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Abstract: As an important component of the urban ecosystem, street trees have made an outstanding
contribution to alleviating urban environmental pollution. Accurately extracting tree characteristics
and species information can facilitate the monitoring and management of street trees, as well as
aiding landscaping and studies of urban ecology. In this study, we selected the suburban areas of
Beijing and Zhangjiakou and investigated six representative street tree species using unmanned aerial
vehicle (UAV) tilt photogrammetry. We extracted five tree attributes and four combined attribute
parameters and used four types of commonly-used machine learning classification algorithms as
classifiers for tree species classification. The results show that random forest (RF), support vector
machine (SVM), and back propagation (BP) neural network provide better classification results when
using combined parameters for tree species classification, compared with those using individual tree
attributes alone; however, the K-nearest neighbor (KNN) algorithm produced the opposite results.
The best combination for classification is the BP neural network using combined attributes, with a
classification precision of 89.1% and F-measure of 0.872, and we conclude that this approach best
meets the requirements of street tree surveys. The results also demonstrate that optical UAV tilt
photogrammetry combined with a machine learning classification algorithm is a low-cost, high-
efficiency, and high-precision method for tree species classification.

Keywords: tree species classification; street trees; UAV; machine learning; tilt photogrammetry

1. Introduction

The rapid urbanization of China over the past three decades has resulted in major
environmental challenges, among which air pollution, the urban heat island effect, and
noise pollution are the most prominent [1,2]. The inhabitants of urban environments are
increasingly exposed to severe environmental pollution, which may critically affect their
health and daily activities [3]. As interest in environmental and health issues has grown,
urban environmental health and living comfort are attracting increasing attention. In this
context, the urban vegetation system is important for urban environmental protection and
for improving the urban climate [4,5]. As a component of the urban vegetation system,
street trees play an important role in urban greening and in urban environmental improve-
ment [6]. Tree species identification is an important aspect of street tree research [7,8], and
accurate and rapid tree species information is necessary for various aspects of street tree
management.

In traditional forest management, tree species classification is mainly conducted via
manual visual interpretation, and its classification accuracy depends on the professional
knowledge of the operator; moreover, the method is time-consuming, laborious, and
inefficient. However, with the development of remote sensing, many cutting-edge remote
sensing technologies have been applied to tree species classification, greatly improving
its efficiency and accuracy [9–12]. High-resolution remote sensing data were first applied
to large-scale tree species identification, demonstrating its potential for classifying tree
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species based on various forest characteristics [11,13]. However, urban tree species differ
from those in planted and natural forests, and in addition, the urban background is
complex and the biodiversity is high. As a result, the classification accuracy of urban tree
species based on pixel-based high-resolution remote sensing data is relatively low [14].
Hyperspectral remote sensing data contain rich spectral information and, combined with
airborne lidar, they can distinguish tree species with similar spectral information; this
approach is also highly accurate and, for these reasons, it is often used to classify forest
tree species [15,16]. However, because of the complexity of the urban environment, this
method does not provide detailed information about the understory. Because of its high
positional resolution, rapid scanning speed, and simple source of error, Lidar is used for
tree species identification [17–19]. Lidar data and hyperspectral data complement each
other well, and their combined use can provide spectral information on trees, as well as
high-precision morphological information, which enable the identification of individual
tree species with high accuracy [20–22]. Although this approach has a high recognition
accuracy, it is difficult to apply it widely because of its high cost and complex operation.

Because of the increasing need for classification accuracy, more algorithms are being
applied to tree species classification. Among them, K-nearest neighbor (KNN), random
forest (RF), support vector machine (SVM), and neural networks in machine learning are
widely used in tree species classification [23,24]. The machine learning classifier uses the
spectral information between different tree species, or the difference in the point cloud
structure model, to classify tree species, and it has been shown to provide better practical
results than other algorithms [25–27]. In order to provide higher-precision classification
results, deep learning is increasingly being applied to tree species classification, and deep
learning algorithms can achieve end-to-end feature extraction, which can minimize feature
loss. Among them, the classification accuracy of 3D-CNN, ResNet, and other convolutional
neural networks in hyperspectral, multispectral, and optical data can reach an accuracy of
more than 90% [28,29]. PointNet++ for point cloud data classification has also been applied
to tree species classification with very promising results [30,31]. However, compared with
the more convenient and efficient machine learning, deep learning is difficult to apply
widely in forestry investigation because of its large training sample size, slow speed, and
the high degree of difficulty in model training.

