlation coefficient (CC, optimal value: 

1), root mean square error (RMSE, optimal value: 0), mean Error (ME, optimal value: 0), 

and percent bias (PBIAS, optimal value: 0%). Among them, CC was used to describe the 

fitting degree between the observed data and satellite datasets, RMSE and ME were used 

to describe the average difference and average error between the observed data and sat-

ellite datasets, and PBIAS was used to reflect the percentage of error. 

Three precipitation detection skill indexes were adopted, including probability of de-

tection (POD, optimal value: 1), false alarm ratio (FAR, optimal value: 0), and critical suc-

cess index (CSI, optimal value: 1). Among them, POD reflects the fraction of correctly es-

timated times by satellite datasets and actual precipitation times, FAR reflects the fraction 

of false estimation times and total precipitation times of the satellite datasets, and CSI 

combines POD and FAR, which can reflect the comprehensive ability of precipitation de-

tection [9]. It should be noted that the above three indexes only judge the occurrence or 

non-occurrence of precipitation, and have nothing to do with rainfall intensity. The corre-

sponding calculation formulas are given in Equations (1) to (7) [45]. 

CC =  
∑ [(�� − ����) ∙ (�� − ����)]�

���

�∑ (�� − ����)��
��� ∙ �∑ (�� − ����)��

���

 (1)

RMSE =  �
∑ (�� − ��)��

���

�
 (2)

ME =  
∑ (�� − ��)

�
���

�
 (3)

����� =  
∑ (�� − ��)

�
���

∑ ��
�
���

∙ 100% (4)

POD =  
�

� + �
 (5)

FAR =  
�

� + �
 (6)

CSI =  
�

� + � + �
 (7)

where �� and ����  are the observed precipitation and observed average precipitation of 

the gauge stations, respectively. �� and ����  are the estimated precipitation and average 

estimated precipitation of the satellite datasets, respectively. H is the number of hits when 

the observed value > 0 and estimated value > 0, F is the number of false alarms when the 

observed value = 0 and the estimated value > 0, and M is the number of misses when the 

observed value > 0 and the estimated value = 0. 

2.5.2. Evaluation Indexes of Hydrological Model 

To evaluate the performance of the SWAT model, four widely used indexes were 

used, including Nash–Sutcliffe efficiency (NSE, optimal value: 1) [46], the coefficient of 

determination (R2, optimal value: 1), percent bias (PBIAS’, distinguished from PBIAS in 

Section 2.5.1, optimal value: 0%) and the ratio of mean square error to the standard devi-

ation of the observed data (RSR, optimal value: 0). Among them, NSE indicates the fitting 

degree between the observed–simulated data point and the 1:1 line, R2 indicates the de-

gree of collinearity between the observed value and simulated value, and RSR is the RMSE 
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normalized by the standard deviation of the observed value. The corresponding calcula-

tion formulas are given in Equations (8) to (11) [44]. 

NSE = 1 − 
∑ (���� − ����)��

���

∑ (���� − ������)��
���

 (8)

R� = 1 −  
[∑ (���� − ������) ∙ (���� − ������)�

��� ]�

∑ (���� − ������)� ∙�
��� (���� − ������)�

 (9)

P����� =  
∑ (���� − ����)�

���

∑ ����
�
���

∙ 100% (10)

RSR =  
�∑ (���� − ����)��

���

�∑ (���� − ������)��
���

 (11)

Where ����  and ������  are the observed streamflow and average observed 

streamflow of the hydrological station, respectively. ����  and ������  are the simulated 

streamflow and average simulated streamflow by the SWAT model, respectively. 

2.5.3. Datasets Correction Method 

To improve the performance of the satellite datasets, many complex algorithms (e.g., 

deep neural network model and dynamic clustered Bayesian averaging) have been devel-

oped for the dataset’s inter-calibration, merging, and interpolation [11,47]. However, to 

avoid the possible impact of excessive correction parameters on the dataset comparison, 

a relatively straightforward dataset correction method was proposed in this study. The 

method was inspired by a terrain correction method of precipitation datasets [48]. The 

deviation degree between satellite precipitation and observed precipitation usually pre-

sents a linear distribution at different elevations [49], which can be utilized to enlarge or 

reduce the satellite data. The corresponding equations are given in Equations (12) to (14). 

��
�  =  μ ∙ �� = (�� + �) ∙ �� (12)

� =

∑ �(�� − ����) ∙ �
��,�

��,�
−

��,���

��.���
���

���

∑ [(�� − ����)�]�
���

 
(13)

� =  
��,���

��.���

− � ∙ ����  (14)

where ��
�, ��, μ and � are the corrected satellite precipitation, raw satellite precipitation, 

correction coefficient, and elevation, respectively. ��,�, ��,� and �� are the satellite precip-

itation, observed precipitation, and elevation at the location of the �th station, respec-

tively. ��,��� , ��.���  and ����  refer to average satellite precipitation, average observed 

precipitation, and elevation at the locations of all stations. 

3. Results 

3.1. Comparison Between RG Station Data and Satellite Precipitation Datasets 

Since the construction time of the in-situ RG station varies from 2010 to 2012, the 

evaluation period is selected to be from April to October of each year from 2013 to 2019, 

which is covered by all in-situ stations and satellite precipitation datasets. Eighty stations 

with good data quality, including the NW station, were selected for the verification, and 

the stations that failed to pass the quality control were removed. The quality control pro-

cesses included climatological limit checks, internal consistency checks, time consistency 

checks, and missing data checks. Three stations were removed due to excessive missing 
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data. The grid data of satellite precipitation were extracted to points so as to be compared 

with observed data. 

