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Abstract: The crosshole ground penetrating radar (GPR) is a widely used tool to map subsurface
properties, and inversion methods are used to derive electrical parameters from crosshole GPR data.
In this paper, a probabilistic inversion algorithm that uses Markov chain Monte Carlo (MCMC)
simulations within the Bayesian framework is implemented to infer the posterior distribution of the
relative permittivity of the subsurface medium. Close attention is paid to the critical elements of
this method, including the forward model, data type and prior information, and their influence on
the inversion results are investigated. First, a uniform prior distribution is used to reflect the lack of
prior knowledge of model parameters, and inversions are performed using the straight-ray model
with first-arrival traveltime data, the finite-difference time-domain (FDTD) model with first-arrival
traveltime data, and the FDTD model with waveform data, respectively. The cases using first-arrival
traveltime data require an unreasonable number of model evaluations to converge, yet are not able
to recover the real relative permittivity field. In contrast, the inversion using the FDTD model with
waveform data successfully infers the correct model parameters. Then, the smooth constraint of
model parameters is employed as the prior distribution. The inversion results demonstrate that the
prior information barely affects the inversion results using the FDTD model with waveform data,
but significantly improves the inversion results using first-arrival traveltime data by decreasing the
computing time and reducing uncertainties of the posterior distribution of model parameters.

Keywords: crosshole ground penetrating radar (GPR); probabilistic inversion; Markov chain Monte
Carlo (MCMC); prior; forward model

1. Introduction

The crosshole ground penetrating radar (GPR) method has been widely applied
for geological, environmental, and engineering investigations to characterize subsurface
properties [1–6]. This technique uses high-frequency electromagnetic (EM) waves and
transmission measurements through two boreholes to retrieve the spatial distribution of
electrical properties, including mainly the dielectric permittivity and electrical conductivity,
which determine the geometrical and physical features of the subsurface medium [7].

The inversion of crosshole GPR data involves estimating the dielectric parameters
from the information provided by crosshole measurements [8]. In order to search for model
parameters, deterministic inversion algorithms are extensively used to find an optimal
solution that best fits the observed data [9–11]. In contrast, probabilistic inversion methods
are capable of providing an ensemble of solutions that are statistically acceptable and
quantifying parameter uncertainties [12–17]. Probabilistic inversion treats parameters and
data as random variables, and Bayes theorem is often implemented to derive the posterior
distribution of model parameters from the prior distribution and measured data [18]. The
prior distribution reflects the knowledge of model parameters before observations, and
an informative prior helps to reduce inversion uncertainties and improve the parameter
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searching efficiency [19,20]. The likelihood function measures how well the model fits data
by performing forward simulations and computing the distance between the simulated and
measured data. According to the forward assumptions, the ray-based forward kernels use
the first-arrival traveltime or first-cycle amplitude data, while the wave-based simulators
employ the waveform data. The ray-based forward models are usually computational
efficient, yet utilize only a small portion of the measured data that may bias the inversion
result [21]. Instead, the wave-based forward models (e.g., the finite-difference time-domain
(FDTD) simulator of Maxwell’s equations) take advantage of the full-waveform data for
a better characterization of model parameters at the price of considerable computational
resources [22–24].

In our previous work, a Bayesian inversion method was developed to infer the relative
permittivity values of underground structures from crosshole GPR data [25]. This method
used the FDTD forward simulator with waveform data and achieved better accuracy than
the traditional ray tomography. Yet one main concern of this approach is that it requires
thousands to millions of forward model evaluations for the parameters to converge, leading
to dozens of hours of inversion time, which limits the practicability of this method. In a
later study, a straight-ray forward model was adopted and the computational efficiency
was significantly improved [26]. In probabilistic inversion, the prior information is also an
important aspect which is capable of reducing ambiguity by imposing constraints on the
model parameters [27,28], yet improper prior distribution may distort the inversion result.

Based on the previous research, this paper focuses on the key elements of probabilistic
inversion of crosshole GPR data, and systematically investigates the impact of the forward
model, data type, and prior information on the inversion results. The remainder of this
paper is structured as follows. First, the formulation of the probabilistic inversion method
is briefly introduced. Next, the inversion results using the straight-ray model with first-
arrival traveltime data, FDTD model with first-arrival traveltime data, and FDTD model
with waveform data are investigated. Then, the influence of the prior information on
the inversion results are analyzed, and followed by a discussion of the strengths and
weaknesses of this method. Finally, this paper is concluded with a summary of the
main findings.