In recent years, unmanned aerial vehicle (UAV) photogrammetry technology has
emerged and is being widely used in surface modelling, determination of coastline, geolog-
ical survey [32–34], and so on. Tilt photography technology is a relatively recent high-tech
development in the field of international surveying, mapping, and remote sensing. The
technique of tilt photogrammetry is an automated method for constructing 3D models that
greatly improves the efficiency of 3D modeling [35,36]. Tilt photogrammetry is capable
of collecting image data from multiple angles such as vertical and tilt for the same drone,
in order to provide complete and accurate texture data and positioning information. The
resulting rich and colorful image information provides more realistic visual effects com-
pared with the 3D model, and it eliminates the cost of 3D modeling [37]. Thanks to its
advantages of mobility, flexibility, low cost, and high safety, it has been widely used in
forestry investigations [35,38–40]. Tilt photogrammetry can rapidly and efficiently gen-
erate high-precision three-dimensional models of trees from different angles, accurately
reflecting their three-dimensional structure. Compared with Lidar, photogrammetry has
greater requirements for light, and because the optical sensor has low penetration, the
accuracy of Lidar is lower when it is required to reflect the internal structure of trees,
compared with high-precision three-dimensional modeling [41]. However, compared with
hyperspectral and lidar data, UAV tilt photogrammetry has the advantages of simplicity of
operation, high efficiency, and low cost [42]. In forestry investigations, the requirements
for work efficiency and cost are often greater than the requirements for accuracy; therefore,
photogrammetry is likely to be the most popular method in future forestry surveys.

In the present study, we have developed a tree species classification method based
on UAV tilt photogrammetry. The approach uses drone tilt photogrammetry to generate



Remote Sens. 2021, 13, 216 3 of 18

a three-dimensional point cloud model of trees, enabling tree attributes to be extracted.
Combined with the classification algorithm method of machine learning, it can provide
effective tree species identification with high efficiency in terms of time and cost.

2. Study Area and Data
2.1. Study Area and Data Acquisition

The selection of the study areas was based on three criteria: (a) the street trees should
be representative of similar areas elsewhere; (b) they should be far from tall buildings
and be free from interference by strong magnetic fields; and (c) they should not be no-fly
zones for drones. After several on-site inspections before deploying a drone, and after
comprehensively considering the above factors, we selected the Huairou District of Beijing
(116◦37′E, 40◦20′N) and the Xiahuayuan District of Zhangjiakou City in Hebei Province
(115◦16′E, 40◦29′N) (Figure 1) as study areas. A total of seven roads were selected in the
two areas, and for the roads, an experimental plot of 50 m in length was selected. The
morphological attributes of trees change as they mature; therefore, the street tree species
selected in this study were mature. Mature trees grow relatively slowly and the species
selected would not have changed significantly over 2–3 years. The main species of street
trees in the experimental areas are Fraxinus pennsylvanica, Ginkgo biloba, Robinia pseudoacacia,
Acer negundo, Populus tomentosa, and Koelreuteria paniculate.
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Figure 1. The study areas and their location in China.

An unmanned aerial vehicle (UAV) was deployed in October 2019 and August 2020,
when the weather was fine and the wind speeds were low. In order to avoid the influence of
light conditions on the results, daily flight times of 10:00 and 14:00 were selected for optimal
light conditions. To ensure the accuracy of the UAV survey, the flying height was set to
30 m, the heading overlap was 80%, and the side overlap was 80%. The data acquisition
platform was the DJI (Da-Jiang Innovations, Shenzhen, Guangdong, China) Phantom 4
RTK (Real Time Kinematic) consumer multi-rotor UAV (Figure 2a). The specific parameters
of the UAV are listed in Table 1, and the flight route diagram is shown in Figure 2b.
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Table 1. Basic parameters of the unmanned aerial vehicle (UAV).

Parameter Value

Maximum take-off weight 1391 g
Flight duration 30 min

Maximum tilt angle Tilt −90◦ to +30◦

Built-in camera pixels 20 million
Maximum ascent speed 5 m/s

Maximum descending speed 3 m/s
Maximum horizontal flight speed 50 km/h

Image sensor 1 inch CMOS (Complementary Metal Oxide Semiconductor)
Induction system Obstacle perception system

2.2. Data Preprocessing

Pix4Dmapper (Pix4D, Lausanne, Switzerland) was chosen for aerial image processing;
it is fully automated and can rapidly process thousands of images into professional and
accurate 2D maps and 3D models. The software uses the principles of photogrammetry and
multi-eye reconstruction from aerial photos to rapidly build a three-dimensional model to
obtain point cloud data and perform post-processing.

