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Abstract: The forest volumes are essential as they are directly related to the economic and environ-
mental values of the forests. Satellite-based forest volume estimation was first developed in the 1990s,
and the accuracy of the estimation has been improved over time. One of the satellite-based forest
volume estimation issues is that it tends to overestimate the large volume class and underestimate
the small volume class. Free availability of the major satellite imagery and the development of cloud-
based computational platforms facilitate an immense amount of satellite imagery in the estimation.
In this paper, we set three objectives: (1) to examine whether the long Landsat time series contributes
to the improvement of the estimation accuracy, (2) to explore the effectiveness of forest disturbance
record and land cover data as ancillary spatial data on the accuracy of the estimation, and (3) to apply
the bias correction method to reduce the bias of the estimation. We computed three Tasseled-cap
components from the Landsat data for preparation of short (2014–2016) and long (1984–2016) time
series. Each data entity was analyzed with harmonic regressions resulting in the coefficients and the
fitted values recorded as pixel values in a multilayer raster database. Data included Forest Inventory
and Analysis (FIA) unit field inventory measurements provided by the United States Department
of Agriculture Forest Service and the National Land Cover Database and disturbance history data
added as ancillary information. The totality of the available data was organized into seven distinct
Random Forest (RF) models with different variables compared against each other to identify the
ones with the most satisfactory performance. A bias correction method was then applied to all the
RF models to examine the effectiveness of the method. Among the seven models, the worst one
used the coefficients and fitted values of the short Landsat time series only, and the best one used
coefficients and fitted values of both short and long Landsat time series. Using the Out-of-bag (OOB)
score, the best model was found to be 34.4% better than the worst one. The model that used only
the long time series data had almost the same OOB score as the best model. The results indicate
that the use of the long Landsat time series improves model performance. Contrary to the previous
research employing forest disturbance data as a feature variable had almost no effect on OOB. The
bias correction method reduced the relative size of the bias in the estimates of the best model from
3.79% to −1.47%, the bottom 10% bias by 12.5 points, and the top 10% bias by 9.9 points. Depending
on the types of forest, important feature variables were differed, reflecting the relationship between
the time series remote sensing data we computed for this research and the forests’ phenological
characteristics. The availability of Light Detection And Ranging (LiDAR) data and accessibility of the
precise locations of the FIA data are likely to improve the model estimates further.

Keywords: remote sensing; landsat time series; growing stock volume; forest inventory; harmonic
regression; random forest
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1. Introduction

Forest densities and volumes are the most important forest attributes used by the
forest product industry in forest management and planning. The forest volumes are
directly related to the economic benefits of the forest operations, while the forest densities,
which directly determine the piece-size of logged timber and associated with it investment
returns, are also important elements of various ecosystem functions and wildlife habitats,
such as the maximum basal area suitable for the habitat of the red-cockaded woodpecker
(Picoides borealis) is suggested to be 18.4 m2/ha [1]. Furthermore, the timber volume and
density are directly related to carbon sequestration [2] and sustainability analysis [3].

In the United States, both private and public organizations manage forest inventories
and their measurements. The United States Department of Agriculture (USDA) Forest
Service’s Forest Inventory and Analysis (FIA) unit provides access to data from their large-
scale, continuous forest inventory. The main objectives of the USDA Forest Service FIA unit
are to determine the extent, condition, volume, and growth of forests and the estimation of
the changes in their landbase [4]. The inventory splits the conterminous United States into
28,000 constituent hexagons, with their centers approximately 27.4 km apart. The centers
of the constituent hexagons serve as the field survey points, with each established FIA plot
representing about 2428 hectares. In addition to the central point, three additional satellite
sample points are located around the central point of each hexagonal (Figure 1).

Figure 1. Sampling plot design of Forest Inventory and Analysis (FIA) [5].

All the trees within a plot whose diameter at breast height are greater than 12.7 cm are
measured [5]. Although these data provide a good estimation of volume at the state-level,
they are not suitable for sub-county-level estimations of the stand volumes. Many public
and private landowners conduct separate inventory assessments using ground measure-
ments, forest information systems, and various associated field data. Their inventories
may provide higher-resolution volume estimations, but these systems are spatially limited
to their individual property boundaries, and as privately owned information, they are
generally treated as company assets and are not available publicly.

