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Abstract: This study assessed four near-real-time satellite precipitation products (NRT SPPs) of
Global Satellite Mapping of Precipitation (GSMaP)—NRT v6 (hereafter NRT6), NRT v7 (hereafter
NRT7), Gauge-NRT v6 (hereafter GNRT6), and Gauge-NRT v7 (hereafter GNRT7)— in representing
the daily and monthly rainfall variations over Taiwan, an island with complex terrain. The GNRT
products are the gauge-adjusted version of NRT products. Evaluations for warm (May–October) and
cold months (November–April) were conducted from May 2017 to April 2020. By using observations
from more than 400 surface gauges in Taiwan as a reference, our evaluations showed that GNRT
products had a greater error than NRT products in underestimating the monthly mean rainfall,
especially during the warm months. Among SPPs, NRT7 performed best in quantitative monthly
mean rainfall estimation; however, when examining the daily scale, GNRT6 and GNRT7 were
superior, particularly for monitoring stronger (i.e., more intense) rainfall events during warm and
cold months, respectively. Spatially, the major improvement from NRT6 to GNRT6 (from NRT7 to
GNRT7) in monitoring stronger rainfall events over southwestern Taiwan was revealed during warm
(cold) months. From NRT6 to NRT7, the improvement in daily rainfall estimation primarily occurred
over southwestern and northwestern Taiwan during the warm and cold months, respectively. Possible
explanations for the differences between the ability of SPPs are attributed to the algorithms used
in SPPs. These findings highlight that different NRT SPPs of GSMaP should be used for studying
or monitoring the rainfall variations over Taiwan for different purposes (e.g., warning of floods in
different seasons, studying monthly or daily precipitation features in different seasons, etc.).

Keywords: near-real-time; complex terrain; satellite; global precipitation mission

1. Introduction

Satellite precipitation products (SPPs) have been applied for research across many
different subjects. In the literature [1–7], one of the most frequently adopted SPPs for
studying rainfall variation over East Asia is the Tropical Rainfall Measurement Mission
(TRMM) Multi-satellite Precipitation Analysis 3B42 (TMPA 3B42). However, TMPA 3B42
was concluded in December 2019. The Global Precipitation Mission (GPM), launched in
February 2014, continued the global, high spatiotemporal resolution precipitation obser-
vation after TRMM. In association with GPM, two SPPs were developed: (1) Integrated
Multi-satellite Retrievals for GPM (IMERG) [8] and (2) Global Satellite Mapping of Precip-
itation (GSMaP) [9]. Both IMERG and GSMaP provide various types of SPPs, including
gauge-adjusted products and near-real-time products (depending on the data release
time) [10,11]. Recently, many studies have focused on assessing the ability of these SPPs to
represent rainfall characteristics over various regions [12–17]. In general, the late-release,
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gauge-adjusted products are expected to have a more accurate rainfall estimation than
the early release, near-real-time products [17–19]. In contrast, for monitoring the devel-
opment of extreme rainfall events that might lead to huge disasters and economic loss,
the near-real-time products would be more valuable [20].

Located in the Western North Pacific region of Eastern Asia, Taiwan is an island with
a large low-plane area in the west, a central mountain range extending north-to-south,
and a small-plane area in the east [4]. During the warmer half of the year (May–October),
Taiwan is frequently affected by various types of weather systems, including Mei-yu fronts,
typhoons, and local afternoon rainfall events [21–23]. Additionally, the interactions between
the summer southwesterly monsoonal flows and local orography have frequently resulted
in the flooding of southwestern Taiwan [24,25]. In contrast, during the colder half of the
year (November–April), the interactions between the winter northeasterly monsoonal flows
and local orography make the windward side of northeastern Taiwan wetter than other sub-
regions [26]. Because of the diversity of rainfall characteristics and its unique orography,
Taiwan is a valuable location for assessing the performance of SPPs. For example, [27]
examined the performance of IMERG gauge-adjusted product version 5 (IMERG-final v5)
and indicated that it was capable of depicting the multiple timescale variations of rainfall
over Taiwan. In [28], they further compared the performance of TMPA 3B42 v7 and IMERG-
final v6 (both gauge-adjusted) and found that IMERG-final v6 outperformed TMPA 3B42
v7 in representing the summer rainfall variation over Taiwan. In contrast, [27,28] focused
on gauge-adjusted SPPs, [29] assessed the near-real-time products of IMERG (IMERG-late
v5 and IMERG-early v5), and indicated that IMERG-late v5 outperformed IMERG-early v5
in quantitatively depicting summer rainfall formation over Taiwan. However, the near-
real-time products of GSMaP (GSMaP-NRT) over Taiwan have not been examined by [29]
or in the literature thus far.

