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Abstract: This study assessed four near-real-time satellite precipitation products (NRT SPPs) of 

Global Satellite Mapping of Precipitation (GSMaP)—NRT v6 (hereafter NRT6), NRT v7 (hereafter 

NRT7), Gauge-NRT v6 (hereafter GNRT6), and Gauge-NRT v7 (hereafter GNRT7)— in representing 

the daily and monthly rainfall variations over Taiwan, an island with complex terrain. The GNRT 

products are the gauge-adjusted version of NRT products. Evaluations for warm (May–October) 

and cold months (November–April) were conducted from May 2017 to April 2020. By using 

observations from more than 400 surface gauges in Taiwan as a reference, our evaluations showed 

that GNRT products had a greater error than NRT products in underestimating the monthly mean 

rainfall, especially during the warm months. Among SPPs, NRT7 performed best in quantitative 

monthly mean rainfall estimation; however, when examining the daily scale, GNRT6 and GNRT7 

were superior, particularly for monitoring stronger (i.e., more intense) rainfall events during warm 

and cold months, respectively. Spatially, the major improvement from NRT6 to GNRT6 (from NRT7 

to GNRT7) in monitoring stronger rainfall events over southwestern Taiwan was revealed during 

warm (cold) months. From NRT6 to NRT7, the improvement in daily rainfall estimation primarily 

occurred over southwestern and northwestern Taiwan during the warm and cold months, 

respectively. Possible explanations for the differences between the ability of SPPs are attributed to 

the algorithms used in SPPs. These findings highlight that different NRT SPPs of GSMaP should be 

used for studying or monitoring the rainfall variations over Taiwan for different purposes (e.g., 

warning of floods in different seasons, studying monthly or daily precipitation features in different 

seasons, etc.). 
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1. Introduction 

Satellite precipitation products (SPPs) have been applied for research across many 

different subjects. In the literature [1–7], one of the most frequently adopted SPPs for 

studying rainfall variation over East Asia is the Tropical Rainfall Measurement Mission 

(TRMM) Multi-satellite Precipitation Analysis 3B42 (TMPA 3B42). However, TMPA 3B42 

was concluded in December 2019. The Global Precipitation Mission (GPM), launched in 

February 2014, continued the global, high spatiotemporal resolution precipitation 

observation after TRMM. In association with GPM, two SPPs were developed: (1) 

Integrated Multi-satellite Retrievals for GPM (IMERG) [8] and (2) Global Satellite 

Mapping of Precipitation (GSMaP) [9]. Both IMERG and GSMaP provide various types of 

SPPs, including gauge-adjusted products and near-real-time products (depending on the 
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data release time) [10,11]. Recently, many studies have focused on assessing the ability of 

these SPPs to represent rainfall characteristics over various regions [12–17]. In general, the 

late-release, gauge-adjusted products are expected to have a more accurate rainfall 

estimation than the early release, near-real-time products [17–19]. In contrast, for 

monitoring the development of extreme rainfall events that might lead to huge disasters 

and economic loss, the near-real-time products would be more valuable [20]. 

Located in the Western North Pacific region of Eastern Asia, Taiwan is an island with 

a large low-plane area in the west, a central mountain range extending north-to-south, 

and a small-plane area in the east [4]. During the warmer half of the year (May–October), 

Taiwan is frequently affected by various types of weather systems, including Mei-yu 

fronts, typhoons, and local afternoon rainfall events [21–23]. Additionally, the interactions 

between the summer southwesterly monsoonal flows and local orography have 

frequently resulted in the flooding of southwestern Taiwan [24,25]. In contrast, during the 

colder half of the year (November–April), the interactions between the winter 

northeasterly monsoonal flows and local orography make the windward side of 

northeastern Taiwan wetter than other sub-regions [26]. Because of the diversity of rainfall 

characteristics and its unique orography, Taiwan is a valuable location for assessing the 

performance of SPPs. For example, [27] examined the performance of IMERG gauge-

adjusted product version 5 (IMERG-final v5) and indicated that it was capable of depicting 

the multiple timescale variations of rainfall over Taiwan. In [28], they further compared 

the performance of TMPA 3B42 v7 and IMERG-final v6 (both gauge-adjusted) and found 

that IMERG-final v6 outperformed TMPA 3B42 v7 in representing the summer rainfall 

variation over Taiwan. In contrast, [27,28] focused on gauge-adjusted SPPs, [29] assessed 

the near-real-time products of IMERG (IMERG-late v5 and IMERG-early v5), and 

indicated that IMERG-late v5 outperformed IMERG-early v5 in quantitatively depicting 

summer rainfall formation over Taiwan. However, the near-real-time products of GSMaP 

(GSMaP-NRT) over Taiwan have not been examined by [29] or in the literature thus far. 