Satellite-based forest volume estimation was first developed in the 1990s for the pur-
pose of building national-scale forest inventories. This approach combines field inventory
data with satellite or other airborne sensor measurements represented by the imagery.
Statistical models are applied to estimate the volume for each pixel in the raster database
associated with each image. Landsat imagery is the most frequently used type of imagery
with k-nearest neighbors (kNN) methods modeling estimated volumes onto the pixels
spatially corresponding to the ground measurement locations and propagating the same
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information onto other spectrally similar pixels. The combination of FIA ground measure-
ments and estimates of volume mapped on the Landsat TM imagery enables us to develop
a distribution of forest resources at a pixel-level spatial resolution. The first operational
application based on this type of approach was developed in 1990 in Finland [6]. The
product derived through this process was a 30 m resolution raster database with the pixel
based growing stock volume estimates. Following the Finnish example, a similar inventory
was created in Sweden [7,8]. After these successful implementations of the kNN approach
to forest inventory spatial estimates in Finland and Sweden, similar approaches were
applied in many regions and national forest inventories in the USA, Norway, Ireland, and
Japan [9–13]. Recently, Random Forest (RF) algorithm has obtained popularity as another
statistical estimation method.

The developments of various methods based on the use of satellite imagery data and
the advancements in the satellite sensor technology have led to various new developments
of improved kNN-based approaches. In the earlier research involving kNN methods,
satellite imagery was used singularly at an individual date posing problems with cloud
coverage at given times, which was subsequently addressed by creating composite images
spanning over a year [14,15]. Since the release of Landsat imagery to the public domain in
October 2008, there has been a marked increase in the quantity of satellite imagery used in
research [16,17]. A notable improvement was the use of all available Landsat imagery for
the estimations of the land use changes and disturbance tracking [18–20]. In this type of
research, multiple images acquired within established spatial and temporal boundaries
are employed collectively to construct Landsat Time Series (LTS) data, allowing for the
tracking of stand changes over time. The time series datasets are usually decomposed
trends, seasonal changes, and noise components, prior to the analysis of the land use
changes. The raw pixel values of satellite imagery are regarded to be a quasi-systematic
reflection of the land surface [20]. The derivatives of the raw pixel values are then used
as inputs into the land use change analysis. Although the considerable computational
power necessary to analyze all the available satellite imagery has made it more difficult
to perform these types of analyses, the rise of cloud-based computational platforms has
provided the ability for such large-scale geospatial analyses. Google Earth Engine (GEE),
for instance, serves as one of the most prominent platforms for the implementation of
large-scale geospatial analyses [21].

Nguyen et al. [22] discuss two major advantages of using LTS: The first advantage
is that it extracts the records of the spectral information regarding disturbances and re-
generations [23–26]. Second, it fills spatial and temporal data gaps in the estimation. The
incorporation of the forest dynamics is proven to significantly improve the accuracy of
the model estimations. Most of the research based on LTS imagery composite suggests
choosing the best available pixel from the various annual images in each year [27,28]. This
process creates an annual composite of LTS over the time period. Some researchers also
suggest creating a composite LTS using more imagery per year than annual or near-annual
LTS. The utility of seasonal LTS is explored and found to be able to improve the volume
estimation accuracy [29–31]. Wilson et al. [32] performed a harmonic regression on all
available Landsat imagery and found that the estimations showed a two- to three-fold
increase in the explained variance. Wilson et al. [32] thoroughly examined the advantage
of using relatively short LTS (2013–2016) and did not inspect the advantage of using the
longer LTS.

In the study described in this paper, we set the following three objectives on the forest
growing stock volume estimation: (1) to examine whether the long Landsat time series
contributes to the improvement of the estimation accuracy, (2) to explore the effectiveness
of forest disturbance record and land cover data as ancillary spatial data on the accuracy
of the estimation, and (3) to apply the bias correction method to reduce the bias of the
estimation. We developed models that estimate the growing stock volume of forests in
the state of Georgia, United States, using an RF regression. The models’ accuracy were
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evaluated by the Out-of-bag (OOB) score and the relative RMSE (rRMSE). The bias of the
models was evaluated by the relative bias (rB).