The DJI Phantom 4 RTK provides real-time centimeter-level positioning data. Taddia et al.
tested the root mean square error (RMSE) of DJI Phantom 4 RTK tilt photogrammetry data
with and without image control points, and the results showed that the difference in RMSE
between the two was only 0.003 m [43]. The measurement results of the UAV with and
without ground control points used under RTK GNSS (Global Navigation Satellite System)
are very similar, and the error between the two is small. In order to reduce the error caused
by the lack of ground control points, the flying height was set to 30 m. The present study was
intended as a pilot study before conducing a large-scale experiment. An important goal was
to find high-efficiency and low-cost methods of tree species identification; therefore, in order
to improve work efficiency, we rejected the use of ground control points. After importing the
image data obtained by tilt photogrammetry into Pix4Dmapper, the software automatically
reads the image pos information, and then the tilt photogrammetry modeling method and
the coordinate system and projection are set; the default used is the WGS 84/UTM zone 50N
projection coordinate system. The software automatically performs initialization and three
air three encryption operations to generate a three-dimensional model; the generated 3D
model of the plot is then converted to a 3D point cloud form. In the point cloud mode of the
Pix4D-mapper software, the point cloud editing tool was used to manually separate single
trees and split the single tree, and only the tree point cloud part of the plot was retained; a
voxel-based outlier filter was then applied to remove the discrete points [44].
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3. Methods

The single tree attributes of different tree species are quite different, and those of
the same tree species are similar; therefore, tree species are classified according to the
differences in attributes between different species. The experimental steps for achieving
this were as follows: (i) extraction of single tree attributes and accuracy verification;
and (ii) selection of different machine learning classifiers for tree species classification,
and comparison and analysis of the classification results to select the best classifier. The
complete workflow is illustrated in Figure 3.
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3.1. Extraction of Indivual Tree Attributes

According to the individual tree point cloud characteristics, individual tree attributes
(tree height, crown height, crown, width and crown volume) were extracted from the single
tree point cloud data obtained by tilt photogrammetry; these attributes were then used for
tree species identification [45,46].

3.1.1. Tree Height Extraction

Tree height refers to the distance or height of the tree, from the roots on the ground to
the top of the crown [47]. A rectangular coordinate system was established based on the
tree point cloud. In the complete standing tree point cloud data, the top of the standing
tree is its maximum value Zmax in the Z-axis direction, and the base is the minimum value
Zmin in the Z-axis direction; therefore, the tree height HT is the difference between the two
in meters (m):

HT = Zmax − Zmin (1)

3.1.2. Crown Width Extraction

In forestry management, the crown width is generally divided into the east–west
width and the north–south width, according to the direction of the crown width. Because
the point cloud data generated by the PIX4D software is in WGS84 coordinates, the X-axis
and Y-axis directions of the point cloud data in the three-dimensional coordinate system
correspond exactly to the east–west and north–south directions in geographic coordinates.
When using the point cloud data to calculate the crown width, the crown point cloud is
projected onto a two-dimensional plane, and the maximum distance in the X-axis direction
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of the projection surface is calculated as the east–west crown width, and the maximum
distance in the Y-axis direction as the north–south crown width:

LX = Xmax − Xmin (2)

LY = Ymax −Ymin (3)

Here, Xmax, Xmin, Ymax, and Ymin are the maximum and minimum values of the canopy
projection plane in the X-axis and Y-axis directions, respectively, in meters (m).

3.1.3. Crown Height Extraction

In traditional measurements, the problem in measuring crown height is how to dis-
tinguish the lowest part of the crown. If the base of the canopy is relatively complex,
determining the lowest part requires careful observation. In this study, we used the prin-
ciple of threshold segmentation to segment the tree crown and trunk three-dimensional
point cloud. The threshold segmentation used in point cloud segmentation is commonly
used to determine the maximum between-class variance. Assuming that the threshold t is
between the maximum point Zmax and the minimum point Zmin, the threshold t divides
the point cloud into two parts: the canopy point cloud (C) and the trunk point cloud (T).
Therefore, the inter-class variance σ2 of the two types of point cloud height divided by the
threshold t is calculated as follows:

σ2(t) = PC(t)(µC(t)− µ)2 + PT(t)(µT(t)− u)2 (4)