Recent studies have compared GSMaP-NRT products with observations and other 

SPPs over various regions, including China [30], Myanmar [16], Japan [31], Malaysia [32], 

and South America [33]. Currently, there are many different versions of GSMaP-NRT 

available for research use, including GSMaP-NRT v6 (hereafter NRT6) and GSMaP-NRT 

v7 (hereafter NRT7). According to [11,34], the major differences between NRT6 and NRT7 

lie in their algorithms: (1) NRT7 uses both TRMM precipitation radar (PR) and GPM dual-

frequency PR; (2) the snowfall estimation method is implemented in GPM Microwave 

Imager (GMI) and Special Sensor Microwave Imager/Sounder (SSMIS) in NRT7 but not in 

NRT6; and (3) NRT7 improves on the orographic rain correction method using revised 

estimates and formulas. It is therefore reasonable to expect that NRT7 might be superior 

to NRT6 for illustrating the rainfall variation over some regions, as has been seen in China 

[30]; however, it is not clear whether this expectation holds true for Taiwan as well. 

Notably, to reduce the bias in NRT products, a new algorithm introducing gauge 

information was developed by the Japan Aerospace Exploration Agency (JAXA) to 

produce another product named Gauge-NRT (hereafter GNRT). In general, it would be 

expected that estimates containing gauge-adjusted information would be more accurate 

[19,33]. However, in order to produce these estimates as efficiently as possible, GNRT 

does not use the ground gauge data (which is not available near-real-time) directly for 

correction [35,36]. Rather, to produce GNRT, NRT data are adjusted using a system model 

with parameters calculated from the past GSMaP-Gauge data obtained over the previous 

30 days [35,36]. Therefore, it is questionable whether GNRT more accurately depicts 

precipitation than NRT in monitoring rainfall variations over most locations, including 

Taiwan. To clarify this issue, past studies have examined the differences between GNRT 

and NRT, and they found that GNRT is superior in depicting the rainfall variation over 

some regions (e.g., Africa, China, Japan, North and South America) [19,20,30,37]. 

However, it is also not clear whether this suggestion holds true for Taiwan as well. 

This study aims to address the above questions by assessing NRT and GNRT (for 
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both the latest version v7 and its earlier version v6) from May 2017 to April 2020, covering 

three warm (May–October) and cold (November–April) month periods. Analyses focused 

on monthly and daily rainfall variations, especially for stronger rainfall events (those with 

daily accumulated rainfall >80 mm ∙ day��  during warm months and >20 mm ∙ day�� 

during cold months). The remainder of the manuscript is organized as follows. Section 2 

describes the data and statistical methods applied to the evaluations. The rationale for 

separating analyses into warm and cold seasons, together with the related results of 

evaluating the performance of SPPs and possible explanations for the difference between 

SPPs, is provided in Section 3. Lastly, a summary is presented in Section 4. 

2. Data and Methodology 

2.1. Data 

In this study, we used four SPPs, including v7 and v6 of NRT and GNRT (NRT6, 

NRT7, GNRT6, and GNRT7) provided by the GSMaP project. GSMaP is a satellite-based 

precipitation map algorithm that combines various available passive microwave (PMW) 

and infrared (IR) sensors aimed at developing high-precision precipitation products [38]. 