3.1.1. Evaluation Indexes Performance 

The results of the evaluation index calculation are presented by box diagrams and 

table, whereby diagrams are used to show the distribution of 80 stations, and the table is 

used to show the average value of 80 stations. On the daily scale (Figure 2 and the upper 

half of Table 2), the GPM dataset had the best CC overall, with an average value of 0.52, 

and the average CC rankings of six datasets were as follows: GPM > CMORPH > GSMaP 

> CDR > TMPA > CHIRPS. GPM and CDR performed better than other datasets in terms 

of RMSE, with an average value of 2.27mm and 2.38mm. The performance of all datasets 

in ME and PBIAS was similar. CMORPH and TMPA overestimated the rainfall with an 

average ME of 1.08mm and 0.47mm, and an average PBIAS of 260.23% and 93.87%, re-

spectively. GPM underestimated the rainfall with an average ME of –0.38mm and an av-

erage PBIAS of -45.08%, while other datasets slightly overestimated by the average ME of 

0.25mm and the PBIAS from 46.96% to 49.70%. Compared with other datasets, CMORPH 

and TMPA had the most outliers. In terms of rainfall detection, the average PODs of CDR, 

CMORPH, and GSMaP all exceeded 0.80, but they also had lots of false estimations. In 

general, GPM exhibited a relatively better rainfall-detecting skill than others on a daily 

scale. 

On the monthly scale (Figure 3 and the lower half of Table 2), the average CC of each 

dataset was significantly improved, among which CDR and CHIRPS had the most con-

siderable improvement. Therefore, the ranking of average CC also changed to CDR > 

CHIRPS > GPM > GSMaP > CMORPH > TMPA. In terms of RMSE, all the values were 

magnified to different degrees, and the average monthly RMSE of all datasets was around 

20 mm, except for the immense value of CMORPH and TMPA. For ME and PBIAS, the 

monthly scale values were very similar to those on the day scale, CMORPH still highly 

overestimated the rainfall, and GPM was the only underestimated dataset. At the same 

time, the CDR was still the best dataset overall under these two indexes. The performance 

in terms of rainfall detection skill was greatly improved over all datasets, almost all 

months with rainfall events were correctly estimated (average POD: 0.89 for TMPA, 0.99 

for GPM, and 1.00 for the other four datasets), the rate of false estimations was signifi-

cantly reduced (average FAR: 0.16 for CDR, 0.10 for TMPA, and 0.15 for the other four 

datasets), and the overall rainfall detection skill of all datasets was acceptable (average 

CSI: all exceeding 0.80). 

 

Figure 2. The performance of daily data in different evaluation indexes. (The point represents the outlier. For the whiskers, 

the upper and lower boundaries represent the maximum value and minimum value, respectively. For the boxes with color, 

the top, middle and bottom black lines represent first quartile value, median value, and third quartile value, respectively.) 

(a) Correlation coefficient, (b) root mean square error, (c) mean error, (d) percentage bias, (e) probability of detection, (f) 

false alarm ratio, (g) critical success index. 
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Figure 3. The performance of monthly data in different evaluation indexes. (The point represents the outlier. For the 

whiskers, the upper and lower boundaries represent the maximum value and minimum values, respectively. For the boxes 

with color, the top, middle and bottom black lines represent first quartile value, median value, and third quartile value, 

respectively.) (a) Correlation coefficient, (b) root mean square error, (c) mean error, (d) percentage bias, (e) probability of 

detection, (f) false alarm ratio, (g) critical success index. 

Table 2. Average evaluation indexes of all station points at both the daily and monthly scale. 

Time Scale Satellite Data CC 
RMSE 

(mm) 
ME(mm)* PBIAS(%)* POD FAR CSI 

Daily 

CDR 0.32 2.38 0.04 (0.25) 29.92 (46.96) 0.87 0.74 0.25 

CHIRPS 0.29 3.03 0.19 (0.25) 40.60 (49.35) 0.46 0.66 0.24 

CMORPH 0.43 3.22 0.86 (1.08) 244.82 (260.23) 0.81 0.70 0.27 

GPM 0.52 2.27 –0.38 (0.38) –43.28 (45.08) 0.77 0.61 0.34 

GSMaP 0.40 2.56 0.11 (0.25) 39.87 (49.70) 0.87 0.67 0.32 

TMPA 0.31 2.79 0.11 (0.47) 56.31 (93.87) 0.59 0.53 0.34 

Monthly 

CDR 0.69 17.81 1.15 (7.69) 30.98 (48.15) 1.00 0.16 0.84 

CHIRPS 0.63 18.91 5.80 (7.77) 40.97 (49.80) 1.00 0.15 0.85 

CMORPH 0.48 45.07 27.40 (33.60) 257.45 (271.97) 1.00 0.15 0.85 

GPM 0.63 22.00 –11.47 (11.63) –43.26 (45.06) 0.99 0.15 0.85 

GSMaP 0.59 19.58 3.46 (7.70) 41.47 (51.52) 1.00 0.15 0.85 

TMPA 0.42 33.27 3.40 (14.18) 56.70 (94.24) 0.89 0.10 0.80 

* To avoid the counteracting effect of positive and negative values, the average of absolute values are shown in brackets. 