Here, PC is the proportion of the point cloud of the canopy in all point clouds, PT is
the proportion of the point cloud of the trunk in all of the point clouds, µ is the average
height of the tree point cloud, µC is the average heights of the canopy point cloud, and
µT is the mean value of the point cloud of the trunk. According to the optimal threshold
selection principle, when σ2 is at a maximum, the value of t is the optimal threshold; in
this case, the crown height HC is calculated as follows:

HC = Zmax − t (5)

3.1.4. Canopy Volume Extraction

The use of tree point clouds to calculate the crown volume requires the use of the
threshold segmentation method to extract the individual tree crown, followed by the voxel
method to calculate the crown volume [48]. The basic principle of the voxel method to
calculate the crown volume is to divide the crown into numerous small cubes. Choosing
a suitable voxel can reliably simulate the crown shape and internal structure. The tree
canopy is layered first; then, the line connecting the highest and lowest points of the canopy
is taken as the Z-axis, and the canopy is divided into n layers at intervals of k. The point
cloud of each layer is projected onto the XY plane perpendicular to the Z-axis, along the
X-axis and the Y-axis divide voxels at intervals of k. In calculating the canopy volume, it is
necessary to assess whether it contains a point cloud by voxel on each cross section. The
voxel containing the point cloud is the effective voxel and is recorded as 1, and the pixel
without the point cloud is recorded as 0. Counting the number of effective pixels V in each
layer, the crown volume is calculated as follows:

VC = k3
n

∑
i=1

Vi (6)

Here, VC is the canopy volume in m3; k is the side length of the pixel, m; n is the
number of canopy layers; and Vi is the number of effective voxels in the i-th layer.
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3.2. Extracting a Combination of Tree Attributes

When training a classifier, the more attribute parameters that are used, the more often
the various attributes of the classification sample can be taken into account. Therefore,
in this study, we obtained multiple tree parameters via a pairwise combination based on
individual tree attribute factors. The combination of parameters used can be divided into
two complete tree attributes and two crown attribute parameters (see Table 2 for details),
where the crown length LC is the average of the crown width in the east–west direction
and in the north–south direction.

Table 2. Combined attribute parameters.

Types Parameter Formula

Tree attributes
Crown length tree height ratio P1 = LC

HT

Crown height tree height ratio P2 = HC
HT

Canopy attributes Crown length crown height ratio P3 = LC
HC

Crown to width ratio P4 = LX
LY

3.3. Verification of Tree Attribute Extraction Accuracy

In order to verify the accuracy of the extraction of tree attributes, we compared the
individual tree attributes extracted using drone tilt photogrammetry with the results
obtained by traditional measurement methods. Data on tree height, crown height, and
crown width were obtained by field measurement. The traditional method of calculating
crown volume is to regard the crown as a regular geometric body, and then to use the
field measurement of crown width and crown height as parameters to calculate the crown
volume using the geometric volume formula [49]. The approximate geometry and volume
calculation formulas of the crown of each tree species are listed in Table 3.

Table 3. Approximate geometry and volume calculation formulas for different tree species.

Tree Species Crown Type Volume Formula

Fraxinus pennsylvanica oval πx2y
6

Ginkgo biloba conical πx2y
12

Robinia pseudoacacia hemispherical π(3xy2−2y3)
12

Acer negundo conical πx2y
12

Populus tomentosa conical πx2y
12

Koelreuteria paniculate hemispherical π(3xy2−2y3)
12

Here, x is the average crown width and y is the crown height.

3.4. Tree Species Classification

In order to study the effect of different classification algorithms on the experimental
results, we selected four common machine learning classification algorithms for tree species
classification: K-nearest neighbor (KNN), random forest (RF), support vector machine
(SVM), and BP (back propagation) neural network.

In order to avoid the possibility of the verification sample affecting the accuracy of
the model, we used a 10-fold cross-validation method to select the verification sample.
Ten-fold cross-validation means that the original data are divided into 10 groups (usually
divided equally, but sometimes a layered sampling method is used for unbalanced data),
and each data subset is tested separately. The unselected nine data subsets are used as the
training dataset, so that 10 models are obtained. The average of the classification accuracy
of the 10 model validation datasets is taken as the accuracy evaluation performance index
of the validated classifier under the 10-fold cross-validation. In order to further improve the
accuracy of verification, it is often necessary to perform multiple 10-fold cross-validations,
and to take the average of each verification result as the estimate of algorithm accuracy.
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Notably, in each individual folding cross-validation, all steps of the model training process
will be executed independently; that is, each folding validation in a 10-fold cross-validation
is independent of the others. In order to avoid experimental errors caused by difference in
data dimensions, the data are normalized before classification.