To maintain operability in near-real-time, NRT6 and NRT7 only employ forward cloud 

movement calculated from successive geostationary infrared images. A Kalman filter is 

then applied to modify the precipitation rate of NRT6 and NRT7 [39]. Both GNRT6 and 

GNRT7 are derived using corresponding NRT and GSMaP-Gauge data over the past 30 

days to further adjust the precipitation over land [11,35]. However, for the gauge-

adjustment algorithm used for the GSMaP-Gauge data, the number of gauges used in each 

0.5° lat./lon. grid box is considered in GNRT7 but not in GNRT6 [35]. Additional details 

about the difference between NRT and GNRT, as well as between v6 and v7, can be found 

in [11]. 

Following [28], we used hourly gridded rainfall data generated from 436 rain gauge 

stations provided by the Central Weather Bureau in Taiwan as the reference base to 

evaluate the performance of SPPs. These data (hereafter CWB) have a spatial resolution 

of 0.1° × 0.1° (about 10 km × 10 km) and have been widely used in many studies [27–29]. 

For details of the procedure for producing CWB, please refer to [27]. 

2.2. Statistical Methods Applied for Evaluations 

In this study, the correlation coefficients (CC; including temporal correlation 

coefficient, TCC; and spatial correlation coefficient, SCC) between the CWB and SPPs are 

calculated as follows: 

CC =  
∑ (SPPi�SPP mean)(CWBi�CWB  mean)N

i = 1

�∑ (SPPi�SPP mean)2(CWBi�CWB mean)2N
i = 1

  (1)

where i is the index of summation starting from 1, and N is the sample size (e.g., time step 

or grid point) used for summation. SPPi and CWBi are each term of the sum extracted 

from SPP and CWB, respectively. SPP mean and CWB mean is the average of all sample 

size extracted from SPP and CWB, respectively. The root mean square error (RMSE) 

between the CWB and SPPs are calculated as follows: 

RMSE = �
∑ (SPPi − CWBi)

2N
i = 1

N − 1
 (2)

For further details on the calculation of CC and RMSE, please refer to [40]. Hereafter, 

we define a rainy day as one with accumulated rainfall >0.1 mm·day�� , whereas ≤0.1 

mm·day�� is considered non-rainy [29]. In addition, following [29], we categorized the 

rainfall events into four different strengths: light (0.1–5 mm· day�� ), moderate (5–20 

mm·day��), heavy (20–80 mm·day��), and extreme (>80 mm·day��). The same criteria have 

been applied to warm and cold seasons; however, extreme rainfall events primarily occur 
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during the warm season, so we additionally defined stronger rainfall events as daily 

rainfall >80 mm·day��  in the warm season or >20 mm·day��  in the cold season. Any 

observed rainfall events below these ranges are termed weaker rainfall events. 

3. Results 

3.1. Case Study and Annual Rainfall Pattern 

First, we used a case study to illustrate why we questioned that GNRT7 (the latest 

version adjusted by the gauge information) might not be the most suitable near-real-time 

product of GSMaP for monitoring rainfall variations over Taiwan (with topography given 

in Figure 1a). Figure 1b depicts an extreme rainfall event on 30 July 2017 where CWB’s 

daily rainfall measured >200 mm ∙ day��  over southern Taiwan. The daily sea-level 

pressure showed a low system, named typhoon Nesat, around 120° E, 25° N. A 

comparison between Figure 1a,b shows how the rainfall distribution was affected by the 

interaction between the low-level cyclonic circulation and local topography. As a result, 

CWB showed a north–south rainfall contrast with a maximum centered over southern 

Taiwan. 

 

Figure 1. (a) The topography of Taiwan superimposed with the low-level wind circulation at 925 hPa 

(denoted as V (925 hPa)) on 30 July 2017, extracted from the fifth generation of European Centre for 

Medium-Range Weather Forecasts (ECMWF) atmospheric reanalyses (ERA5). Daily accumulated 

gridded rainfall on 30 July 2017 estimated from: (b) Central Weather Bureau (CWB) (mainland 

Taiwan only), (c) NRT6, (d) NRT7, (e) GNRT6, and (f) GNRT7. In (b), the red contour represents the 

distribution of daily mean sea level pressure (SLP) on 30 July 2017 extracted from ERA5. The “L” in 

(a) and (b) marks the location of Typhoon Nesat. 