Recent studies have compared GSMaP-NRT products with observations and other
SPPs over various regions, including China [30], Myanmar [16], Japan [31], Malaysia [32],
and South America [33]. Currently, there are many different versions of GSMaP-NRT
available for research use, including GSMaP-NRT v6 (hereafter NRT6) and GSMaP-NRT
v7 (hereafter NRT7). According to [11,34], the major differences between NRT6 and NRT7
lie in their algorithms: (1) NRT7 uses both TRMM precipitation radar (PR) and GPM
dual-frequency PR; (2) the snowfall estimation method is implemented in GPM Microwave
Imager (GMI) and Special Sensor Microwave Imager/Sounder (SSMIS) in NRT7 but not
in NRT6; and (3) NRT7 improves on the orographic rain correction method using revised
estimates and formulas. It is therefore reasonable to expect that NRT7 might be superior to
NRT6 for illustrating the rainfall variation over some regions, as has been seen in China [30];
however, it is not clear whether this expectation holds true for Taiwan as well.

Notably, to reduce the bias in NRT products, a new algorithm introducing gauge
information was developed by the Japan Aerospace Exploration Agency (JAXA) to produce
another product named Gauge-NRT (hereafter GNRT). In general, it would be expected
that estimates containing gauge-adjusted information would be more accurate [19,33].
However, in order to produce these estimates as efficiently as possible, GNRT does not use
the ground gauge data (which is not available near-real-time) directly for correction [35,36].
Rather, to produce GNRT, NRT data are adjusted using a system model with parameters
calculated from the past GSMaP-Gauge data obtained over the previous 30 days [35,36].
Therefore, it is questionable whether GNRT more accurately depicts precipitation than NRT
in monitoring rainfall variations over most locations, including Taiwan. To clarify this issue,
past studies have examined the differences between GNRT and NRT, and they found that
GNRT is superior in depicting the rainfall variation over some regions (e.g., Africa, China,
Japan, North and South America) [19,20,30,37]. However, it is also not clear whether this
suggestion holds true for Taiwan as well.

This study aims to address the above questions by assessing NRT and GNRT (for both
the latest version v7 and its earlier version v6) from May 2017 to April 2020, covering three
warm (May–October) and cold (November–April) month periods. Analyses focused on
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monthly and daily rainfall variations, especially for stronger rainfall events (those with
daily accumulated rainfall >80 mm·day−1 during warm months and >20 mm·day−1 during
cold months). The remainder of the manuscript is organized as follows. Section 2 describes
the data and statistical methods applied to the evaluations. The rationale for separating
analyses into warm and cold seasons, together with the related results of evaluating the
performance of SPPs and possible explanations for the difference between SPPs, is provided
in Section 3. Lastly, a summary is presented in Section 4.

2. Data and Methodology
2.1. Data

In this study, we used four SPPs, including v7 and v6 of NRT and GNRT (NRT6,
NRT7, GNRT6, and GNRT7) provided by the GSMaP project. GSMaP is a satellite-based
precipitation map algorithm that combines various available passive microwave (PMW)
and infrared (IR) sensors aimed at developing high-precision precipitation products [38].
To maintain operability in near-real-time, NRT6 and NRT7 only employ forward cloud
movement calculated from successive geostationary infrared images. A Kalman filter
is then applied to modify the precipitation rate of NRT6 and NRT7 [39]. Both GNRT6
and GNRT7 are derived using corresponding NRT and GSMaP-Gauge data over the past
30 days to further adjust the precipitation over land [11,35]. However, for the gauge-
adjustment algorithm used for the GSMaP-Gauge data, the number of gauges used in each
0.5◦ lat./lon. grid box is considered in GNRT7 but not in GNRT6 [35]. Additional details
about the difference between NRT and GNRT, as well as between v6 and v7, can be found
in [11].

Following [28], we used hourly gridded rainfall data generated from 436 rain gauge
stations provided by the Central Weather Bureau in Taiwan as the reference base to evaluate
the performance of SPPs. These data (hereafter CWB) have a spatial resolution of 0.1◦ × 0.1◦

(about 10 km × 10 km) and have been widely used in many studies [27–29]. For details of
the procedure for producing CWB, please refer to [27].

2.2. Statistical Methods Applied for Evaluations

In this study, the correlation coefficients (CC; including temporal correlation coefficient,
TCC; and spatial correlation coefficient, SCC) between the CWB and SPPs are calculated
as follows:

CC =
∑N

i = 1(SPP i − SPP mean)(CWB i − CWB mean)√
∑N

i = 1 (SPP i − SPP mean)2(CWB i − CWB mean)2
(1)

where i is the index of summation starting from 1, and N is the sample size (e.g., time step
or grid point) used for summation. SPPi and CWBi are each term of the sum extracted from
SPP and CWB, respectively. SPP mean and CWB mean is the average of all sample size
extracted from SPP and CWB, respectively. The root mean square error (RMSE) between
the CWB and SPPs are calculated as follows:

RMSE =

√
∑N

i = 1 (SPP i − CWBi)
2

N − 1
(2)

For further details on the calculation of CC and RMSE, please refer to [40].
Hereafter, we define a rainy day as one with accumulated rainfall >0.1 mm·day−1,
whereas ≤0.1 mm·day−1 is considered non-rainy [29]. In addition, following [29], we cate-
gorized the rainfall events into four different strengths: light (0.1–5 mm·day−1), moderate
(5–20 mm·day−1), heavy (20–80 mm·day−1), and extreme (>80 mm·day−1). The same
criteria have been applied to warm and cold seasons; however, extreme rainfall events
primarily occur during the warm season, so we additionally defined stronger rainfall
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events as daily rainfall >80 mm·day−1 in the warm season or >20 mm·day−1 in the cold
season. Any observed rainfall events below these ranges are termed weaker rainfall events.

3. Results
3.1. Case Study and Annual Rainfall Pattern

First, we used a case study to illustrate why we questioned that GNRT7 (the latest
version adjusted by the gauge information) might not be the most suitable near-real-time
product of GSMaP for monitoring rainfall variations over Taiwan (with topography given
in Figure 1a). Figure 1b depicts an extreme rainfall event on 30 July 2017 where CWB’s daily
rainfall measured >200 mm·day−1 over southern Taiwan. The daily sea-level pressure
showed a low system, named typhoon Nesat, around 120◦ E, 25◦ N. A comparison between
Figure 1a,b shows how the rainfall distribution was affected by the interaction between
the low-level cyclonic circulation and local topography. As a result, CWB showed a north–
south rainfall contrast with a maximum centered over southern Taiwan.
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By comparing CWB (Figure 1b) and SPPs (Figure 1c–f), it was found that (1) all SPPs 
were able to capture the north–south pattern observed, with larger rainfall over southern 
Taiwan; (2) NRT6 and GNRT6 tended to overestimate, whereas NRT7 and GNRT7 tended 
to underestimate the rainfall over southern Taiwan; (3) GNRT (both v6 and v7) tended to 
have weaker rainfall than the corresponding NRT; and (4) the differences between v6 and 

Figure 1. (a) The topography of Taiwan superimposed with the low-level wind circulation at 925 hPa (denoted as V
(925 hPa)) on 30 July 2017, extracted from the fifth generation of European Centre for Medium-Range Weather Forecasts
(ECMWF) atmospheric reanalyses (ERA5). Daily accumulated gridded rainfall on 30 July 2017 estimated from: (b) Central
Weather Bureau (CWB) (mainland Taiwan only), (c) NRT6, (d) NRT7, (e) GNRT6, and (f) GNRT7. In (b), the red contour
represents the distribution of daily mean sea level pressure (SLP) on 30 July 2017 extracted from ERA5. The “L” in (a) and
(b) marks the location of Typhoon Nesat.

By comparing CWB (Figure 1b) and SPPs (Figure 1c–f), it was found that (1) all SPPs
were able to capture the north–south pattern observed, with larger rainfall over southern
Taiwan; (2) NRT6 and GNRT6 tended to overestimate, whereas NRT7 and GNRT7 tended
to underestimate the rainfall over southern Taiwan; (3) GNRT (both v6 and v7) tended to
have weaker rainfall than the corresponding NRT; and (4) the differences between v6 and
v7 were greater over land than the ocean. Statistically, it was found that GNRT6 had a
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larger SCC and smaller RMSE than GNRT7 when compared to CWB (Table 1). This finding
is in contrast to the aforementioned general expectation that the latest version would
outperform the earlier. Further, it is noteworthy that NRT7 had a smaller RMSE than
GNRT7 (Table 1), a finding that is also in contrast to the expectation that SPPs would
quantitatively perform better when adjusted by the gauge information.

Table 1. Statistical values of spatial correlation coefficient (SCC) and root mean square error (RMSE)
for the comparison between CWB and the SPPs shown in Figure 1. The highest SCC and lowest
RMSE values are marked with an *. The unit of RMSE is mm·day−1.

Diagnostic Statistics NRT6 GNRT6 NRT7 GNRT7

SCC 0.89 0.91 * 0.83 0.85
RMSE 581.3 69.2 67.5 * 89.9

To clarify if the above findings from a case study have wider applicability, we exam-
ined the performance of SPPs in depicting the climatological (3-year mean) area-averaged
monthly rainfall over Taiwan (Figure 2). Visually, all SPPs successfully depicted that a
larger rainfall amount occurred during the warm months (May–October) and a smaller
rainfall amount during the cold months (November–February), where the definition of
warm and cold months is dependent on the temperatures shown in Figure 2. Among all
SPPs, only NRT6 showed an obvious overestimation of rainfall in July, whereas the other
three SPPs showed an obvious underestimation in August, and either GNRT or NRT
showed a similar value between v6 and v7 in June.
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Figure 2. Monthly mean rainfall in Taiwan averaged from May 2017 to April 2020 as calculated from
various sources, including CWB (gray bar), NRT6 (dark red line), GNRT6 (light red line), NRT7 (dark
blue line), and GNRT7 (light blue line). The scale of rainfall is given on the left. The monthly mean
of surface temperature averaged over Taiwan provided by CWB is presented with a “+” symbol,
and the scale can be seen on the right.