In order to evaluate the classification accuracy of several classification models, we used
three common evaluation indicators of classification accuracy: precision, recall, and the
F-measure. The precision is the proportion of the samples that are paired in all samples, and
the recall rate is the proportion of all positive samples that are judged to be positive samples
and are indeed positive samples. The F-measure is the weighted harmonic precision of the
precision and the recall value. It can be used to comprehensively consider the precision
and the recall value, and it is often used to evaluate the quality of the classification model.
F is calculated as follows:

Fα =

(
α2 + 1

)
PR

α2P + R
(7)

where α is the parameter, P is the accuracy, and R is the recall value.

4. Results
4.1. Accuracy of Tree Attribute Extraction

Three-dimensional modeling was performed on tilt photogrammetric images of seven
sample plots obtained by field experiments; data preprocessing was performed after the
modeling data points were clouded, and a total of 94 street trees comprising 6 species was
obtained. The individual tree point cloud results for each tree species after point cloud
data preprocessing are illustrated in Figure 4.
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Tree height, crown width, and crown height measured in the field were compared and
analyzed as the true value; the results were automatically extracted by tilt photogrammetric
modeling, and the absolute error and relative error between the extracted result and the
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true value were calculated. Because of the limitation of the measurement methods, it was
impossible to measure the true value of the crown volume; therefore, here, we do not
consider the extraction accuracy of the crown volume. The calculated results are listed in
Table 4, from which it can be seen that the relative errors between the extraction results of
the four tree attributes and the true values are all less than 20%, with the largest relative
error of 16.32% for tree height. The relative error of the tree height and crown height is
slightly greater than that for crown width. The maximum absolute error and the maximum
average value of the four tree attributes are also for tree height, which are 4.99 m and
1.30 m, respectively. The average absolute error of crown width and crown height is less
than 1 m.

Table 4. Tree attribute extraction results.

Tree Attribute
Absolute Error (m) Relative Error (%)

Minimum Maximum Average Minimum Maximum Average

Tree height 0.01 4.99 1.30 0.15 55.91 16.32
X crown width 0.02 2.35 0.65 0.45 40.98 13.70
Y crown width 0.01 2.79 0.65 0.15 55.35 13.48
Crown height 0.04 4.03 0.95 0.58 78.48 15.66

The relative errors between the tree attribute extraction results for different tree species
and the true values are illustrated in Figure 5. The trend of the extraction accuracy for
the four tree attributes among the different tree species is roughly the same. The species
with the worst extraction accuracy of tree attributes is Fraxinus pennsylvanica, and the
values are all significantly higher than for the other species. The extraction accuracy for
Koelreuteria paniculate, Robinia pseudoacacia, and Acer negundo is better, with the error for
each attribute being less than 14%. Therefore, combined with the calculation results listed
in Table 3, we conclude that the extraction results of the tree features meet the requirements
of the study.
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and Koelreuteria paniculate, respectively.

In order to verify whether the extraction results of tree attributes could reliably repre-
sent the structure of the trees, the correlation between each attribute and the true value was
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analyzed; the crown volume calculated by the geometric method was used as an optimal
value of the crown volume, and the correlation between the voxel method and the ideal
value was determined. It can be seen from the results (Figure 6) that the crown volume
calculated by the voxel method has the highest correlation with the optimal value, with the
correlation coefficient of 0.8417; this demonstrates that the crown volume calculated by the
voxel method reliably reflects the shape of the crown and can be used as a key parameter
for tree species classification. The individual tree attribute that is poorly correlated with
the true value is tree height, with a correlation coefficient of 0.6079, and the correlation
coefficient between crown height and crown width is ~0.7. The correlation coefficient
between each individual tree attribute and the true value is greater than 0.6, indicating an
overall good correlation and that the attributes reliably reflect the true characteristics of
the trees.
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4.2. Accuracy of Tree Species Classification