2. Materials and Methods
2.1. Research Overview

The workflow of this study is illustrated in Figure 2. The following analyses were
completed for each objective. For the first objective, we prepared two types of LTS with
imagery originating from a distinct time range in each data. Subsequently, we transformed
the time series data into Fourier series via harmonic regression. From each series, we
retrieved the key values that were used as the feature variables of the RF regression and
created a multilayer raster, in which pixel values represent the key values. We combined
the publicly available field inventory data with the multilayer raster data to create the
tabular data used in the RF regression with various combinations of the feature variables to
determine the best combination of them and to test the importance of individual features.
For the sake of the second objective, we added two types of ancillary raster data to the
combination of the feature variables derived from LTS. The first type of data was raster
data, in which the pixel values represent the last disturbance year of the forest stands since
1987. Another ancillary data was land cover data. Next, we examined the contribution
of these two ancillary databases to the estimation. For the third objective, we examined
the impact of the bias correction model on the predictions when it was applied to the
best RF model of all the models we built. Finally, based on the results of the work, we
considered the differences between all the various situations and the factors contributing
to the improvements of the estimations.

Landsat Dataset

Short Landsat Time Series

Tasseled cap

Coefficients

Long Landsat Time Series

Tasseled cap

Coefficients

Fitted
values

9 variables x 3 bands 9 variables x 3 bands
FIA Field plot

data

Dataset

Multiband raster

Extract raster
value

7 RF
regression

models

Last Disturbance
Year

National Land Cover
Database 

Harmonic Regression

Model
evaluation

Fitted
values

Bias
Correction

Figure 2. Flow chart of the research.
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2.2. Study Area

Our study area is the state of Georgia, United States. Georgia is located in the south-
eastern region of the United States and contains approximately 15 million ha of land area
(Figure 3). In the Southern Coastal Plain plantation forests are often intensively managed.
The main plantation species is loblolly pine (Pinus taeda), which has a rotation age of
20–25 years under intensive management [33,34]. The Southeastern Plains ecoregion is
covered by a mosaic of cropland, pasture, woodland, and forest. The Piedmont ecoregion
is located between the Appalachian Mountains and the Southeastern Plains, and it includes
the Atlanta metropolitan area, where more than 50% of the Georgia population resides. In
the Appalachian mountain area, most of the forests are hardwood or mixed forest that are
less frequently disturbed [35].

Figure 3. Study area and its ecoregions.

2.3. Satellite Data

All of the satellite data in this study were queried and processed using the GEE
platform. All of the Landsat data were selected from the Level-1 Precision Terrain cor-
rected product (L1TP) for 13 path/row combinations, as shown in Figure 3. The L1TP
satisfies both radiometric and geometric criteria set by the United States Geological Survey
(USGS) [36]. From the L1TP collection, we selected Landsat 5 TM and Landsat 7 ETM+
Surface Reflectance data, which were generated using the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) algorithm [37].

We compiled two different time ranges to create distinctive LTS. The short range was
limited to 3 years and ranged from the beginning of 2014 to the end of 2016. The long
range was set to 33 years, spanning from 1984 to 2016. All available images were queried
for each time range. For the two sets of images, clouds, cloud shadows, water, and snow
interference were masked out using the C Function of Mask (CFMask) algorithm [38–40].
For convenience, we refer to the long Landsat time series as the “Long Landsat Time
Series” (LLTS) data. Similarly, we call the short Landsat time series as the “Short Landsat
Time Series” (SLTS) data. Additionally, we computed the Tasseled Cap Brightness (TCB),
Tasseled Cap Greenness (TCG), and Tasseled Cap Wetness (TCW) using surface reflectance
data. The coefficients calculated in [41] were applied to compute the TCB, TCG, and TCW.
Subsequently, these values were input into a multilayer time series raster. Additionally,
an ordinary least squares, harmonic regression was performed to fit the Fourier series to
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each Tasseled Cap band for both SLTS and LLTS (Figure 4). The form of the Fourier curve
is derived from [42] and is as follows,

Ŷt = β0 + β1t + β2 cos(2πωt) + β3 sin(2πωt) (1)

where Ŷt: Fitted values for the imagery taken at t, β0: Intercept, β1: Slope, β2: Cosine term
coefficient, and β3: Sine term coefficient.

We fixed ω = 1 so that the Fourier curve has a single cycle in a year, although there
is previous research that assigns ω a greater value than 1 to obtain multiple cycles in a
year [43]. All four coefficients of the Equation (1) are stored as the raster values. The
amplitude is computed as follows.

amplitude =
√

β2
2 + β2

3 (2)

The impact of the amplitude is on the height of the wave. Fitted values were computed
for all the dates for which LTS was acquired. Next, we calculated the maximum, minimum,
mean, and RMSE from both the fitted and the observed values (Figure 5). Consequently,
9-band imagery was created for each band by stacking all derived metrics. Then, each of
the bands generated from SLTS and LLTS was compiled to create the single raster layer
used for the subsequent analysis.
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Figure 4. Harmonic regression on Tasseled Cap Wetness (TCW) of Landsat Time Series (LTS). Top:
evergreen forest (Lon. −81.790, Lat. 31.063). Bottom: decidous forest (Lon. −82.052, Lat. 31.8389).
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Figure 5. Harmonic regression on TCW of LTS of an evergreen forest (Longitude: −81.789827,
31.062906).