2. Formulation of Probabilistic Inversion

The inversion of crosshole GPR data aims at estimating model parameters through
measured data. In a Bayesian sense, the inverse problem can be formulated as

p(m|d) = p(m)p(d|m)

p(d)
∝ p(m)L(m|d), (1)

where p(m) and p(m|d) are the prior and posterior probability density of model parame-
ters m, respectively, L(m|d) ≡ p(d|m) is the likelihood function, and p(d) is the probability
density of data d that serves as a normalizing constant. In this study, the model param-
eters refer to the relative permittivity (εr) values of the subsurface structure, while the
data are the first-arrival traveltimes or waveforms obtained by crosshole GPR measure-
ments. The Bayesian approach treats all information as random variables and infers the
posterior distribution of model parameters from the combination of prior knowledge and
measured data.

2.1. Prior

The prior distribution summarizes all the model parameter information before collect-
ing crosshole GPR data. In this work, a uniform distribution was used because of the lack
of knowledge about the model parameters. In practice, the changes in the spatial distri-
bution of underground media occur gradually. Hence, a smooth constraint of the model
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parameters with the following form is feasible to be included in the prior information to
confine the model structure [27].

p(m) =
1

(2πλ2)
Rx+Rz

exp
(

1
2λ2

(
mT
(

WT
x Wx + WT

z Wz

)
m
))

, (2)

where Wx and Wz are the difference operators in x and z directions with rank Rx and Rz,
respectively, and λ is the standard deviation of the model gradient.

2.2. Likelihood

The likelihood function describes the distance between the simulated and measured
crosshole GPR data. Assuming that the measurement errors are independent and identi-
cally distributed with a normal distribution of zero mean and standard deviation of σ, the
likelihood function can be written as

L(m|d) =
n

∏
i=1

1
2πσ2 exp

(
−1

2

(
fi(m)− di

σ

)2
)

, (3)

where fi(m) and di are the i-th simulated and measured crosshole GPR data, respectively.
n denotes the total number of data. To prevent the value of Equation (3) from approaching
zero when using a large number of data, it is feasible the following logarithmic form

l(m|d) = −1
2

n log(2π)− 1
2

n log(σ2)− 1
2

n

∑
i=1

(
fi(m)− di

σ

)2

. (4)

2.3. Forward Model

Evaluation of Equation (4) requires a forward model f (m) to generate simulated
data. The crosshole GPR uses EM waves for subsurface characterization, and the well-
known Maxwell’s equations govern this process. In two-dimensional space, the Maxwell’s
equations can be simplified in transverse electric (TE) mode

∂Ex
∂t = 1

ε

(
∂Hy
∂z − σeEx

)
∂Ez
∂t = 1

ε

(
∂Hy
∂x − σeEz

)
,

∂Hy
∂t = 1

µ

(
∂Ez
∂x −

∂Ex
∂z

) (5)

where Ex and Ez are the electric fields in the x and z directions, and Hy signifies the magnetic
field in the y-direction. ε, σe and µ are the dielectric permittivity, electric conductivity, and
magnetic permeability of the subsurface medium, respectively.

As analytical solutions of Equation (5) are always tricky, numerical methods are
usually used to resolve the electromagnetic fields. In this work, the FDTD algorithm is im-
plemented for numerical solutions [29]. This approach uses central difference to discretize
the Maxwell’s equations in both the space and time domains, and is capable of simulating
the electromagnetic field at each time step for a given time duration with high precision.
Therefore, the first-arrival traveltimes, first-cycle amplitudes, and full-waveforms, which
are used for the crosshole GPR inversion, can be obtained with an FDTD solver. However,
within the Bayesian inversion framework, thousands to millions of forward model evalua-
tions are needed for the model parameters to converge to their target distribution, and this
CPU-intensive forward kernel makes the inversion a time-consuming task.