The five tree attributes calculated as described in Section 4.1 (tree height, crown height,
east–west crown width, north–south crown width, and crown volume) were selected
as training parameters for the sample trees, in order to determine whether they could
provide a comprehensive representation of the characteristics of individual tree species.
Four machine learning classification methods (KNN, RF, SVM, and BP neural network)
were used to classify the tree species, with 10-fold cross-validation used to verify the
classification. The results are listed in Table 5, from which it can be seen that, in terms
of accuracy, recall, and F-value of the four classification methods, the best classification
result is achieved by the BP neural network, with a precision of 85.7%, recall of 84.0%,
and F-measure of 0.843. This is followed by random forest and KNN, with a precision
of ~77.4% and F-measure of ~0.76. The worst classification result was provided by SVM,
with a precision of only 46.3% and F-measure of 0.464. The classification accuracy for
different tree species is quite different. The four classification methods achieved good
results for Populus tomentosa and Ginkgo biloba, with precision rates above 80%. However,
the classification results for Acer negundo and Koelreuteria paniculate are poor, and the
accuracy of the four classification methods is less than 80%, with the accuracy of SVM for
these two tree species being especially low (0%).
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The results of the classification of each tree species are shown in Figure 7. It can be seen
that the best overall classification result is provided by the BP neural network. SVM also
achieved good classification results for some tree species, but the results for Acer negundo
and Koelreuteria paniculate are poor. The SVM divided all 13 cases of Acer negundo into
Fraxinus pennsylvanica and 12 cases of Koelreuteria paniculate into Fraxinus pennsylvanica and
Robinia pseudoacacia.
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Figure 7. Classification results for different tree species using tree attributes. A, B, C, D, E, and F
represent Fraxinus pennsylvanica, Ginkgo biloba, Robinia pseudoacacia, Acer negundo, Populus tomentosa,
and Koelreuteria paniculate, respectively. (a) Random forest; (b) back propagation (BP) neural network;
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Table 5. Classification results of different algorithms. RF, random forest; BP, back propagation; SVM,
support vector machine; KNN, K-nearest neighbor.

Classification Method Tree Species Precision Recall F-Measure

RF

Fraxinus pennsylvanica 80.8% 84.0% 0.824
Ginkgo biloba 91.7% 78.6% 0.846

Robinia pseudoacacia 76.9% 66.7% 0.714
Acer negundo 53.8% 53.8% 0.538

Populus tomentosa 93.3% 93.3% 0.933
Koelreuteria paniculate 60.0% 75.0% 0.667

overall 77.4% 76.6% 0.768

BP neural network

Fraxinus pennsylvanica 95.5% 84.0% 0.894
Ginkgo biloba 91.7% 78.6% 0.846

Robinia pseudoacacia 73.3% 73.3% 0.733
Acer negundo 68.4% 100.0% 0.813

Populus tomentosa 100.0% 93.3% 0.966
Koelreuteria paniculate 75.0% 75.0% 0.750

overall 85.7% 84.0% 0.843
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Table 5. Cont.

Classification Method Tree Species Precision Recall F-Measure

SVM

Fraxinus pennsylvanica 44.6% 100.0% 0.617
Ginkgo biloba 90.9% 71.4% 0.800

Robinia pseudoacacia 54.5% 40.0% 0.462
Acer negundo 0.0% 0.0% 0.000

Populus tomentosa 87.5% 93.3% 0.903
Koelreuteria paniculate 0.0% 0.0% 0.000

overall 46.3% 58.5% 0.464

KNN

Fraxinus pennsylvanica 88.0% 88.0% 0.880
Ginkgo biloba 84.6% 78.6% 0.815

Robinia pseudoacacia 71.4% 66.7% 0.690
Acer negundo 64.3% 69.2% 0.667

Populus tomentosa 92.9% 86.7% 0.897
Koelreuteria paniculate 50.0% 58.3% 0.538

overall 77.5% 76.6% 0.769

4.3. Results of the Classifciation Using Combined Attributes

The results of the four machine learning classification methods presented in Section 4.2
were used to classify the combined attributes of the trees, and the results are listed in Table 6.
It can be seen that that the tree species classification precision for RF, BP neural network, and
SVM using combined attributes is improved compared with that with classification based
on a single tree attribute. The largest improvement is for SVM, with an improvement of
7.7%. However, the classification accuracy of KNN is 13.3% lower than when using a single
tree attribute. The highest classification accuracy among the four methods is still provided
by BP neural network, with a classification accuracy of 89.1%. Although the classification
accuracy of SVM was increased, it is still the lowest among the four methods. From the
perspective of different tree species, the best classification result is for Populus tomentosa,
for which three classification methods had an accuracy of 100%, followed in order of
decreasing accuracy by Ginkgo biloba, Fraxinus pennsylvanica, and Robinia pseudoacacia.
The worst classification results are for Koelreuteria paniculate and Acer negundo, with a
classification precision generally less than 80%. After combining the tree attributes, the
classification precision for SVM for Koelreuteria paniculate and Acer negundo is still 0%, thus
we conclude that the SVM method is not suitable for use as a tree species classifier based
on the measured attributes.