2.4. Ancillary Databases

In addition to the remote sensing data, we used two ancillary databases, which had
the potential to help to improve the RF predictions. The first of these was the 2016 National
Land Cover Database (NLCD) Land Cover products for the conterminous United States [44].
The Multi-Resolution Land Characteristics consortium created the 2016 NLCD to provide
consistent multi-temporal land cover, and land cover change maps for the conterminous
United States at 30 m spatial resolution. The 2016 NLCD classifies the land into 16 classes.
Out of these 16 classes, the land where shrubs or trees cover more than 20% of the area is
classified either as deciduous forest, evergreen forest, mixed forest, or woody wetlands.
We note that more than 20% of the FIA field inventory data are positioned on locations
where the land cover class is not forested Table 1. We included all field inventory data that
is classified as non-forest in a later analysis, as the NLCD misclassifies some of the forest
pixels as a non-forest class. The second ancillary database used in this research was the
last disturbance year map of Georgia. This map depicts the most recent disturbance that
occurred between 1984 and 2016 for every land area in the entire state of Georgia at 30 m
spatial resolution [45]. Regardless of the current land use, a pixel without any disturbance
record between 1984 and 2016 is classified as undisturbed.

Table 1. National Land Cover Database (NLCD) 2016 Land Cover Class on the FIA field plots.

Land Cover Class Class 1 # of Plots Mean Volume
(m3/ha)

# of Plots
Disturbed 2

Water 0 4 220.61 2
Developed 0 43 330.14 6
Barren land 0 2 146.99 1

Deciduous forest 3,4 2 191 433.5 21
Evergreen forest 3,4 1 274 431.61 80

Mixed forest 3,4 2 75 416.8 10
Shrubland 0 32 138.43 16

Herbaceous 0 28 148.46 19
Planted/Cultivated 0 51 132.47 2
Woody wetlands 3 2 185 462.28 32

1 0: Non-forest. 1: Evergreen Forest. 2: Non-Evergreen. 2 Disturbance record for each plot was retrieved from [45].
3 Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover. 4 Areas dominated
by trees generally greater than 5 m tall.
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2.5. Growing Stock Estimation

We used the FIA dataset as our ground inventory measurements. Satellite data and
ancillary data were stacked into a multilayer raster that contained 56 bands (54 bands
from satellite data and two bands from ancillary data). To integrate the raster and the FIA
inventory ground measurements data, we requested the USDA Forest Service to extract
the pixel values of the raster data onto the field plot points; they extracted our raster data
onto the point data and provided us with tabular data containing plot ID numbers and the
pixel values of our raster data. We note that all information potentially allowing the data
user to detect the exact coordinate of the plot data was removed by USDA Forest Service in
compliance with the Privacy Act in 1974 [46]. Thus, we do not know the exact locations of
the plots.

The tabular data were aggregated with the FIA’s original database available from the
FIA DataMart (https://apps.fs.usda.gov/fia/datamart/datamart.html). The individual
tree measurement data were available for each plot ID. Although individual tree mea-
surements are available from the four subplots shown in Figure 1, only the data from the
central subplot of a plot were used for the volume calculation, in order to avert the problem
of spatial correlation among subplot observations [10]. Based on the code found in [47],
individual tree data were aggregated into the plot-level growing stock volume per acre
as follows,

Vi =
( mi

∑
j=1

vij
)
× k (3)

where Vi: Per hectare growing stock volume of plot i, vij: Net m3 volume of jth tree in
plot i equivalent to the net volume of wood in the central stem, mi: The number of trees in
plot i, and k: Expansion factor to convert the total growing stock volume of the plot to per
hectare growing stock volume. The distribution of the volume for each plot is illustrated in
Figure 6.