To improve the computational efficiency of the probabilistic inversion method, a
straight-ray based forward approach is also considered [30]. This ray-based approach
assumes that the propagation of the EM wave from the source to receiver is along a straight
raypath l, and computes the first-arrival traveltime t by

ti =
∫

li
s(li)dli, (6)



Remote Sens. 2021, 13, 215 4 of 15

where i denotes the i-th measurement, and s signifies the slowness of the EM wave along
the raypath. s is the reciprocal of velocity v derived by v = c/

√
εr, in which c is the EM

wave velocity in vacuum. Equation (6) simplifies the EM wave propagation into a straight
ray and runs much faster than the FDTD model. However, with the straight-ray model,
only the first-arrival traveltime data can be simulated [31].

2.4. Posterior

MCMC simulation is adopted to derive the posterior distribution of model parameters.
This method uses a Markov chain that generates a trial move from the current state, m(i) to
a new position, m∗, and decides whether to accept this jump using the Metropolis ratio [32]

pa

(
m(i), m∗

)
= min

(
1,

p(m∗)
p(m(i))

)
, (7)

where pa(·) is the acceptance probability. In this paper, the DREAM(ZS) package [33], which
is an adaptive MCMC algorithm designed for high-dimensional problems, was used to
explore the posterior distribution of model parameters [34].

3. Reference Model and Data

In this section, a synthetic model is created for simulating crosshole GPR detection of a
defect in an underground concrete structure. As shown in Figure 1a, a 1.0 m × 1.0 m model
was built with εr = 9 to simulate the concrete structure (background), and a 0.2 m × 0.2 m
higher relative permittivity (εr = 12) area was created as the defect (target). Crosshole GPR
measurements were simulated using 11 transmitters on the left side and 26 receivers on the
right side of the model.

In order to obtain crosshole GPR data, the gprMax software [35,36], which is an FDTD
solver of the Maxwell’s equations, was used to perform numerical simulations. The model
depicted in Figure 1a is discretized, with a grid size of 0.02 m × 0.02 m, leading to a total
number of 50× 50 = 2500 unknown relative permittivity values, subject to estimate. The
FDTD simulations use the Ricker wavelet with a center frequency of 500 MHz as the source,
and collect a 20 ns GPR waveform for each transmitter–receiver pair.

(a) (b) (c)Tx Rx

εr = 9 εr = 12

Figure 1. (a) Reference relative permittivity (εr) model, (b) synthetic first-arrival traveltime data, and (c) waveform data.
The red dots and blue triangles denote the positions of crosshole ground penetrating radar (GPR) transmitters and receivers,
respectively.

At each transmitter position, GPR waveforms were collected at all locations of the
26 receivers. A total of 11× 26 = 286 GPR traces were obtained as waveform data, and the
first breaks of the GPR traces were extracted as the first-arrival traveltime data. Figure 1b,c
display the synthetic traveltime and waveform data, respectively. Then, these data were
perturbed with white noise and served as the measurement data. For the first-arrival
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traveltime data, a zero mean and standard deviation of 3% of the mean value (0.24 ns)
Gaussian noise was used as the measurement error. For the waveform data, the signal-to-
noise ratio (SNR) was used to control the noise level, and a Gaussian random noise with
SNR = 20 was generated to simulate the measurement error, which was equivalent to a
standard deviation of 2.06.

4. Effect of Forward Model and Data Type

In this section, the impact of the forward model and data type on the inversion
results is investigated. The straight-ray model computes only first-arrival traveltime data,
whereas the FDTD model simulates the EM fields, from which both first-arrival traveltime
and waveform data can be obtained. Therefore, three cases are discussed in this section,
which are the straight-ray model with first-arrival traveltime data, the FDTD model with
first-arrival traveltime data, and the FDTD model with waveform data.

The forward model and discretized grid size uses the same values of the reference
model shown in Figure 1a, thus a total number of 2500 relative permittivity values need to
be estimated. The discrete cosine transform (DCT) strategy was adopted for dimensionality
reduction [37,38], and 256 DCT-coefficients were used to represent the full parameter space.
The simulated data were computed using source and receiver positions identical to those
used in the synthetic measurements, which produced 11× 26 = 286 first-arrival traveltimes
for the straight-ray model, and 286 GPR traces for the FDTD model. For each GPR trace,
the waveform from 10 to 20 ns, which contains most of the information, was used as
the simulated waveform data. Each waveform consists of 212 data points, and a total of
286× 212 = 60, 632 data points constitute the waveform data for the FDTD model.