3.1.2. Influence of rainfall intensity on the evaluation index 

The rainfall distribution has significant regional heterogeneity in the Bosten Lake Ba-

sin, and the annual rainfall of each station can vary from 67mm to 505mm. Based on the 

considerations above, it is necessary to evaluate the dataset’s performance under different 

RG stations sorted by rainfall intensity. In Figure 4, each point represents an observed 

station. The x-axis indicates the average annual rainfall of the station, and the color and 

y-axis indicate the performance of different datasets at different station locations under 

different indexes. At the stations with a higher annual rainfall, the fitting degrees of all 

satellite datasets with the observed data were greater (Figure 4a), and there was a signifi-

cant positive correlation (p-value < 0.01) between the annual rainfall and the CC, among 

which CDR and GSMaP had the strongest correlation. Except for CMORPH, the RMSE of 

other datasets increased with the increase in rainfall intensity (Figure 4b). The perfor-

mances of ME and PBIAS were similar, and all satellite datasets were more likely to be 

underestimated at the stations with more rainfall (Figure 4c,d). As the results of three 

rainfall detection indexes showed, in the areas with higher annual rainfall, both the num-

bers of hits and misses had increased, while the number of false alarms decreased notice-

ably. The PODs of CMORPH and GPM showed a decreasing trend, for the reason that the 

misses increase more than the growth of the hits as the annual rainfall intensifies, while 

the PODs of CHIRPS and TMPA showed a decreasing trend due to the opposite situation 
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(Figure 4e). Besides this, the FAR was negatively correlated (P-value <0.01 for all datasets) 

with rainfall intensity (Figure 4f), and CSI was positively correlated (P-value <0.01 for all 

datasets) with rainfall intensity (Figure 4g). On the monthly scale, the relationship be-

tween evaluation indexes and rainfall intensity is similar to that of the daily scale. 

 

Figure 4. Datasets’ daily scale performance under different annual rainfall intensities (mm/a). (a) Correlation coefficient, 

(b) root mean square error, (c) mean error, (d) percentage bias, (e) probability of detection, (f) false alarm ratio, (g) critical 

success index. 

3.1.3. Spatial Distribution of Datasets Performance 

To further understand the performances of different datasets in different regions of 

the basin, the daily data were selected for evaluation due to their more significant spatial 

variability compared with monthly data, and the CC and ME were adopted as evaluation 

indexes. In Figure 5, the larger the yellow circle is, the stronger the correlation between 

the satellite datasets and the observed data is. As the results are shown, the CC of CDR is 

not high (varies from 0.22 to 0.43), but its stability is the best in different regions of the 

basin, which was consistent with the result in the box plot (Figure 2a). The CC level of the 

CHIRPS dataset is the lowest in the whole basin (average 0.29), and the spatial differenti-

ation is considerable. The excellent performance points of CHIRPS are mainly distributed 

in the upper high-altitude area and the valley area near the mountain pass of the river (CC 

is about 0.30-0.55), while the worse points are mainly distributed in the lower reaches of 

the basin, especially around the lake (CC below 0.25). CMORPH was the second best da-

taset on CC (average 0.43), which has an even spatial distribution, and only a few low 

values appear around the lake downstream. GPM was the best dataset in terms of CC 

performance, both in terms of numerical value (average 0.52) and spatial distribution, and 

the CC of GPM could be maintained at a high level even in the downstream(about 0.40-

0.50 around the lake). The CC performance of GSMaP (average 0.40) was similar to that 

of CMORPH in the upstream, but in the middle and lower reaches, the CC of GSMaP 

performed more weakly than CMORPH except for in the area around the lake. The TMPA 

dataset has greatly uneven spatial distribution in terms of CC, and it performed well in 

the upstream mountainous regions (the average CC is 0.54 when elevation is above 

1500m), but not well in the lower reaches (the average CC is 0.28 when elevation is below 

1100m). 
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Figure 5. Distribution of CC between satellite datasets and measured data at different stations in the basin. 

Compared with CC, the regional characteristics in spatial distribution presented by 

ME were more prominent. In Figure 6, the blue point means underestimation while the 

red point means overestimation, and the darker the color, the stronger the underestima-

tion (overestimation). All datasets underestimated rainfall to varying degrees in the up-

stream, while in the middle and lower reaches, all datasets overestimated rainfall to var-

ying degrees, except for GPM and TMPA (Figure 6). The ME of the CDR in the whole 

basin was the smallest (average 0.02mm), the underestimation in the upstream and over-

estimation in the downstream by CDR were both slight except for a few points, and the 

ME values were –0.28mm and 0.14mm for elevation above 1500m and below 1500m, re-

spectively. The ME of CHIRPS showed great uncertainty in the upstream area, which var-

ied greatly even between adjacent regions. The CHIRPS was the only dataset that overes-

timated the upstream rainfall. Besides this, CHIRPS overestimated greatly in the middle 

reaches from 1100m to 1500m above sea level (average 0.23mm, the second largest in this 

region, after CMORPH). For the CMORPH, its significant overestimation in the whole 

basin was due to the enormous errors in the middle and lower reaches, especially around 

the lake (ME reaches 3.19mm when elevation is between 1045m and 1060m). However, 

like other datasets, CMORPH still underestimated the rainfall by the ME of –0.37mm in 

the upper reaches. The excessive underestimation in the upper reaches makes GPM the 

only underestimated dataset for the whole basin (Figure 6 GPM, Figure 2c,d), but if we 

ignore the upstream area, the performance of GPM in the middle and lower reaches is the 

best in all datasets (–0.11mm when elevation is lower than 1500m). The ME distribution 

of GSMaP was similar to that of CDR with the uniform spatial distribution and concen-

trated numerical distribution, while the difference was that the GSMaP had more outliers 

(Figure 6 GSMaP and Figure 2c). The ME distribution of TMPA was similar to that of 
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GPM, with the same great underestimation in the upstream and the same good perfor-

mance in the midstream, except for the fact that TMPA overestimated rainfall at several 

points around the lake (average 0.62mm from 1045m to 1060m a.s.l.). 