By comparing CWB and SPPs in Figure 2, the statistical results indicated that GNRT7
did not have the highest TCC or lowest RMSE (Table 2). Rather, NRT7 had the smallest
RMSE, while GNRT6 had the highest TCC. These findings are consistent with Figure 1,
showing that GNRT7 is likely not the best choice for studying rainfall variation in Taiwan.
However, for both v6 and v7, the differences between NRT and its corresponding GNRT
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were more pronounced in the warm months (Figure 2). This might be due to the fact
that rainfall events are generally stronger in the warm months than in the cold months.
This might also imply that the difference between the algorithms of NRT and GNRT is
sensitive to the stronger rainfall events. More discussion about this difference will be given
later. Additionally, when focusing solely on cold months, we noted that v7 (GNRT7 and
NRT7) tended to outperform v6 (GNRT6 and NRT6). Accordingly, the evaluation and
discussion of warm and cold months have been separated hereafter.

Table 2. Statistical values of temporal correlation coefficient (TCC) and RMSE for the comparison
between CWB and the SPPs shown in Figure 2. The highest TCC and lowest RMSE values are marked
with an *. The unit of RMSE is mm·day−1.

Diagnostic Statistics NRT6 GNRT6 NRT7 GNRT7

TCC 0.95 0.98 * 0.96 0.97
RMSE 2.2 2.3 1.7 * 2.5

3.2. Rainfall Evaluation for Warm Months

It can be noted from Figure 2 that GNRT tended to have a weaker monthly mean
rainfall in the warm months than the corresponding NRT. In particular, the differences
between GNRT6 and NRT6 can be clearly seen in summer (June–August). To clarify
whether this pattern is mainly attributed to the extreme rainfall events (>80 mm·day−1)
like in Figure 1, we evaluated the performance of SPPs in depicting the percentage
(in % of total sample sizes) of occurrence frequency of rainfall at different strengths:
non-rainy (0–0.1 mm·day−1), light (0.1–5 mm·day−1), moderate (5–20 mm·day−1), heavy
(20–80 mm·day−1), and extreme (>80 mm·day−1) [29]. The calculated results for all warm
month days from May 2017 to April 2020 (total sample size = 392 grids × 184 days × 3 years)
can be seen in Figure 3a.
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and heavy rainy grids; (2) GNRT7 outperformed the others in capturing the percentage of 
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Figure 3. (a) The distribution of occurrence frequency of three years of (May 2017–April 2020) warm
season (May–October) daily rainfall in % of total rainy days, for varying rain strengths: non-rainy
(0–0.1 mm·day−1), light (0.1–5 mm·day−1), moderate (5–20 mm·day−1), heavy (20–80 mm·day−1),
and extreme (>80 mm·day−1). (b) is identical to Figure 2; however, the monthly mean was estimated
without the inclusion of extreme rainy grids.

Compared to the reference base CWB, several features were revealed: (1) all SPPs
tended to overestimate the percentage of non-rainy grids but underestimate the moderate
and heavy rainy grids; (2) GNRT7 outperformed the others in capturing the percentage
of non-rainy and light rainy grids but was worse at depicting the percentage of extreme
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rainy grids; (3) NRT6, GNRT6, and NRT7 had similar errors for all but extreme rainfall
types, where NRT6 overestimated, GNRT6 underestimated, and NRT7 was similar to CWB
values. As NRT6 only overestimated the non-rainy and extreme rainy grids (Figure 3a),
one can infer that NRT6’s overestimation of the monthly mean rainfall in July (Figure 2)
could be a result of either the extreme rainy grids or non-rainy grids. In fact, by removing
the extreme rainy grids, we noted that the aforementioned NRT6’s overestimation of July
rainfall (Figure 2) is not seen in Figure 3b, and the difference between all SPPs is decreased
during the warm months. This implies that the major differences between all SPPs during
the warm months are primarily a result of the extreme rainy grids.