MCMC simulation with the DREAM(ZS) algorithm was deployed to sample the
posterior distribution of model parameters. A uniform distribution of model parameters
was used in this section as non-informative prior, and Equation (4) was adopted as the
likelihood function. The setup of the probabilistic inversions with different forward models
and data types is summarized in Table 1. The inversion results are discussed in the
following subsections.

Table 1. Bayesian inversion parameters using uniform prior.

Case No. Forward Model Data Type No. Data No. Parameters Prior Distribution Prior Range

1 Ray Model Traveltime Data 286 256 Uniform 0–40
2 FDTD Model Traveltime Data 286 256 Uniform 0–40
3 FDTD Model Waveform Data 60,632 256 Uniform 0–40

4.1. Straight-Ray Model with Traveltime Data

First, the straight-ray forward model with first-arrival traveltime data was used to infer
the relative permittivity field. After 1,440,000 model evaluations, all parameters converged
to their target distribution, and the last 50% of the parameters after convergence were
considered as posterior samples. Figure 2 displays the histograms of the prior (blue bars)
and posterior (red bars) distribution of three randomly selected parameters. Before inver-
sion, the parameters were uniformly distributed in the prior range. After inversion, the
parameters moved toward the true values marked with black crosses. However, the mean
values were estimated with large errors, and the posterior parameters were distributed in a
wide range with large variance.

Figure 3a–c present three randomly selected posterior realizations. They show sig-
nificant differences in model structure, and none of them resembles the true relative
permittivity model. Figure 3d,e illustrate the maximum a-posteriori (MAP) and posterior
mean realizations, respectively, which fail to reconstruct the correct model structure again.
Figure 3f shows a large variance of posterior model parameters, which means the inverted
parameters have large uncertainties. Therefore, with the straight-ray forward model and
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first-arrival traveltime data, the model parameters converge to a broad range, and the
posterior models do not recover the relative permittivity field correctly.

(a) (b) (c)

Figure 2. Histograms of the prior (blue bars) and posterior (red bars) distribution of three randomly selected parameters
derived from Bayesian inversion using the straight-ray forward model with first-arrival traveltime data. The true values of
the parameters are denoted with black crosses.

(a) (b) (c)

(d) (e) (f)

Figure 3. Posterior solutions using the straight-ray model with first-arrival traveltime data: (a–c) three randomly selected
realizations from the posterior distribution, (d) the maximum a-posteriori (MAP) density solution, (e) the posterior mean
realization, and (f) variance of the posterior solutions.

Figure 4 shows the data fit of the inverted models. It can be seen that the posterior
simulated data are in good agreement with the measured data, and the root mean squared
error (RMSE) values of the posterior models are distributed around the measurement error
(0.24 ns), which means the posterior models fit the data very well. However, the posterior
realizations differ significantly from the actual model (see Figure 3), indicating that a large
number of different model parameters exists that explain the measured data very well.
Therefore, the information provided by the first-arrival traveltime data is insufficient to
retrieve the correct relative permittivity field.
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Figure 4. Fitting of the measurement data by the posterior models derived from Bayesian inversion
using the straight-ray forward model: (a) measured and simulated first-arrival traveltimes, and
(b) histogram of the root mean squared error (RMSE) values of the posterior solutions.

4.2. FDTD Model with Traveltime Data

In the second experiment, the FDTD forward model with first-arrival traveltime data
was evaluated. A total of 1,638,000 iterations were required for all parameters to converge
to their posterior distribution. Figure 5 summarizes all posterior samples and illustrates
the prior and posterior distribution of three randomly selected parameters. After Bayesian
inversion, the model parameters were sampled around their actual values. Compared with
the results using the straight-ray forward model, the posterior model parameters derived
from the FDTD model converged to a smaller range with reduced variances.

(a) (b) (c)

Figure 5. Histograms of the prior (blue bars) and posterior (red bars) distribution of three randomly
selected parameters derived from Bayesian inversion using the finite-difference time-domain (FDTD)
forward model with first-arrival traveltime data. The true values of the parameters are denoted with
black crosses.