By comparing CWB (Figure 1b) and SPPs (Figure 1c–f), it was found that (1) all SPPs 

were able to capture the north–south pattern observed, with larger rainfall over southern 

Taiwan; (2) NRT6 and GNRT6 tended to overestimate, whereas NRT7 and GNRT7 tended 

to underestimate the rainfall over southern Taiwan; (3) GNRT (both v6 and v7) tended to 

have weaker rainfall than the corresponding NRT; and (4) the differences between v6 and 
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v7 were greater over land than the ocean. Statistically, it was found that GNRT6 had a 

larger SCC and smaller RMSE than GNRT7 when compared to CWB (Table 1). This 

finding is in contrast to the aforementioned general expectation that the latest version 

would outperform the earlier. Further, it is noteworthy that NRT7 had a smaller RMSE 

than GNRT7 (Table 1), a finding that is also in contrast to the expectation that SPPs would 

quantitatively perform better when adjusted by the gauge information. 

Table 1. Statistical values of spatial correlation coefficient (SCC) and root mean square error (RMSE) 

for the comparison between CWB and the SPPs shown in Figure 1. The highest SCC and lowest 

RMSE values are marked with an *. The unit of RMSE is mm·day−1. 

Diagnostic Statistics NRT6 GNRT6 NRT7 GNRT7 

SCC 0.89 0.91 * 0.83 0.85 

RMSE 581.3 69.2 67.5 * 89.9 

To clarify if the above findings from a case study have wider applicability, we 

examined the performance of SPPs in depicting the climatological (3-year mean) area-

averaged monthly rainfall over Taiwan (Figure 2). Visually, all SPPs successfully depicted 

that a larger rainfall amount occurred during the warm months (May–October) and a 

smaller rainfall amount during the cold months (November–February), where the 

definition of warm and cold months is dependent on the temperatures shown in Figure 2. 

Among all SPPs, only NRT6 showed an obvious overestimation of rainfall in July, whereas 

the other three SPPs showed an obvious underestimation in August, and either GNRT or 

NRT showed a similar value between v6 and v7 in June. 

 

Figure 2. Monthly mean rainfall in Taiwan averaged from May 2017 to April 2020 as calculated from 

various sources, including CWB (gray bar), NRT6 (dark red line), GNRT6 (light red line), NRT7 

(dark blue line), and GNRT7 (light blue line). The scale of rainfall is given on the left. The monthly 

mean of surface temperature averaged over Taiwan provided by CWB is presented with a “+” 

symbol, and the scale can be seen on the right. 

By comparing CWB and SPPs in Figure 2, the statistical results indicated that GNRT7 

did not have the highest TCC or lowest RMSE (Table 2). Rather, NRT7 had the smallest 

RMSE, while GNRT6 had the highest TCC. These findings are consistent with Figure 1, 

showing that GNRT7 is likely not the best choice for studying rainfall variation in Taiwan. 

However, for both v6 and v7, the differences between NRT and its corresponding GNRT 

were more pronounced in the warm months (Figure 2). This might be due to the fact that 

rainfall events are generally stronger in the warm months than in the cold months. This 

might also imply that the difference between the algorithms of NRT and GNRT is sensitive 
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to the stronger rainfall events. More discussion about this difference will be given later. 

Additionally, when focusing solely on cold months, we noted that v7 (GNRT7 and NRT7) 

tended to outperform v6 (GNRT6 and NRT6). Accordingly, the evaluation and discussion 

of warm and cold months have been separated hereafter. 

Table 2. Statistical values of temporal correlation coefficient (TCC) and RMSE for the comparison 

between CWB and the SPPs shown in Figure 2. The highest TCC and lowest RMSE values are 

marked with an *. The unit of RMSE is mm·day−1. 