The classification results for different tree species using each classification method
with the combined attributes are illustrated in Figure 8. It can be seen that, compared with
Figure 7, the classification results for all algorithms except for KNN have improved, and
that the misclassification of each tree species is essentially the same as before.

Table 6. Classification results using combined attributes.

Classification Method Tree Species Precision Recall F-Measure

RF

Fraxinus pennsylvanica 84.6% 88.0% 0.863
Ginkgo biloba 92.9% 92.9% 0.929

Robinia pseudoacacia 80.0% 80.0% 0.800
Acer negundo 69.2% 69.2% 0.692

Populus tomentosa 100.0% 93.3% 0.966
Koelreuteria paniculate 75.0% 75.0% 0.750

overall 84.2% 84.0% 0.841
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Table 6. Cont.

Classification Method Tree Species Precision Recall F-Measure

BP neural network

Fraxinus pennsylvanica 95.8% 92.0% 0.939
Ginkgo biloba 95.3% 85.7% 0.889

Robinia pseudoacacia 83.3% 66.7% 0.741
Acer negundo 78.5% 100.0% 0.867

Populus tomentosa 100.0% 93.3% 0.966
Koelreuteria paniculate 81.4% 83.3% 0.769

overall 89.1% 87.2% 0.872

SVM

Fraxinus pennsylvanica 50.0% 100.0% 0.667
Ginkgo biloba 92.9% 92.9% 0.929

Robinia pseudoacacia 81.3% 86.7% 0.839
Acer negundo 0.0% 0.0% 0.000

Populus tomentosa 100.0% 93.3% 0.966
Koelreuteria paniculate 0.0% 0.0% 0.000

overall 54.0% 69.1% 0.567

KNN

Fraxinus pennsylvanica 71.4% 80.0% 0.755
Ginkgo biloba 87.5% 50.0% 0.636

Robinia pseudoacacia 78.6% 73.3% 0.759
Acer negundo 20.0% 23.1% 0.214

Populus tomentosa 73.7% 93.3% 0.824
Koelreuteria paniculate 40.0% 33.3% 0.364

overall 64.2% 62.8% 0.624
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5. Discussion
5.1. Analysis of the Acuarcy of Tree Attributes Extraction

We used image data obtained by optical drone tilt photogrammetry to establish a three-
dimensional point cloud model of street trees using PIX4D software, and then automatically
extracted individual tree attributes. From the perspective of the extraction accuracy of
individual tree attributes, that for crown width is the highest, with an extraction accuracy
close to 90% in both directions. The attribute with the worst extraction accuracy is tree
height, with an accuracy of ~83%; this is because the measurement of tree height is easily
affected by external environmental factors such as wind speed and human operator errors
during field measurement. Another reason for the low accuracy of tree height estimation
is that the tree point cloud model obtained by drone tilt photogrammetry modeling is
blocked by branches and leaves, resulting in a sparse point cloud for the lower part of the
tree, and the lowest point of the trunk cannot be accurately obtained when automatically
calculating the tree height [47,50].

The results for tree attribute extraction reveal pronounced accuracy differences for
different tree species, with the error of each extracted attribute for Fraxinus pennsylvanica
being significantly larger than for the other species. There are several possible reasons for
this, including the irregular crown shape, complex sample site environment, and numerous
noise points. The extraction accuracies for tree height, crown height, and crown width
all exceed 80%, and there is a good correlation between the calculated results and the
true values. Although the results are lower than the extraction accuracy obtained using
Lidar [50,51], we conclude that the attributes used in tree species classification in this study
fulfill our requirements.

Canopy volume is also an important tree attribute and is being increasingly used to
represent the three-dimensional greenness of urban trees [52,53]. The traditional method of
calculating canopy volume only addresses the external crown shape and does not consider
the space within the canopy [49,54]. The voxel method not only reflects the outer contour
of the canopy, but also considers the voids within [48], and it is a good choice for accurately
calculating the crown volume. However, because of the limitations of the experimental
method, the true value cannot be measured; therefore, we did not consider the extraction
accuracy of crown volume and we only analyzed the correlation between crown volume
and the crown shape, with the correlation coefficient between the two canopy volume
calculation methods being high (0.8417). Therefore, the crown volume calculated using the
voxel method in this study reliably reflects the shape of the crown, which is an important
attribute for the classification of tree species.