 

Figure 6. Distribution of ME between satellite datasets and measured data at different stations in the basin. 

3.2. Annual and Interannual Performance of Satellite Precipitation Datasets 

The CC, ME, and CSI were selected to evaluate the performances of different datasets 

in different months of the year, and the daily precipitation data of six NW stations were 

adopted, for the reason that there are no observed data from November to March of the 

next year at the RG stations. The same three indexes were also selected to evaluate the 

multi-year performance of each dataset; similarly, the data of six NW stations were 

adopted because of the short construction history (since 2010) of RG stations, and the eval-

uation period was chosen as from 1998 to 2019, covering all datasets as much as possible. 

3.2.1. Performance Variation in Different Months 

The monthly distribution of CC (Figure 7a) showed that all datasets performed best 

in summer (average 0.25 from June to August of all datasets), similarly poorly in spring 

and autumn (average 0.13), and worst in winter (average 0.03). The CC performance of 

CDR and CHIRPS was the most uniform among each month. In winter, CHIRPS and CDR 

were the first and second best datasets, respectively (CDR was 0.07, CHIRPS was 0.09, 

while all other datasets were less than 0.03). The performances of CMORPH and GSMaP 

were similar, their CC value was close in each month, and their best two CC values both 

appeared in July and August. GPM is the best-performing dataset from a year-round per-

spective. Moreover, the GPM dataset clearly showed better fit degrees compared to other 

datasets from March to October (CC average 0.28, while the highest of others was 0.18), 

and the TMPA was the worst dataset in terms of the performance of CC (the average CC 

of TMPA was only 0.03 except in summer). 



Remote Sens. 2021, 13, 221 14 of 26 
 

 

In terms of the ME (Figure 7b), the GPM was still the only dataset that underesti-

mated precipitation throughout the year (average 0.40mm), especially in the summer (av-

erage 1.04mm). The two datasets with the most apparent overestimation were still 

CMORPH and CHIRPS. Still, the magnitude of their overestimation was smaller com-

pared with RG station data (0.17mm for CMORPH and 0.13mm for CHIRPS). The CDR 

and GSMaP were the two best datasets in terms of ME performance, and the precipitation 

was underestimated by them at average values of –0.23 mm and –0.11mm in summer, and 

overestimated by them at average values of 0.07mm and 0.19mm in other seasons, respec-

tively. On the contrary, for TMPA, the precipitation was overestimated by 0.52 mm in 

summer and underestimated by –0.07mm in other seasons, respectively. The perfor-

mances of each dataset in terms of CSI were similar (Figure 7c); they all tended to hit more 

precipitation events from April to September of the year, and among them, the CHIRPS 

dataset performed the worst in summer and the best in winter of all datasets. 

 

Figure 7. Distribution of the evaluation indexes in every month based on NW station daily data. (a) Correlation coefficient, 

(b) mean error, (c) critical success index. 

3.2.2. Trend of Datasets Performance Over the Years 

In spite of the volatility, all the datasets showed an upward trend in terms of CC 

(Figure 8a), with the ascending trend ranking of GPM > TMPA > GSMaP > CMORPH > 

CHIRPS > CDR, and the corresponding linear rising rates were 0.10/10a (p-value=0.01), 

0.06/10a (p-value=0.01), 0.06/10a (p-value=0.05), 0.05/10a (p-value=0.05), 0.04/10a (p-

value=0.10) and 0.02/10a (p-value > 0.10). Among them, the CDR was still the most stable 

dataset in the multi-year evaluation, and the CC values of CDR were all in the range of 

0.2 to 0.4, except in 2009. On the contrary, the CHIRPS was not stable; although its overall 

trend was increasing, it had declined for five consecutive years from 2013 to 2018. The CC 

of GPM reached 0.66 in 2017, which was the highest among all datasets in all years. 

Most of the datasets had a stable ME over the years (Figure 8b), among which CDR 

had the smallest error in almost every year (within ±0.10mm/d in 20 of 22 years). CHIRPS 

showed a slight overestimation every year, with a maximum of 0.23mm/d (2001), while 

GPM showed a serious underestimation every year, ranging from –0.29mm/d to –

0.52mm/d. Except for the abnormally high value in 2002 and the unusually low values in 

2010 and 2011, the GSMaP dataset slightly overestimated the precipitation in the remain-

ing 16 years. In contrast, CMORPH and TMPA were not as stable as the other four da-

tasets. The CMORPH was the most overestimated dataset in every year from 2011, alt-

hough the mean error was not evident before. As for the TMPA, it changed from the most 

underestimated dataset before 2000 to the most overestimated dataset from 2002 to 2010, 

and then dropped to the same underestimation level as GPM after 2015. The performance 

of each dataset changed little in terms of CSI over the years (Figure 8c), among which the 

CDR declinined at the rate of 0.03/10a; GPM and TMPA increased at the rate of 0.04/10a. 