The posterior reconstructed relative permittivity models are displayed in Figure 6.
Similar to the realizations obtained from the inversion using the straight-ray forward
model, the FDTD model with first-arrival traveltime data also fails to resolve the reference
model correctly. Although the FDTD forward model reduces parameter uncertainties, it is
not sufficient to produce relative permittivity models that resemble the true one.

The simulated first-arrival traveltimes of the posterior parameters using the FDTD
forward model are shown in Figure 7a. Unlike the case using the straight-ray forward
model, the posterior simulated data using the FDTD model are distributed in a much
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smaller range close to the measured data, and the RMSE values of the posterior models
are slightly higher than the measurement error (see Figure 7b). In this case, the posterior
models using the FDTD forward simulations with first-arrival traveltime data explain the
observed data very well with smaller uncertainties, yet they still failed to converge to the
actual relative permittivity field.

(a) (b) (c)

(d) (e) (f)

Figure 6. Posterior solutions using the FDTD model with first-arrival traveltime data: (a–c) three randomly selected
realizations from the posterior distribution, (d) the maximum a-posteriori (MAP) density solution, (e) the posterior mean
realization, and (f) variance of the posterior solutions.

(a) (b)

Figure 7. Fitting of the measurement data by the posterior models derived from Bayesian inversion using the FDTD forward
model: (a) measured and simulated first-arrival traveltimes, and (b) histogram of the RMSE values of the posterior solutions.
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4.3. FDTD Model with Waveform Data

Next, the use of the FDTD forward model with waveform data to infer the relative
permittivity field was investigated. All the parameters converged to their target distribution
after 156,000 model evaluations, much less than the cases using the first-arrival traveltime
data. The histograms of the prior and posterior distribution of three randomly selected
parameters are presented in Figure 8, in which the posterior parameters are distributed in
a very narrow range and focus on the true values.

(a) (b) (c)

Figure 8. Histograms of the prior (blue bars) and posterior (red bars) distribution of three randomly selected parameters
derived from Bayesian inversion using the FDTD forward model with waveform data. The true values of the parameters
are denoted with black crosses.

The posterior realizations shown in Figure 9 successfully reconstruct the proper
relative permittivity field. The MAP and posterior mean models present similar patterns
and are visually identical to the randomly selected posterior realizations. Small variances
are observed, indicating that the waveform data provide sufficient information for the
inversion algorithm to retrieve the correct model parameters.

(a) (b) (c)

(d) (e) (f)

Figure 9. Posterior solutions using the FDTD model with waveform data: (a–c) three randomly selected realizations from
the posterior distribution, (d) the maximum a-posteriori (MAP) density solution, (e) the posterior mean realization, and
(f) variance of the posterior solutions.

Figure 10a presents the simulated waveforms of the posterior parameters using the
transmitter position of z = 0.5 m and all receiver positions from 0 to 1 m. The posterior
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models exhibit an excellent fit to the observed waveforms. Figure 10b displays the distribu-
tion of the RMSE values of the posterior solutions, which is close to the real value of the
measurement error. Therefore, the FDTD forward model with waveform data is capable of
characterizing the relative permittivity field.

Figure 10. Fitting of the measurement data by the posterior models derived from Bayesian inversion using the FDTD
forward model: (a) measured and simulated waveforms, and (b) histogram of the RMSE values of the posterior solutions.

The inversion results of the three cases using uniform prior distribution are sum-
marized as follows. With first-arrival traveltime data, neither the straight-ray model nor
the FDTD model reconstructs the relative permittivity field correctly. When using the
waveform data, the model parameters converge to the real values, and the model structure
is recovered correctly. This is because there are 2500 unknown model parameters, yet
the first-arrival traveltime data contain only 286 data points, far less than the number of
unknowns. Without additional knowledge about model parameters, a large number of
permittivity models exist that fit the data well. Therefore, the information provided by the
first-arrival traveltime data is not enough to lead the model parameters to their correct
values. On the contrary, the waveform data, which contain 60,632 data points, are much
more informative to infer the model parameters correctly.

5. Effect of Prior Information

In this section, the informative prior defined in Equation (2) is considered, and the
impact of prior information on the inversion results is discussed. Three inversion cases
including the straight-ray model with first-arrival traveltime data, the FDTD model with
first-arrival traveltime data, and the FDTD model with waveform data are analyzed. Except
for the prior distribution, the same inversion setup was used as that in the previous section.
Table 2 summarizes the inversion parameters of the three cases.