RF is an algorithm that handles large volumes of data within a relatively short compu-
tation time [48]. RF regression is widely used for making data-based predictions, including
forest attribute estimation [32,49,50]. One of the primary advantages of using an RF model
is that it can determine the importance of a variable, which indicates the contribution of
each feature variable to the model prediction. The mean reduction in prediction accuracy
evaluates the importance. One of the known issues of RF involves a potential bias in
the model predictions. Breiman [51] argues that bagging could diminish the extent of
the variance of regression predictors, yet it does not reduce the magnitude of the bias.
On the other hand, because extreme observations are estimated using the average of the
estimation of each tree, large observations close to the maximum value within the data are
underestimated and small values of the regression function are overestimated [52]. When
data are imbalanced, estimations using the RF algorithm are more susceptible to the risk of
bias [53]. Zhang and Lu [52] propose a method to correct the bias in RF.

For the RF regression, the data were split into the dependent variable, which is the
growing stock volume per hectare, and the independent variables that are all derived
from Landsat imagery and ancillary data. We calculated the rRMSE, the relative bias
(rB), and the OOB score. RMSE has been used as the primary determinant of the model
performance [54]. As the absolute value of the RMSE is incomparable between research
conducted in different study areas, the rRMSE, calculated by the following formula, is
used in favor of the RMSE.

rRMSE =
RMSE

ȳ
× 100 (4)

Knowledge of the bias is required to know the direction of the error. Subsequently, rB
is calculated in the same way as rRMSE; they are formulated as follows.

Bias =
∑

ni=1
(yi − ŷi)

n
(5)

https://apps.fs.usda.gov/fia/datamart/datamart.html
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rB =
Bias

ŷ
× 100 (6)

In addition to the evaluation of the entire data, we focused on the smallest and largest
volume group as it is known that the error of the nonparametric estimation of the volume
is usually heteroskedastic [55]. We grouped the field inventory data into deciles based
on the observed growing stock volume. The bottom 10% ranged between 0.1 m3/ha to
12.9 m3/ha, while the top 10% group ranged between 249.1 m3/ha to 682.1 m3/ha. We
calculated the bias for the bottom 10%, middle 80%, and top 10%, separately. The RF
regressor was trained using the training data. Scikit-learn, a Python module that provides
machine learning algorithms for medium-scale supervised and unsupervised problems,
was used to perform the RF regression [56]. The number of decision trees created in the RF
algorithm was set to 500. The mean squared error was selected as the function to measure
the quality of a split in the individual decision trees. Individual decision trees were trained
by the data bootstrapped from the original training data.
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Figure 6. Growing stock volume of FIA plots in Georgia.

First, we built a base model that used the coefficients of the harmonic regression on
SLTS, LLTS and the last disturbance year record as the feature variables (CSL in Table 2).
Next, the fitted values of SLTS, LLTS, and the last disturbance year data were selected as
the feature variables of the second model (FSL in Table 2). In the third model, we selected
both the fitted values and the coefficients of SLTS and the last disturbance year data (CFS in
Table 2). To make a comparison with the third model, the fourth model included both the
fitted values and the coefficients of LLTS, along with the last disturbance year data (CFL in
Table 2). CFSL, meanwhile, used all of the feature variables from the previous models (CFSL
in Table 2). After determining the best combination of the variables, as derived from the
remote sensing data, we divided the data by the forest type, as defined in the 2016 NLCD.
The first group contained only the evergreen forest and was denoted as the Evergreen data.
The second group contained the remaining forest groups listed in Table 1 and was denoted
as the Non-Evergreen data. Then, the RF model was trained and evaluated separately (ESL
and NESL in Table 2). Following this, predictions for each data were aggregated to compute



Remote Sens. 2021, 13, 218 10 of 18

the OOB score and rRMSE as the eighth model (ESL + NESL in Table 3). To compare OOB
between models, we calculated the rate of change as follows,

ROC(%) =
B − A

A
× 100 (7)

where ROC: rate of change; A: rRMSE, OOB, or rB in model A; and B: rRMSE, OOB, or rB
in model B. Percentage point (% point) was used to compare rRMSE and rB.

Table 2. Summary of the feature variables.