Furthermore, the change rates of other datasets were less than 0.01/10a and did not pass 

the significance test. 
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Figure 8. Smooth line chart of the distribution of the evaluation indexes in every year from 1998 to 2019 based on NW 

station daily data. (a) Correlation coefficient, (b) mean error, (c) critical success index. 

3.2.3. Multi-year Variation of Correlation Coefficient in Each Month 

Given the apparent change in CC compared to other indexes, a more detailed multi-

year monthly change analysis was carried out on CC. The performances of all datasets in 

each month since 1998 are shown by the heat map (Figure 9). Each grid in the graph rep-

resents a month; the darker the color, the greater the correlation coefficient. The CDR and 

CHIRPS showed homogeneity on CC multi-year performance, and they filled every 

month except the no-precipitation months of November 1998 and December 2019 in the 

NW station (Figure 9 CDR, CHIRPS). In April and May, the CDR dataset showed a signif-

icant linear upward trend, with the average rising rates of 0.10/10a and 0.09/10a on CC, 

respectively, while in December, the CC decreased by 0.10/10a. Similarly, the CC of 

CHIRPS had risen by 0.14/10a and 0.09/10a in May and June, respectively, and showed a 

downward trend in January by –0.11/10a. Except for the months mentioned above, there 

was no obvious trend in the other months of these two datasets. 

CMORPH and TMPA were the two worst-performing datasets in winter, especially 

TMPA, which hit only one month with winter precipitation in 22 years (Figure 9. 

CMORPH, TMPA). In May, June, and September, the CMORPH dataset showed an obvi-

ous upward trend, with an average increase rate of 0.13/10a, 0.11/10a, and 0.14/10a in 

terms of CC, respectively. The TMPA dataset showed an increasing trend in June, July, 

and September, and the increasing rates were 0.11/10a, 0.12/10a, and 0.10/10a, respec-

tively, and in other months, neither the TMPA or the CMORPH showed an obvious up-

ward or downward trend. 

The data of GPM and GSMaP both started after 2000 (Figure 9 GPM, GSMaP). Among 

them, the GPM dataset had the most obvious rising trend in all datasets, and its rising 

rates reached 0.13/10a, 0.22/10a, and 0.17/10a in April, May, and October, respectively. 

Although the average increasing rate of the GSMaP in all months was 0.06/10a, ranking 

second in all six datasets, its upward trend was significant only in June by 0.10/10a. 
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Figure 9. Annual correlation coefficient changes in different months of each dataset based on NW station daily data. (a) 

CDR, (b) CHIRPS, (c) CMORPH, (d) GPM, (e) GSMaP, (f) TMPA. 

3.3. Performance in Hydrological Simulations 

Considering the climate variation in different regions of the arid basin, the rainfall 

station data cannot be used for the hydrological modeling of the whole year. Therefore, 

the input meteorological data of the SWAT model are limited to the three NW stations in 

the upper reaches. The calibration period and the validation period of the SWAT model 

are 2002-2010 and 2011-2019, respectively. The calibration of the SWAT model is based on 

the NW station data, using the sequential uncertainty fitting algorithm and taking the 

optimal Nash–Sutcliffe efficiency coefficient as the target. It should be noted that the 

model is not re-calibrated when the input data changed into the satellite datasets, for the 

reason that the inaccuracy of satellite data may lead to unrealistic parameter values for 

the basin [50]. Besides this, to reduce the influence of the initial variables of the model on 

the hydrological simulation, the warm-up period from 2000 to 2001 was adopted for all 

datasets, including the observation data. 

3.3.1. Streamflow Simulation of Raw Satellite Datasets 

The monthly runoff observation data of the Dashankou hydrological station near the 

whole watershed outlet was used for calibration. After more than 2000 samplings in a 

reasonable range of 28 parameters, the model performed well in the calibration period 

(NSE=0.80, R2=0.81, PBIAS’= –4.60%, RSR=0.45). All the indexes declined in the validation 

period, but they were still satisfactory on the whole (NSE=0.63, R2=0.80, PBIAS’=-22.71%, 

RSR=0.61). With all parameters unchanged, the satellite datasets were input into the 

SWAT model, and the simulation results are shown in one figure together with the aver-

age monthly precipitation. In Figure 10, the bars with different colors represent the 

monthly average precipitation of each dataset in the whole basin, the grey dotted line 

represents the monthly observed streamflow, and the solid line with different colors rep-

resents the simulated monthly average streamflow of different datasets. 

As shown in Figure 10b,d the CDR and CMORPH raw dataset were the two best 

datasets in the un-corrected streamflow simulation. Among them, the CMORPH overes-

timated the runoff in the calibration period by –28.92%, which resulted in unsatisfactory 

simulation results, and the performances of the CDR in the calibration period and the 
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CMORPH in the validation period were all satisfactory. In particular, the performance of 

the CDR even exceeded the observed data in the validation period with good performance 

(NSE=0.72, R2=0.79, PBIAS’= –14.35%, RSR=0.53). 