It should be mentioned that the results shown in Figure 3 do not consider the dif-
ferences in the localization of the extreme. Additionally, it is not clear whether the most
accurate SPPs for monthly averages are also better performers in daily rainfall events.
To clarify these issues, point-to-point comparisons were examined between CWB and SPPs
using density scatterplots for all daily rainy grids (>0.1 mm·day−1) of the warm months
throughout the study period (Figure 4).
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line represents the linear regression using the equation listed. The value of R2 (coefficient of determination) of the linear
regression is provided.
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Overall, from the distribution of red linear regression lines, we noted that NRT6
tended to overestimate, whereas the other three SPPs tended to underestimate the warm
season rainfall. This is consistent with the results of mean monthly rainfall, which showed
that only NRT6 overestimated the monthly rainfall in July. However, a comparison between
NRT7 (Figure 4b) and its corresponding GNRT7 (Figure 4d) showed that NRT7 also had
problems in overestimating some rainfall events, and the overestimations seem to be much
improved in GNRT7. Similarly, the overestimations in NRT6 (Figure 4a) seem to be much
improved in GNRT6 (Figure 4b). These results imply that GNRTs are better at depicting
daily rainfall variations, notably different from the previous findings, which showed that
NRTs are superior for depicting monthly rainfall for the warm months.

To provide further statistical evidence, we calculated the correlation coefficient (CC)
and RMSE for all rainy grids with CWB >0.1 mm·day−1 (Table 3). When compared to CWB
for this period, GNRT6 had the largest CC (0.72) and smallest RMSE (25.1 mm·day−1),
suggesting that GNRT6 is superior to the other SPPs in depicting the warm season daily
rainfall variations. Between NRT and GNRT, the latter generally had better metrics
(i.e., larger CC and smaller RMSE) regardless of v6 or v7. This suggests that the application
of gauge information to NRT has reduced error in depicting the warm season daily rainfall
variations in Taiwan. The difference in rank of the performance of SPPs from Figures 2
and 4 may be attributed to the fact that the area-averaged value (Figure 2) did not con-
sider spatial information, whereas the point-to-point comparison (Figure 4) did. Notably,
by separating the calculation of CC and RMSE for stronger rainfall (CWB > 80 mm·day−1)
and weaker rainfall grids (CWB between 0.1 and 80 mm·day−1) during the warm months,
it was found that GNRT6 is superior at either level (Table 3). In addition, the difference
between SPPs is more pronounced in stronger rainfall events than in weaker. Therefore,
the performance of SPPs in depicting the stronger rainfall grids during the warm months
was subsequently examined with respect to spatial distribution.

Table 3. Statistical values of correlation coefficient (CC) and RMSE for the comparison between CWB
and the SPPs shown in Figure 4 for the warm months under three different conditions: all rainfall
events (CWB >0.1 mm·day−1), stronger rainfall events (CWB >80 mm·day−1), and weaker rainfall
events (CWB is between 0.1 to 80 mm·day−1). The highest CC values, as well as the lowest RMSEs,
are marked with an *. The unit of RMSE is mm·day−1.

Diagnostic Statistics NRT6 GNRT6 NRT7 GNRT7

All rainfall events
CWB > 0.1 mm·day−1

CC 0.62 0.72 * 0.63 0.68
RMSE 50.9 25.1* 32.4 26.3

Stronger rainfall events
CWB > 80 mm·day−1

CC 0.49 0.62 * 0.53 0.58
RMSE 209.7 88.8 * 104.9 94.8

Weaker rainfall events
CWB~0.1–80 mm·day−1

CC 0.40 0.48 * 0.41 0.45
RMSE 29.1 17.9 * 25.1 18.5

Figure 5a shows the horizontal distribution of rainfall averaged from all grids with
daily CWB rainfall >80 mm·day−1 during the warm months from May 2017 to April
2020, compared to the four selected SPPs. Overall, when compared to CWB, it appeared
that NRT6 overestimated the stronger rainfall events, mainly over southwestern and
eastern Taiwan. After including gauge information, this overestimation was changed
to an issue of underestimation seen in GNRT6. Similar to v6, the overestimation seen
in NRT7 over eastern Taiwan was changed to an underestimation in GNRT7. These dif-
ferences between NRTs and GNRTs are consistent with those inferred from Figures 2–4.
Similar underestimation issues to those seen in GNRTs are also noted by [30] across other
regions of the world. To further clarify the performances of SPPs, we calculated the cor-
responding RMSE between CWB and SPPs. As noted by the RMSE values (Figure 5b),
the major improvement from NRT6 to GNRT6 (i.e., RMSE is smaller) occurred over south-
western Taiwan and eastern Taiwan. Similarly, the major improvement from NRT6 to NRT7
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also occurred over southwestern Taiwan, but the errors in eastern Taiwan did not show
much reduction. In contrast, there was a major improvement in eastern Taiwan from NRT7
to GNRT7 (Figure 5b). Among SPPs, GNRT6 had the smallest RMSE over most Taiwan
(Figure 5b), supporting the idea that it is the most suitable product for monitoring stronger
rainfall events during the warm months. Notably, the enhanced performance of GNRT6
over GNRT7 is more obvious in southern Taiwan (Figure 5a), where there is greater rainfall
during warm months [41] and is consistent with what was revealed in Figure 1 during the
case study.
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3.3. Rainfall Evaluation for Cold Months