Vegetation Index
/Data Source Time Range # of Variables Values

RF Models

CSL FSL CFS CFL CFSL ESL NESL

Features

Landsat TCB

1984–2016 4 Regression co-
efficients X X X X

1984–2016 5 Fitted values X X X X

2014–2016 4 Regression
coefficients X X X X X

2014–2016 5 Fitted values X X X X X

Landsat TCG

1984–2016 4 Regression co-
efficients X X X X

1984–2016 5 Fitted values X X X X

2014–2016 4 Regression
coefficients X X X X X

2014–2016 5 Fitted values X X X X X

Landsat TCW

1984–2016 4 Regression co-
efficients X X X X

1984–2016 5 Fitted values X X X X

2014–2016 4 Regression
coefficients X X X X X

2014–2016 5 Fitted values X X X X X

NLCD 2016 1 Land use class X X

Last disturbance 1984–2016 1 Disturbance
year X X X X X X X

Response FIA dataset 2016 1 Growing stock
volume X X X X X X X

57 variables 14 26 17 32 56 57 57

The bias correction method proposed in [52] was applied to each model to reduce
the bias observed in the top and bottom 10% of the volume classes. In the model, we
conjectured that bias would be attributed to the response variables. To inspect the effect of
the bias correction, the data was split into training and test data, respectively. The ratio of
the training to test data was then set to a 2:1 ratio. We created the RF model for the training
data and computed the residual of the RF regression (e) as follows,

e = Y − f̂ (X)− B(Y) + ε (8)

where Y: The growing stock volume of the observations in the training data, f (X): Pre-
dicted values of the RF regression using feature variables of the training data, B(Y):
Regression bias, and ε: The error term. ε ∼ N(0, σ2).

B̂(Y) = α + β1Y2 + β2Y (9)
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The bias-corrected prediction ( f̂bc) was calculated by subtracting the estimated bias.

f̂bc = f̂ − B̂(Y) (10)

The effect of the correction was evaluated for the test data.

3. Results

We have trained and evaluated the eight models described in the previous section
(Table 3). Among the models using all species for the field inventory data, in terms of the
OOB score, the best model was CFSL. This result, when compared to the OOB score of
CFS, was found to be 35.2% better. The OOB score of FSL was found to be better than CSL
by 2.2%. rRMSE of FSL was 1.6% points better than CSL. Between the models that used
both coefficients and fitted values, CFL showed a better result than CFS. The rRMSE of
CFL was improved by 6.4% points, while the OOB score was improved by 34.4%. Figure 7
shows the feature importance of the top 10 variables in CFSL. The maximum value of
the TCW generated from SLTS had the highest feature importance. ESL and NESL were
trained for the smaller sample sizes, as the data were split based on the forest type. The
evergreen forest had a better OOB score than CFSL by 9%, whereas NESL, which takes
field inventory data from non-evergreen samples, returned a lower OOB score than CFSL.
The OOB predictions of ESL and NESL were aggregated to compute the rRMSE and OOB
score for the entire data (ESL + NESL in Table 3). The rRMSE for the aggregated prediction
was similar to that of CFSL, while the OOB score for the aggregated prediction was worse
than that of CFSL. The feature importance of ESL and NESL was presented in Figure 7.
For evergreen forests, the six most important features were either the TCW or the TCB of
LLTS. For the rest of the species, the maximum fitted values of the harmonic regression
derived from the TCW of SLTS. The second important feature was the maximum fitted
values of the harmonic regression on the TCW of LLTS. In comparison with ESL and NESL,
the maximum fitted values are given greater importance in ESL than in NESL.

Table 3. Summary of the RF models.

CSL FSL CFS CFL CFSL ESL NESL ESL + NESL

Observation Mean 121.21 121.21 121.21 121.21 121.21 113.39 128.16 -
rRMSE 68.93 67.38 71.48 65.09 64.42 59.66 70.50 65.67

rB 4.19 3.48 3.72 2.66 3.79 3.09 4.82 -
OOB_score 34.8 35.87 23.39 35.63 36.11 46.52 34 39.15