As the only dataset which overestimated the precipitation in the upper reaches in the 

spatial distribution evaluation (Figure 6 CHIRPS), the overestimation of CHIRPS in the 

runoff simulation was also the most obvious in the hydrological simulation, with an over-

all PBIAS’ of –125.98% (Figure 10c). The vast deviation makes the CHIRPS dataset perform 

the worst in all indexes except R2 (calibration: NSE= –3.18, PBIAS’= –108.99%, RSR= 2.05, 

validation: NSE= –6.21, PBIAS’= –144.10%, RSR=2.69.), far away from being satisfactory. 

On the contrary, the obvious streamflow overestimation of TMPA (Figure 10g, overall 

PBAIS’: –27.76%) was not reflected in the spatial distribution (Figure 6 TMPA), and this 

was caused by the temporal variation in the TMPA dataset (Figure 8b). Similarly, the de-

viation makes the TMPA dataset perform the second worst in the calibration period (NSE= 

–0.49, PBIAS’= –46.12%, RSR=1.22), although the low-level precipitation after 2015 com-

pensated for the overestimation (PBIAS’ drop to –8.16%), other indicators still performed 

poorly in the validation period of TMPA (NSE=-0.62, R2=0.12, RSR=1.27), and the overall 

performance was unsatisfactory. 

On the contrary, the poor performance of the GPM and GSMaP dataset was mainly 

due to their underestimation of runoff. As the dataset with the most severe underestima-

tion in the upstream, the underestimation of the GPM dataset was still severe in the runoff 

simulation, and its total percent bias in all simulation years reached 46.84%. Besides this, 

all other indexes were unsatisfactory (calibration: NSE= –0.12, RSR=1.06, validation: NSE= 

–0.67, RSR=1.29). Other than that, the linear fitting degree between the simulation results 

of GPM and the observed runoff was the lowest in all datasets (calibration: R2=0.39, vali-

dation: R2=0.19). The annual average precipitation of the GSMaP was more than that of 

the GPM (137mm compared to 118mm), but the low concentration of precipitation led to 

high evaporation, which sets the GSMaP at the same underestimation level as the GPM 

dataset (overall PBIAS’: 47.46%), and the model’s simulation results were also unsatisfac-

tory (calibration: NSE= –0.32, RSR=1.15, validation: NSE=-0.06, RSR=1.03). However, the 

GSMaP dataset showed an excellent linear fit in the whole simulation process, especially 

in the validation period (R2=0.77, ranking second only to the CDR). 
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Figure 10. Average monthly precipitation and monthly streamflow simulation results of NW station data and six raw 

satellite datasets in the calibration period (2002–2010) and the validation period (2011–2019). (a) Observed data, (b) CDR, 

(c) CHIRPS, (d) CMORPH, (e) GPM, (f) GSMaP, (g) TMPA. 

3.3.2. Streamflow Simulation of Corrected Satellite Datasets 

To increase the applicability of the satellite datasets, a relatively straightforward 

method was proposed to correct all datasets. To adapt to the calibrated parameters of the 

SWAT model, the correction was based on the NW station data, and the correction process 

of each dataset was the same to ensure the comparability between corrected datasets. In 

particular, the correction processes of the TMPA were divided into two periods due to its 

apparent differentiation before and after 2015 (Figure 8b, Figure 10g). The corrected da-

tasets were directly inputted into the calibrated SWAT model, and the simulation perfor-

mance of each dataset was significantly improved except CDR and CMORPH (Table 3). 

The hydrological simulation results and the corrected monthly precipitation of each da-

taset were presented in Figure 11. 

The processes of dataset correction in this study were intended to enlarge or reduce 

the original data directly. Therefore, the dataset with a large bias could be improved after 

correction, while the dataset with small bias may not be promoted obviously (Figure 

11b,d). The deviation in the raw CDR dataset was the smallest of all in the hydrological 
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simulation (about 15%), and after correction, the deviation was further reduced (calibra-

tion: PBIAS’= –5.69%, validation: PBIAS’= –6.65%). However, other model evaluation in-

dexes were negatively affected (calibration: NSE=0.45, RSR=0.74, R2=0.47, validation: 

NSE=0.57, RSR=0.66, R2=0.59). The overall simulation percent bias of the CMORPH raw 

dataset was the second smallest (Figure 10d, PBIAS’=–17.59%). After correction, the simu-

lation result was slightly improved during the calibration period, and slightly decreased 

during the validation period (Figure 11d), and the overall performance remained un-

changed (Table 3). 

The two overestimated datasets were significantly improved (Figure 11c,g), and both 

of them performed “satisfactory” in the calibration period and “good” in the validation 

period (Table 3). Among them, the improvement of CHIRPS was the largest in all datasets 

(Overall index, NSE: –4.58 to 0.65, PBIAS’: –125.98% to 10.71%, RSR: 2.36 to 0.59, R2: 0.67 

to 0.72). The TMPA dataset was also improved by the correction, especially in the valida-

tion period, and the correction exactly filled in the data dislocation before and after 2015, 

and it is worth noting that the percent bias of TMPA was the smallest of all the datasets (–

0.72% in calibration and 1.91% in validation). 

The two underestimated datasets also performed better than before (Figure 11e,f). 