Next, an analysis of the performance of SPPs in cold months was conducted to
help determine whether SPPs’ performances differed between warm and cold months.
First, we focused on the occurrence frequency of rainfall during the cold months of the study
period. Figure 6 shows that all SPPs overestimated non-rainy grids, but underestimated
moderate and stronger rainfall grids (>20 mm·day−1). This may be the reason why all SPPs
showed an underestimation of monthly rainfall in cold months (Figure 2). Relative to v6
products, v7 products performed better (i.e., the frequency of v7 is closer to CWB than v6;
Figure 6). This might be part of the reason why v7 products were superior to v6 products
in estimating the monthly rainfall during cold months (Figure 2). Similarly, consistent with
the results shown in Figure 2 for the cold months, there are not many differences observed
between GNRT and NRT regardless of v6 or v7 (Figure 6).

Figure 7 shows the point-to-point comparison between CWB and SPPs for all rainy
days during the cold months throughout the study period. Visually, from the distribution
of red linear regression lines, we noted that all SPPs tended to underestimate the daily
rainfall during the cold months. The major difference between NRT6 (Figure 7a) and
GNRT6 (Figure 7c) is that the former greatly overestimated some stronger rainfall grids
(>20 mm·day−1), while this error is reduced in the latter. A similar improvement was also
revealed from NRT7 (Figure 7b) to GNRT7 (Figure 7d).
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Statistically, when compared to all rainfall events in CWB (>0.1 mm·day−1), GNRT7
(CC = 0.43, RMSE = 12.1 mm·day−1) is superior to the other SPPs in depicting daily
rainfall variation over Taiwan during cold months (Table 4). Comparatively, this is dif-
ferent from what was seen in Figure 4 and Table 3, which showed that GNRT6 is the
best for depicting the daily rainfall during warm months. In addition, when separating
the calculation for stronger rainfall (CWB >20 mm·day−1) and weaker rainfall events
(CWB~0.1–20 mm·day−1) during the cold months, although the statistical values of all
SPPs are close, GNRT7 is better than the others for monitoring cold season daily rainfall
variation in Taiwan at either level. To further reveal the spatial variation between the
performances of SPPs in depicting the cold season stronger rainfall events, we constructed
the horizontal distribution of rainfall averaged from all grids with daily CWB rainfall >20
mm·day−1 and compared to the four selected SPPs (Figure 8a).

Table 4. Statistical values of CC and RMSE for the comparison between CWB and the SPPs
shown in Figure 7 for the cold months under three different conditions: all rainfall events
(CWB >0.1 mm·day−1), stronger rainfall events (CWB >20 mm·day−1), and weaker rainfall events
(CWB is between 0.1 to 20 mm·day−1). The highest CC values, as well as the lowest RMSEs,
are marked with an *. The unit of RMSE is mm·day−1.

Diagnostic Statistics NRT6 GNRT6 NRT7 GNRT7

All rainfall events
CWB > 0.1 mm·day−1

CC 0.37 0.39 0.41 0.43 *
RMSE 12.8 12.4 12.3 12.1 *

Stronger rainfall events
CWB > 20 mm·day−1

CC 0.08 0.10 0.10 0.12 *
RMSE 37.6 36.3 36.1 34.7 *

Weaker rainfall events
CWB~0.1–20 mm·day−1

CC 0.28 0.35 0.36 0.37 *
RMSE 7.4 6.8 6.7 5.9 *
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When compared to CWB, all SPPs underestimated stronger rainfall events during
the cold months; in particular, they cannot capture the stronger rainfall distribution that
occurred over northeastern Taiwan. It also appeared that v7’s rainfall estimation was closer
to CWB (Figure 8a). By calculating the related RMSE (Figure 8b), it was shown that all
SPPs had a larger error in northern Taiwan compared to the south. From NRT6 to GNRT6,
the major improvement (i.e., smaller RMSE) was seen over northwestern and southwestern
Taiwan. A similar improvement over southwestern Taiwan is also revealed from NRT7 to
GNRT7 (Figure 8b). Altogether, it seems that monitoring of stronger rainfall events over
southwestern Taiwan using GNRT has led to an improvement, regardless of whether it is
v6 or v7, or for warm (Figure 5b) or cold months (Figure 8b). However, although GNRT6
is best for monitoring stronger rainy grids during warm months (Figure 5), GNRT7 has
the smallest RMSE for depicting the stronger rainy grids during cold months (Figure 8).
This seasonal difference should be considered for further research interested in using
GSMaP near-real-time products in monitoring stronger rainfall events over Taiwan.