Species all all all all all Evergreen non-Evergreen all

The inclusion of LLTS into the set of feature variables was effective. This result
coincides with the result shown in previous research [57]. As is shown in the comparison
between CFS and CFL, the inclusion of LLTS into the set of feature variables contributed
to improving the OOB score. Table 4 shows how many times a variable was selected as
being one of the 10 most important variables in terms of feature importance for CFSL, ESL,
and NESL. The number of features created from LLTS is more than SLTS in CFSL, ESL,
and NESL. In ESL, features derived from LLTS were more important than in the NESL
model. On the other hand, SLTS maintains a degree of importance for the NESL model.
The different effects of LLTS and SLTS on the two models resulting from the different ratios
of the field inventory data with disturbance (Table 1). While 29% of the field inventory
data of evergreen forest has a disturbance record, only 14% of the field inventory data of
the non-Evergreen forest has a disturbance record. As LLTS convolutes the time series
trajectory of Landsat spectral values over long periods of time, features from LLTS gained
importance in ESL, of which field inventory data was taken from the relatively dynamic
and young forest. As SLTS captures recent trends more precisely than LLTS, SLTS gained a
degree of importance for NESL, of which field plot data relate to the relatively stable and
mature forest.
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The bias correction method was applied to each model. The relationship between the
observed growing stock volume and the estimated bias for CFSL is illustrated in Figure 8.
For each RF model, we subtracted the estimated bias from predicted volumes to acquire
the bias-corrected prediction. Bias-corrected prediction reduced rB, bottom 10% bias, and
top 10% bias from the original prediction in all models (Table 5).
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Figure 7. Feature importances of three RF models. Left: CFSL, Center: ESL, and Right: NESL. The abbreviated name for
the feature variable represents <Type of variable>-<Type of tasseled cap component used>-<Length of the Landsat data
used> (i.e., max-w-short represents the maximum value of the fitted values of the harmonic regression on LLTS of TCW).

Table 4. Number of top 10 feature variables for CFSL, ESL, and NESL.

Length Model Max Mean Min RMSE Sin Slope Intercept Total

SLTS
CFSL 1 - - 2 - - - 3
ESL - 1 - - - 1 - 2

NESL 1 - 1 - 2 - - 4

LLTS
CFSL 1 1 - 2 1 1 1 7
ESL 1 2 1 2 - - 2 8

NESL 1 1 - 2 1 1 - 6

Table 5. Summary of the relative bias for each volume group. rB: relative bias, rB_corr: relative
bias with bias correction, middle80: relative bias of the middle 80% volume class, middle80: relative
bias of the middle 80% volume class with bias correction, bottom10: relative bias of the bottom 10%
volume class, bottom10_corr: relative bias of the bottom 10% volume class after bias correction, top10:
relative bias of the top 10% volume class, and top10_corr: relative bias of the top 10% volume class
with bias correction.

CSL FSL CFS CFL CFSL ESL NESL

rB 4.19 3.48 3.72 2.66 3.79 3.09 4.82
rB_corr −2.73 −1.98 −1.48 −0.69 −1.47 −1.26 −2.86

middle80 −16.63 −15.42 −16.19 −11.94 −14.1 −15.17 −15.857
middle80_corr −14.41 −13.08 −13.6 −9.01 −10.91 −12.61 −13.23

bottom10 −69.16 −65.42 −71.37 −71.51 −69.89 −53.39 −71.03
bottom10_corr −56.43 −52.74 −58.14 −60.13 −57.43 −42.03 −56.31

top10 151.93 146.08 159.81 138.88 140.93 141.87 142.24
top10_corr 139.55 132.90 152.97 127.93 131.01 128.26 128.88
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Figure 8. (Top) Bias correction for CFSL. (Bottom) Observed volume vs. bias corrected prediction
in CFSL.

4. Discussion

We constructed multiple models and evaluated them in the previous section for the
three objectives. Regarding the first objective, comparison between CFS and CFL contrasted
the effect of the length of LTS as the difference between these models is only the length of
LTS employed as the feature variables. CFL showed 34.4% better OOB than CFS that it is
reasonable to conclude that using LLTS as feature variables contributes to the improvement
of the estimation accuracy. In addition, CFL reduced the bias of the top 10% volume class
by 21% points from CFS. This difference might be caused by the characteristics of feature
variables derived from LLTS that are less likely to spectrally saturate. The saturation of
the spectral reflectance value of satellite imagery refers to the situation whereby spectral
reflectance values mimic the values normally seen in forest vegetation with dense canopy
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cover. This phenomenon is the decisive factor in the low estimation accuracy of the forest
aboveground biomass and volume estimation, especially when the volume or aboveground
biomass is high [58,59]. The second objective was examined by focusing on disturbance
year and NLCD data. In any model that used disturbance year and NLCD data as feature
variables, these variables did not have importance more than 0.02. This fact indicates that
the contribution of two ancillary spatial data was less important than LTS. The difference
between the OOB score of the model without the disturbance year record and the model
with the disturbance year record was less than 0.01, unlike the previous research that
showed the importance of the disturbance metrics on the model performance [23–25].
The plausible reason for the relative unimportance of the last disturbance year’s data is
that 80% of our field inventory data does not have any disturbance records. To make
the information about the dynamics of the forest stands more relevant to the changes,
combining more metrics acquired from the change detection algorithms (i.e., magnitude of
disturbance and start of regeneration) is necessary. Effectiveness of NLCD was examined
by the comparison between CFSL and aggregated model of ESL and NESL (ESL + NESL
in Table 3) as ESL + NESL is constructed by adding only NLCD land cover class to the
feature variables (Table 2). While the OOB socre of ESL + NESL was better than CFSL,
rRMSE of ESL + NESL was slightly worse than CFSL. Concerning the third objective, the
bias correction method reduced the absolute value of the relative bias for all the models. rB
changed from 3.79% to −1.47% in CFSL, which was the best model among all the models.
The size of the overestimation in the bottom 10% data was reduced by 12.5% point in CFSL.
In addition, the underestimation in the top 10% data was reduced by 9.9% point. These
results coincide with the reported findings in [52].