When the prior information was accounted for, it cost 144,000, 236,800, and 156,000
model evaluations for the three cases to converge to their posterior distribution. For the
cases using the first-arrival traveltime data, much fewer iterations were needed compared
with their flat-prior counterparts. However, when the waveform data were used, the
prior distribution had little influence on the convergence rate. Figure 11 illustrates the
distribution of a randomly selected parameter for each case. It is obvious that for all three
cases, the parameter converges to a small range and is distributed around the actual value.
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The prior information reduces the parameter uncertainty substantially for the cases using
the first-arrival traveltime data, yet has little impact on the parameter distribution using
waveform data.

Table 2. Bayesian inversion parameters using smooth constraint as prior information.

Case No. Forward Model Data Type No. Data No. Parameters Prior Distribution Prior Range

4 Ray Model Traveltime Data 286 256 Smooth Constraint 0–40
5 FDTD Model Traveltime Data 286 256 Smooth Constraint 0–40
6 FDTD Model Waveform Data 60,632 256 Smooth Constraint 0–40

(a) (b) (c)

(a) (b) (c)

Figure 11. Histograms of the prior (blue bars) and posterior (red bars) distribution of three randomly selected parameters
derived from Bayesian inversion with smooth model constraint using (a) the straight-ray forward model with first-arrival
traveltime data, (b) FDTD model with first-arrival traveltime data, and (c) FDTD model with waveform data. The true
values of the parameters are denoted with black crosses.

Figure 12 displays the posterior realizations using the straight-ray model with first-
arrival traveltime data, the FDTD model with first-arrival traveltime data, and the FDTD
model with waveform data, respectively. For the two cases using the first-arrival traveltime
data, the use of prior information improves inversion results significantly so that the higher
permittivity area can be identified in the MAP and posterior mean realizations clearly. The
MAP models exhibit better spatial resolution, yet suffers from more noise. The posterior
mean models, on the other hand, present a smoother pattern. The posterior model variance
also becomes much smaller compared with the results using the uniform prior distribution.
For the case using the FDTD model with waveform data, the result is little affected by the
prior information.

In Figure 13, the posterior simulated data of the three cases are in good agreement
with the measured data. The use of prior information refines the convergence of parameters
to the correct values, but does not affect the fitting capacity. The RMSE values of the three
cases are close to the correct values and distributed in a small range compared with the
uniform prior cases.

Taken together, Table 3 summarizes the performance of the above numerical experi-
ments involving different forward models, data types, and prior distribution. The number
of iterations and corresponding inversion time measure the computational efficiencies, the
RMSE values of the posterior mean simulations evaluate how well the simulated models
fit the measured data, and the peak signal-to-noise ratios (PSNR) quantify the similarity
between the posterior mean models and the real relative permittivity model [39]. With
uniform prior, the inversions using first-arrival traveltime data (Cases 1 and 2) require
more than one million iterations for the parameters to converge, yet the realizations do
not resemble the true relative permittivity field with low PSNR values of 17.22 and 19.30,
respectively. In contrast, the inversion using the FDTD model with waveform data cost
only 120,000 model evaluations (13 times less than those of Case 2) and achieved a better in-
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version accuracy, with a PSNR value of 28.95. The results indicate that, without additional
knowledge, the first-arrival traveltime data are unable to provide sufficient information to
infer the model parameters. Although the simulated models nicely fit the measurement
data with RMSE values close to the measurement error (0.24 ns), the inverted model struc-
tures differ significantly from the true model. When the smooth constraint was taken into
consideration as prior information, the inversion results using first-arrival traveltime data
(Cases 4 and 5) improved considerably by reducing the number of iterations to 144,000 and
236,800, and increasing the PSNR values to 26.83 and 26.59, respectively. Yet, the inversion
results using the FDTD model with waveform data (Cases 3 and 6) were barely affected
by the prior information, indicating that the waveform data contain sufficient information
to infer the model parameters. The choice of forward model also influenced the compu-
tational efficiency greatly. By comparing Cases 4 and 5, the straight-ray model inversion
achieved almost the same inversion accuracy (PSNR = 26.83) as that of the FDTD model
(PSNR = 26.59), but runs more than 120 times faster than the FDTD model inversion.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Posterior solutions of the Bayesian inversion with smooth model constraint using (a–c) the straight-ray model
with first-arrival traveltime data, (d–f) FDTD model with first-arrival traveltime data, and (g–i) FDTD model with waveform
data. The left and middle columns display the maximum a-posteriori (MAP) density and posterior mean solutions,
respectively, whereas the right column presents the variance of the posterior solutions.