Remote Sens. 2021, 13, 202 12 of 17

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 16 
 

 

Table 4. Statistical values of CC and RMSE for the comparison between CWB and the SPPs shown 
in Figure 7 for the cold months under three different conditions: all rainfall events (CWB >0.1 
mm·day ), stronger rainfall events (CWB >20 mm·day ), and weaker rainfall events (CWB is 
between 0.1 to 20 mm·day ). The highest CC values, as well as the lowest RMSEs, are marked with 
an *. The unit of RMSE is mm·day−1. 

 
Diagnostic 
Statistics NRT6 GNRT6 NRT7 GNRT7 

All rainfall events 
CWB > 0.1 mm·day  

CC 0.37 0.39 0.41 0.43 * 
RMSE 12.8 12.4 12.3 12.1 * 

Stronger rainfall events 
CWB > 20 mm·day  

CC 0.08 0.10 0.10 0.12 * 
RMSE 37.6 36.3 36.1 34.7 * 

Weaker rainfall events  
CWB~0.1–20 mm·day  

CC 0.28 0.35 0.36 0.37 * 
RMSE 7.4 6.8 6.7 5.9 * 

  
Figure 8. (a) Spatial distribution of rainfall averaged from grids with CWB’s daily rainfall >20 
mm·day  during cold months of May 2017 to April 2020, estimated from CWB, NRT6, GNRT6, 
NRT7, and GNRT7. (b) The related root mean square error (RMSE) between CWB and each SPP for 
the grids meeting the same criterion. 

When compared to CWB, all SPPs underestimated stronger rainfall events during the 
cold months; in particular, they cannot capture the stronger rainfall distribution that 
occurred over northeastern Taiwan. It also appeared that v7’s rainfall estimation was 
closer to CWB (Figure 8a). By calculating the related RMSE (Figure 8b), it was shown that 
all SPPs had a larger error in northern Taiwan compared to the south. From NRT6 to 
GNRT6, the major improvement (i.e., smaller RMSE) was seen over northwestern and 
southwestern Taiwan. A similar improvement over southwestern Taiwan is also revealed 
from NRT7 to GNRT7 (Figure 8b). Altogether, it seems that monitoring of stronger rainfall 
events over southwestern Taiwan using GNRT has led to an improvement, regardless of 
whether it is v6 or v7, or for warm (Figure 5b) or cold months (Figure 8b). However, 
although GNRT6 is best for monitoring stronger rainy grids during warm months (Figure 5), 
GNRT7 has the smallest RMSE for depicting the stronger rainy grids during cold months 
(Figure 8). This seasonal difference should be considered for further research interested in 
using GSMaP near-real-time products in monitoring stronger rainfall events over Taiwan. 

Figure 8. (a) Spatial distribution of rainfall averaged from grids with CWB’s daily rainfall >20 mm·day−1 during cold
months of May 2017 to April 2020, estimated from CWB, NRT6, GNRT6, NRT7, and GNRT7. (b) The related root mean
square error (RMSE) between CWB and each SPP for the grids meeting the same criterion.

3.4. More Discussions and Explanations for the Difference Between SPPs

To further clarify the improvement from NRTs to GNRTs, we examined how the
stronger rainy grids (>80 mm·day−1) in NRTs were changed in GNRTs for the warm
months during the study period (Figure 9). It is noted that GNRTs helped reduce the
error seen in NRTs’ stronger rainfall events for warm months in both v6 and v7 (Figure 9).
Contrarily, we noted that GNRTs also helped reduce the bias seen in NRTs’ stronger rainfall
events (>20 mm·day−1) for cold months (Figure 10), but the improvement is not as defined
as in the warm months (Figure 9). The related values of CC and RMSE calculated from
the data shown in Figure 9 (Figure 10) are given in Table 5 (Table 6). Again, one can
note from Table 5 (Table 6) that GNRT6 (GNRT7) is superior for studying stronger rainfall
events in warm (cold) months. Apparently, the feature seen in warm months is different
from the general expectation that the latest version (i.e., GNRT7) should perform better
than its predecessor. Some explanations for this feature might be inferred from Figure 5.
As can be seen, prior to including the gauge information using statistical methods, NRT7 is
indeed superior to NRT6 in monitoring stronger rainfall events in warm months. It can
be concluded then that the reason GNRT7 is worse than GNRT6 stems from the statistical
methods applied for including the gauge information (gauge-adjustment algorithm) [11].
Algorithm improvements should be sought in the production of future versions of GNRT.
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Figure 9. Rainy grids >80 mm day−1 during the warm months of May 2017 to April 2020 estimated from (a) NRT6 and (b)
NRT7, and compared to CWB. (c) is related to (a) and shows how the rainy grids with NRT6 > 80 mm·day−1 are estimated
by GNRT6 and CWB. (d) is related to (b) and shows how the rainy grids with NRT7 >80 mm·day−1 are estimated by GNRT6
and CWB. A 1:1 fit is represented by the black line, and the red line represents the linear regression using with equation
listed. The value of R2 (coefficient of determination) of the linear regression is provided.