The improvement in the GPM dataset was mainly reflected in the validation period (NSE: 

0.67, R2: 0.68, PBIAS’: 3.83%, RSR: 0.57), and although the simulation result was improved 

to some extent in the calibration period, it was not accurate enough to be evaluated as 

satisfactory (NSE: 0.43, R2: 0.46, PBIAS’: 6.25%, RSR: 0.76). The GSMaP become the best-

performing dataset of all after correction, ranking first in two indexes throughout the 

whole period (NSE: 0.66, RSR: 0.59). Moreover, the comprehensive evaluation of the 

GSMaP-driven model reached “very good” in the validation period (NSE: 0.76, R2: 0.80, 

PBIAS’: 3.49%, RSR: 0.49), which had never occurred in any period of other satellite da-

tasets (Table 3). 
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Figure 11. Average monthly precipitation and monthly streamflow simulation results of NW station data and six corrected 

satellite datasets in the calibration period (2002-2010) and the validation period (2011-2019).(a) Observed data, (b) CDR, 

(c) CHIRPS, (d) CMORPH, (e) GPM, (f) GSMaP, (g) TMPA. 

Table 3. Hydrological model performance under different input datasets. 

Dataset 
Raw Corrected 

Calibration Validation Calibration Validation 

OBS Very good Satisfactory Very good Satisfactory 

CDR Satisfactory Good Unsatisfactory Satisfactory 

CHIRPS Unsatisfactory Unsatisfactory Satisfactory Good 

CMORPH Unsatisfactory Satisfactory Unsatisfactory Satisfactory 

GPM Unsatisfactory Unsatisfactory Unsatisfactory Good 

GSMaP Unsatisfactory Unsatisfactory Satisfactory Very good 

TMPA Unsatisfactory Unsatisfactory Satisfactory Good 
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4. Discussion 

4.1. Outstanding Characteristics of Each Satellite Dataset 

The performances of the datasets can vary in different time scales (Table 2), and the 

CC and precipitation detection indexes, such as POD, FAR, and CSI, were significantly 

improved with the time scale expansion. Among them, the CDR and CHIRPS had the 

largest improvement, which was one of their many similar characteristics, such as their 

excellent performance in winter and stable multi-year mean error. These similarities have 

also appeared in other studies, possibly because both of them were mainly based on in-

frared satellite data [6,32]. On a daily scale, GPM was the best dataset in terms of CC in 

this study, while the best dataset became CDR on the monthly scale. Similar results had 

also been found in other studies, and the GPM datasets, especially the GPM IMERG final 

version, performed better on a daily scale than other datasets, but the CDR was more rel-

evant to the observed data on the monthly or annual scale [25,51]. The error-related in-

dexes, such as ME and RMSE, were amplified with the expansion of time scale. Still, there 

was little change in their deviation degree from the observed data (PBIAS), and some da-

tasets remained almost unchanged (TMPA) or even smaller (GPM). Many studies had 

shown that TMPA and GPM performed well in bias control when the time scale was ex-

tended [9,51,52]. 

Contrary to the excellent winter performance of CDR and CHIRPS, mentioned above, 

the CMORPH and TMPA performed poorly in winter (Figure 9), which was mainly due 

to the limitation of the passive microwave window channels [6,53]. In addition to seasonal 

differences, the performances of different datasets also vary significantly depending on 

altitudes. The CDR and GPM datasets show their stability at different altitudes (Figure 5 

GPM and Figure 6 CDR), which was critical for the application of satellite datasets at a 

watershed scale, for the reason that a complete watershed often has a large vertical drop. 

The underestimation of the GPM in Central Asia was reported in its early evaluation [54], 

and the dataset was improved in the plain area since the IMERG initial version was de-

veloped into the current IMERG Final v06, but its underestimation was still present in the 

mountain area of the Tianshan Mountain [55]. Conversely, the overestimation of the 

CMORPH mainly occurred in the plain area of the basin. The overestimation of the 

CMORPH was common in arid regions; for example, it overestimated the rainfall by an 

average RMSE of 3.76mm/d in the Arabian Peninsula, while in Algeria it was 2.32mm/d 

[56,57]. 

4.2. Similarity of the Satellite Datasets 

The indexes of each dataset show noticeable zonal distribution on a basin scale, i.e., 

the wetter the zone was, the more likely it was that the satellite datasets tended to under-

estimate, had a better fit degree, and hit more rainfall events (Figure 4 a, d, g). A similar 

performance had also been found in Indochina Peninsula and Pakistan [25,27,58]. Com-

paratively speaking, the influence of terrain factors was weaker; for instance, the fitting 

degrees and the underestimation of the datasets in the low-altitude wet mountain area 

were stronger than those in the high-altitude dry mountain area of the Hanjiang River 

Basin [24]. On a global scale, it was clear that all datasets performed better in the low-

latitude regions, such as the Philippines and Ethiopia, or coastal areas of mid-latitudes, 

such as Northeast China [9,43,51]. As a part of the arid land in Central Asia, this study 

area was one of the worst-performing regions for satellite datasets, which was also sup-

ported by some global or large regional studies [5,6]. 

All datasets performed poorly in winter, with the CC range from 0 to 0.15 and the 

CSI range from 0 to 0.10. Even for those based on infrared remote sensing, winter was still 

their worst-performing season of the year (Figure 7 a, c and Figure 9.). The inaccurate 

estimation of the datasets in winter was one of the reasons for their poor performance in 

the temperate zone, which was also a challenge for the current satellite precipitation re-
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trievals [59]. Each dataset showed varying degrees of improvement in the multi-year per-

formance evaluation (Figure 8 a), and some studies believe that the improvement of pre-

cipitation datasets in the multi-year performance evaluation was due to technological pro-

gress [60]. Nevertheless, the slight dataset improvement in this study cannot be simply 

summed up by technological progress. For the passive microwave products, the reason 

might be the increase in passive microwave samples [6]. For datasets that do not rely on 

the passive microwave, such as CDR and CHIRPS, their improvement was more likely to 

be caused by the slight increase in precipitation under climate change [61]. 