5.2. Analysis of the Accuracy of Tree Species Classification

In order to study the applicability of different methods of tree species classification,
and to select appropriate classification methods based on tree attributes, four widely-used
machine learning algorithms were selected. We found that the BP neural network classifica-
tion algorithm had the best classification precision among the four classification methods.
For individual tree attributes, the classification precision of the BP neural network algo-
rithm reached 85.7%, and when combined attributes were used, the precision increased to
89.1%. The classification accuracy was higher than that obtained in other machine learning
tree species classification studies [55,56], and the level attained met the requirements of
the study. Among the four classification algorithms, the worst classification result was
provided by SVM, with a classification precision using tree attributes of only 46.3%.

BP neural network is currently the most popular neural network model. It is a multi-
layer feedforward neural network based on error back propagation, and it has strong
nonlinear mapping capabilities and generalization capabilities [57]. Therefore, in its appli-
cation to tree species classification, BP neural network has provided superior performance
in nonlinear multi-classification problems compared with other machine learning algo-
rithms. RF has a high prediction accuracy, has a good tolerance for outliers and noise,
and is not prone to overfitting [58,59]. It is a widely used multi-class classifier and its
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performance in tree species classification is second only to the BP neural network. SVM is a
linear classification method that can classify multi-dimensional data after adding a kernel
function [60]. When the feature regions overlap significantly, the support vector machine is
no longer applicable. Both KNN and SVM are simple machine learning classification algo-
rithms [61]. Unlike SVM, KNN is more suitable for classification using large sample sizes,
while the use of small sample sizes is more prone to misclassification. Different from other
classification algorithms, after adding the combined features, the classification precision is
lower than that using tree attributes. Overall, KNN is only suitable for simple classification,
and the greater the number of classification attributes, the lower the classification precision.

From the perspective of the classification results of the SVM for different tree species,
the results for Ginkgo biloba, Robinia pseudoacacia, and Populus tomentosa were of high quality;
however, the classification precision for Koelreuteria paniculate and Acer negundo was 0%,
which reduces its overall classification precision. The results of a principal component
analysis (PCA) of individual tree attributes and combined attributes are illustrated in
Figure 9; it can be seen that, for individual tree attributes, the distance between the attribute
areas of each tree species is relatively low, and that the distance between the attribute areas
increases after adding the combined attributes. This demonstrates that adding combined
attributes can improve the classification precision of tree species. It can also be seen that the
characteristic areas of Koelreuteria paniculate and Acer negundo mostly overlap, indicating
that the characteristics of these two tree species are similar, and thus the precision of their
classification.
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5.3. Limitations of the Study

Because of resource limitations, we only selected six representative tree species for
study, and as the number of tree species increases, the classification results may change.
Nevertheless, our results can serve as a pilot study for a large-scale urban street tree classi-
fication study in the future. In future research, the number of samples will be increased,
and different seasons and different tree ages will be considered. Although multiple tree
species were generally classified successfully, the classification results were less reliable
for species such as Koelreuteria paniculate and Acer negundo, which have similar attributes.
Moreover, the accuracy of tree species classification achieved in this study is still lower than
for existing classification methods [28–30]; therefore, improving the classification precision
for individual tree species will be the focus of future research. Finally, the superiority of the
BP neural network for tree species classification and in other applications [62–64] points to
a promising research direction of tree species classification algorithms in the future.
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6. Conclusions

Our results demonstrate the feasibility of using tree attributes extracted by optical
drone tilt photogrammetry to classify tree species. Compared with traditional methods, this
approach has the advantages of automation, efficiency, and economy in terms of manpower
and cost. The extraction results of tree attributes revealed that the relative error for tree
height was the largest compared with the true value, followed by crown height and crown
width. From the perspective of different tree species, the relative error of each attribute for
Fraxinus pennsylvanica was the largest, and those for Koelreuteria paniculate, Acer negundo,
and Robinia pseudoacacia were small. In terms of the strength of correlation between tree
attributes and their optimal values, that for crown volume was the highest and that for tree
height was the lowest.

In the automated extraction of tree attributes, different tree species can be accurately
identified based on both individual attributes and combined attributes, with the results
based on combined attributes being superior. In addition, the use of combined attributes
for tree species classification was more accurate than the use of individual attributes.
Among the four classification algorithms, the best classification result was provided by
BP neural network, followed by RF, while the classification results using SVM and KNN
were poor. The best classification results were provided by BP neural network using
combined attributes.
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