Table 5. Statistical values of CC and RMSE for the comparison between warm-month CWB
and the SPPs shown in Figure 9a,c (Figure 9b,d) under the conditions of NRT6 >80 mm·day−1

(NRT7 >80 mm·day−1). The highest CC values, as well as the lowest RMSE, are marked with an *.
The unit of RMSE is mm·day−1.

Diagnostic Statistics
NRT6 > 80 mm·day−1 NRT7 > 80 mm·day−1

NRT6 GNRT6 NRT7 GNRT7

CC 0.33 0.62 * 0.46 0.48
RMSE 226.4 80.1 * 128.8 89.6
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Table 6. Statistical values of CC and RMSE for the comparison between cold-month CWB and
the SPPs shown in Figure 10a,c (Figure 10b,d) under the conditions of NRT6 >20 mm·day−1

(NRT7 >20 mm·day−1. The highest CC values, as well as the lowest RMSEs, are marked with
an *. The unit of RMSE is mm·day−1.

Diagnostic Statistics
NRT6 > 20 mm·day−1 NRT7 > 20 mm·day−1

NRT6 GNRT6 NRT7 GNRT7

CC 0.18 0.21 0.19 0.23 *
RMSE 31.5 27.1 28.6 25.1 *
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Figure 10. Rainy grids >20 mm·day−1 during the cold months of May 2017 to April 2020 estimated from (a) NRT6 and (b)
NRT7, and compared to CWB. (c) is related to (a) and shows how the rainy grids with NRT6 >20 mm·day−1 are estimated
by GNRT6 and CWB. (d) is related to (b) and shows how the rainy grids with NRT7 >20 mm·day−1 are estimated by GNRT6
and CWB. A 1:1 fit is represented by the black line, and the red line represents a linear regression using the equation listed.
The value of R2 (coefficient of determination) of the linear regression is provided.
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As for why NRT7 is better than NRT6 in both the warm and cold months
(Tables 5 and 6), the reason might be that NRT7 includes GPM dual-frequency PR, which is
more accurate in estimating rainfall [11,34]. In addition, NRT7 improves on the orographic
rain correction method [11,34], which can better present the rainfall distribution over
regions with complex terrain, such as Taiwan.

4. Conclusions

This study examined the performance of near-real-time products of GSMaP (including
NRT6, NRT7, GNRT6, and GNRT7) in depicting the monthly and daily rainfall variation
over Taiwan. Analyses were focused on the period from May 2017 to April 2020 and split
into the warm (May–October) and cold months (November–April). The major findings are
summarized as follows:

(1) For the annual cycle of monthly rainfall, NRT7 is superior in quantitative rainfall
estimation (Figure 2). Among SPPs, most of them underestimated the monthly
rainfall throughout the year (except NRT6, which overestimated July rainfall), and the
observed errors were larger in the GNRTs than the NRTs. The differences between
NRT and GNRT in depicting monthly rainfall are larger during warm months than
during cold months. For monthly rainfall during the cold months, v7 performed better
than v6, although this was not always true for the warm months. The differences
between SPPs in depicting the monthly rainfall variations are mainly controlled by
the stronger rainfall events (Figure 3).

(2) Among the four SPPs, GNRT6 and GNRT7 were the best in capturing the daily
rainfall variations, including stronger rainfall events during warm (Figures 4 and 5)
and cold months (Figures 6 and 7), respectively. Spatially, the major improvements
from NRT6 to GNRT6 and NRT7 to GNRT7 in monitoring the stronger rainfall events
over southwestern Taiwan can be seen during warm and cold months, respectively.
Between NRT6 and NRT7, NRT7 was better at monitoring larger daily rainfall over
southwestern Taiwan during both warm and cold months.

(3) GNRT helped reduce the error seen in NRT’s overestimation of stronger rainfall
events for both warm and cold months in v6 and v7 (Figures 9 and 10). NRT7 is
better than NRT6 in both the warm and cold months. Possible explanations for the
differences between the ability of SPPs are attributed to the algorithms used in SPPs.

The above findings help us understand the uncertainty of using GSMaP near-real-time
products in studying the daily and monthly rainfall variations over Taiwan. Based on
these results, we have shown that different near-real-time SPPs should be used for moni-
toring and studying rainfall variations over Taiwan for different purposes (e.g., warning
of floods in different seasons, and studying monthly or daily precipitation features in
different seasons). In particular, it should be noted that GNRT7 is not superior to GNRT6
in monitoring extreme rainfall over Taiwan during the warm months. Thus, the next
generation of GSMaP near-real-time products stands to be improved. Based on the con-
clusion of this study, we would suggest that the improvement should be given in the
extreme rainfall events during the warm months. In addition, a construction of gauge bias
correction function depending on the month or depending on rainfall rate might be helpful
for the improvement.
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