4.3. Similarities and Differences in the Datasets Hydrological Application 

The raw data of CDR showed a strong ability in the monthly runoff simulation (Fig-

ure 10 a), which was consistent with its excellent performance in monthly rainfall and 

winter precipitation estimations (Table 2 and Figure 9). Furthermore, the advantage of the 

CDR in the monthly runoff simulation was mainly manifested in relatively high latitude 

areas, such as the Illinois River Basin [62], but was not prominent in low latitude areas 

[9,25]. The dislocation of TMPA data around 2015 (Figure 10 g) was likely to be affected 

by its new generation product GPM, and 2015 is the first year after the release of the GPM 

[19]. In the same study area, TMPA performed much better when the evaluation period 

changed to 2000-2015 [63]. Compared with the complex and targeted correction methods 

for each dataset, the method used in this study is simple and direct, so as to avoid intro-

ducing other interference factors that may affect the comparison between datasets. 

The performance of the corrected dataset in the validation period was better than that 

in the calibration period (Figure 11), which was consistent with the dataset’s performance 

in the multi-year evaluation (Figure 8a), and besides this, more warm-up years would 

lead to better simulation results in the hydrological model [64], which was another reason 

for the excellent performance in the validation period. Some studies suggest that the ob-

served stations play an irreplaceable role in the watershed-scale hydrological simulation 

[26,42]. On the other hand, integrating the performance of the uncorrected and corrected 

satellite datasets into hydrological simulation, all datasets were “satisfactory” or better in 

this study (Table 3), which means that the satellite precipitation datasets could be a favor-

able choice for data-scarce basins [7,9,65]. 

4.4. Further Study 

For some of the content, the distribution of observed stations may affect their com-

parison with satellite precipitation datasets, which was also a common issue in the re-

search of datasets evaluation and hydrological modeling [7]. The meteorological stations 

tend to be dense in plain areas and sparse in high-altitude mountainous areas. In this 

study, there is only one station available for the hydrological modeling within the up-

stream basin boundary, which may lead to the underestimation of the precipitation input 

compared with the actual value [66]. Consequently, the evenly distributed RG station 

could be used for dataset correction and hydrological modeling in the follow-up study; 

thus the processing of the winter input data will be a challenge, and a discussion of the 

rationality of the model’s parameters is necessary. 

5. Conclusions 

This study evaluated the performances of six gauge-adjusted version satellite precip-

itation datasets, including PERSIANN-CDR_V1_R1, CHIRPS_2.0, 

CMORPH_IFlOODS_V1.0, GPM_IMERGF_V06, GSMaP_V6, and TMPA_3B42_daily_V7 

at a watershed scale, regarding a typical arid land watershed of Central Asia. The research 

work mainly includes the evaluation of the datasets’ accuracy and the hydrological 

model’s applicability, and the findings of this research can be summarized as follows: 
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1. The GPM was the best dataset in the daily scale rainfall evaluation. It had the best 

correlation with observed data, minimum RMSE, slight underestimation, and a rea-

sonably good rainfall detection ability. The CHIRPS and CMORPH performed rela-

tively poorly on a daily scale. Among them, CHIRPS had the worst rainfall detection 

skill, while CMORPH excessively overestimated the rainfall; 

2. The CDR was the best dataset in the monthly scale rainfall evaluation, with excellent 

agreement with observed data (ranked first in CC, RMSE, ME, and PBIAS) and a 

pretty good rainfall detection ability. In contrast, the CMORPH performed defi-

ciently due to its remaining overestimation. Meanwhile, the TMPA had many unsat-

isfying indexes (rank 6th in CC, rank 5th in RMSE and PBIAS) and performed ineffec-

tively in monthly rainfall estimation compared to others; 

3. In wetter regions of the basin, all six datasets tended to perform better. The spatial 

distribution of CDR and GPM was the most uniform, among which the CDR had the 

smallest error value and error differentiation in different locations of the basin, and 

the GPM performed well in correlation with gauge stations in the whole basin; 

4. In the multi-year evaluation, the correlation between each dataset and the NW sta-

tions was improving with time, especially during the rainy season (from April to 

October); among them, the GPM had the largest increase. For the evaluation within 

the year, the CDR and CHIRPS were the two best datasets in the winter performance, 

and all datasets tended to perform better in the summer; 

5. In the application of the hydrological model, the CDR-driven model had the most 

outstanding performance out of the raw satellite datasets, and was even better than 

the observed data-driven model in some years. In the rest of the other datasets, the 

CHIRPS and TMPA overestimated the streamflow in their driven models. At the 

same time, the GPM and GSMaP underestimated the streamflow in their driven 

models, and the CMORPH was the only dataset that was close to being qualified as 

“satisfactory”. 

6. After a simple correction, those datasets with large deviations could get good results 

in terms of hydrological modeling. Taking everything into account, satellite precipi-

tation datasets can serve as an alternative for the related hydrological research in 

data-scarce areas. 
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