Our models were compared with the previous research dedicated for the similar
purpose as ours. Although the direct comparison of the accuracy of the model is difficult
as the metrics used to evaluate the model performance depend on the study area, remote
sensing data, and field plot data [54,60], it is possible to make a comparison of the metrics
with the similar research using LTS and the FIA dataset. The accuracy of the best model of
this research (rRMSE = 65%) was better than the estimation shown in [32] (rRMSE = 170%
for total aboveground biomass (kg/ha)), which used FIA dataset and all available Landsat
imagery. Deo et al. [61] built and evaluated aboveground biomass estimation models for
various regions in the U.S. Among the models, the rRMSE for the generic model, which
pools all the data from the regions and use only LTS data as satellite imagery, was 60.8%.
The rRMSE for the site-specific model that used the data only from South Carolina, and
which used only LTS data like satellite imagery, was 73.1%. We note that majority of the
recent research, which employs LTS also used LiDAR data as feature variables [25,57,61–63].
rRMSEs for those research ranged between 15% and 50% if models employed LiDAR data.
The difference between our research, and others, in the rRMSE, is attributed to the fact that
the LiDAR-derived variables have a higher correlation with aboveground biomass and
growing stock volume [64].

The variation of the feature importance among the models shown in Figure 7 reflects
the relationship between the time series remote sensing data we computed for this research
and the forests’ phenological characteristics. More specifically, the importance of the
features was different between species. In NESL, which used only non-evergreen forest
data, the mean fitted values were given lower feature importances than in ESL, which used
evergreen forest data only. On the other hand, the maximum fitted values were given lower
feature importance in ESL than in NESL. The fitted values for the Tasseled cap indices of
the LTS generally correlate to the vegetation density. As the vegetation density correlates
to the growing stock volume, the fitted values can be important feature variables in our
models. The leaf-off season’s fitted values do not have a clear difference between the
large-volume class and the small volume class in non-evergreen forests. Therefore, the
mean fitted values which combine the fitted value of the leaf-off season and the leaf-on
season cannot be an important variable for NESL. On the contrary, the maximum fitted
value captures the highest value at the middle of the leaf-on season that it was given
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higher feature importance for NESL. In ESL, the mean fitted values was important since
the evergreen forest has smaller seasonality than the non-evergreen forest.

5. Conclusions

Forest densities and volumes are the most principal variables used by forest manage-
ment and planning. The developed growing stock volume estimation models using RF
regression for the forest in the state of Georgia, United States, were examined to explore the
variables and the method potentially improve the estimation accuracy. The results of this
research showed that using the long Landsat time series (LLTS) for the predictor variables
of the estimation model improves the OOB of the estimation by 34.4%. Furthermore,
using the bias correction method that attempts to reduce the size of the bias contributes
by decreasing the bias in the small volume class and the large volume class. However,
incorporation of the ancillary spatial data did not improve the accuracy of the model.
Therefore, it is inferred that the ecophisiological variations in each forest are explained
better by the variables derive from LTS. As the RF model presented in this research can
estimate the growing stock volume of the forest stand with 30 m spatial resolution, it is
expected that the data can be used for sub-county areas volume estimations, which is
an important functionality for the forest product industry and land owners in the state
of Georgia.

Finally, to further improve our model in our area of interest, two issues should be
addressed. The first issue is the lack of readily available public LiDAR data. As freely
available LiDAR data cover only a partial area of Georgia [65], we could not incorporate
these data for Georgia. If the availability and coverage of LiDAR were to be improved in
the future, it is expected that a better estimation can be made available. The second issue is
the inaccessibility of the FIA plot location information. Due to this, we could not inspect
the location of the forest, allowing the possibility that some of the sampling plots were
located at the edge or outside of the forest stand boundaries.
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