Table 3. Summary of the Bayesian inversion results.

Case No. Forward Model and Data Type Prior Distribution Correctly
Converged No. Iterations Inversion

Time (h) RMSE PSNR

1 Ray Model + Traveltime Data Uniform No 1,440,000 9.52 0.2513 17.22
2 FDTD Model + Traveltime Data Uniform No 1,638,000 767.38 0.2656 19.30
3 FDTD Model + Waveform Data Uniform Yes 120,000 54.17 2.4770 28.95
4 Ray Model + Traveltime Data Smooth Constraint Yes 144,000 0.84 0.2504 26.83
5 FDTD Model + Traveltime Data Smooth Constraint Yes 236,800 102.44 0.2634 26.59
6 FDTD Model + Waveform Data Smooth Constraint Yes 156,000 61.85 2.5037 29.84
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Figure 13. Fitting of the measurement data by the posterior models derived from Bayesian inversion with smooth model
constraint using (a) the straight-ray model with first-arrival traveltime data, (b) FDTD model with first-arrival traveltime
data, and (c) FDTD model with waveform data, respectively. (d–f) Histograms of the RMSE values of the posterior solutions
in correspondence with the three cases.

6. Discussion

The probabilistic inversion with Bayesian inference is able to explicitly treat different
sources of errors, providing a set of statistically acceptable solutions [25]. Compared with
deterministic inversion methods that offer a single realization fitting the observed data,
the probabilistic inversion results are delivered in the form of a posterior distribution of
model parameters that quantifies the uncertainties of the estimation. The probabilistic
inversion method summarizes the information of measured data and prior knowledge, and
explores the posterior distribution of parameters using global optimization approaches
(e.g., the DREAM(ZS) algorithm in this work). This process usually requires a large number
of iterations (thousands to millions, depending on the number of parameters) to converge,
and the results are affected by the prior distribution and data fitting. Therefore, the choice
of forward model, data type, and prior distribution should be carefully considered. Al-
though the inversion using the FDTD model with waveform data has the best accuracy,
the low computational efficiency caused by the CPU-intensive FDTD forward solver is
unacceptable for practical use. The straight-ray forward model, which is much more
computationally appealing, reduces the inversion time remarkably, yet it uses only a small
portion of the information of GPR data and leads to biased posterior distribution. An infor-
mative prior (smooth model constraint) was therefore used to confine the model structure,
thus deriving an improved inversion result. The use of the smooth constraint reduces the
parameter ambiguity, yet it sacrifices the inversion accuracy by forcing the parameters
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to vary gradually. It turns out that there is a trade-off between computational efficiency
and inversion accuracy. For our cases, the inversion using the straight-ray forward model
and first-arrival traveltime data with smooth model constraint achieves very high com-
putational efficiency and acceptable inversion accuracy. Note that when the inversion
problem involves larger parameter differences, greater target sizes or multiple objects, the
applicability of this approach should be further investigated.

7. Conclusions

In this paper, the key components of the probabilistic inversion for the relative permit-
tivity parameters with crosshole GPR data were investigated. The impact of the forward
model, data type, and prior distribution on the inversion efficiency and accuracy was
analyzed. The inversion results on a synthetic example demonstrate that, (1) the waveform
data are much more informative than the first-arrival traveltime data, and are able to infer
the model parameters accurately without additional information; (2) prior knowledge in
the form of model constraint is necessary for the inversions using the first-arrival traveltime
data to reconstruct the relative permittivity field correctly; (3) the straight-ray forward
model is much more CPU-friendly than the FDTD model (more than 120 times faster),
and better facilitates the probabilistic inversion, which requires a large number of model
evaluations. Future work should involve analysis of the applicability to more complex
model structures and real-world cases.
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