Diagnostic Statistics NRT6 GNRT6 NRT7 GNRT7 

TCC 0.95 0.98 * 0.96 0.97 

RMSE 2.2 2.3 1.7 * 2.5 

3.2. Rainfall Evaluation for Warm Months 

It can be noted from Figure 2 that GNRT tended to have a weaker monthly mean 

rainfall in the warm months than the corresponding NRT. In particular, the differences 

between GNRT6 and NRT6 can be clearly seen in summer (June–August). To clarify 

whether this pattern is mainly attributed to the extreme rainfall events (>80 mm·day��) 

like in Figure 1, we evaluated the performance of SPPs in depicting the percentage (in % 

of total sample sizes) of occurrence frequency of rainfall at different strengths: non-rainy 

(0–0.1 mm·day�� ), light (0.1–5 mm·day�� ), moderate (5–20 mm·day�� ), heavy (20–80 

mm·day��), and extreme (>80 mm·day��) [29]. The calculated results for all warm month 

days from May 2017 to April 2020 (total sample size = 392 grids × 184 days × 3 years) can 

be seen in Figure 3a. 

 

Figure 3. (a) The distribution of occurrence frequency of three years of (May 2017–April 2020) warm 

season (May–October) daily rainfall in % of total rainy days, for varying rain strengths: non-rainy 

(0–0.1 mm·day��), light (0.1–5 mm·day��), moderate (5–20 mm·day��), heavy (20–80 mm·day��), 

and extreme (>80 mm·day��). (b) is identical to Figure 2; however, the monthly mean was estimated 

without the inclusion of extreme rainy grids. 

Compared to the reference base CWB, several features were revealed: (1) all SPPs 

tended to overestimate the percentage of non-rainy grids but underestimate the moderate 

and heavy rainy grids; (2) GNRT7 outperformed the others in capturing the percentage of 

non-rainy and light rainy grids but was worse at depicting the percentage of extreme rainy 

grids; (3) NRT6, GNRT6, and NRT7 had similar errors for all but extreme rainfall types, 

where NRT6 overestimated, GNRT6 underestimated, and NRT7 was similar to CWB 

values. As NRT6 only overestimated the non-rainy and extreme rainy grids (Figure 3a), 

one can infer that NRT6′s overestimation of the monthly mean rainfall in July (Figure 2) 
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could be a result of either the extreme rainy grids or non-rainy grids. In fact, by removing 

the extreme rainy grids, we noted that the aforementioned NRT6′s overestimation of July 

rainfall (Figure 2) is not seen in Figure 3b, and the difference between all SPPs is decreased 

during the warm months. This implies that the major differences between all SPPs during 

the warm months are primarily a result of the extreme rainy grids. 

It should be mentioned that the results shown in Figure 3 do not consider the 

differences in the localization of the extreme. Additionally, it is not clear whether the most 

accurate SPPs for monthly averages are also better performers in daily rainfall events. To 

clarify these issues, point-to-point comparisons were examined between CWB and SPPs 

using density scatterplots for all daily rainy grids (>0.1 mm·day��) of the warm months 

throughout the study period (Figure 4). 

 

Figure 4. Scatterplot density of point-to-point comparison for daily rainfall during the warm months 

of May 2017 to April 2020 between CWB and (a) NRT6, (b) NRT7, (c) GNRT6, and (d) GNRT7. A 1:1 

fit line is presented in black, and the red line represents the linear regression using the equation 

listed. The value of R2 (coefficient of determination) of the linear regression is provided. 

Overall, from the distribution of red linear regression lines, we noted that NRT6 

tended to overestimate, whereas the other three SPPs tended to underestimate the warm 

season rainfall. This is consistent with the results of mean monthly rainfall, which showed 

that only NRT6 overestimated the monthly rainfall in July. However, a comparison 

between NRT7 (Figure 4b) and its corresponding GNRT7 (Figure 4d) showed that NRT7 

also had problems in overestimating some rainfall events, and the overestimations seem 

to be much improved in GNRT7. Similarly, the overestimations in NRT6 (Figure 4a) seem 

to be much improved in GNRT6 (Figure 4b). These results imply that GNRTs are better at 

depicting daily rainfall variations, notably different from the previous findings, which 

showed that NRTs are superior for depicting monthly rainfall for the warm months. 
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To provide further statistical evidence, we calculated the correlation coefficient (CC) 

and RMSE for all rainy grids with CWB >0.1 mm·day�� (Table 3). When compared to CWB 

for this period, GNRT6 had the largest CC (0.72) and smallest RMSE (25.1 mm·day��), 

suggesting that GNRT6 is superior to the other SPPs in depicting the warm season daily 

rainfall variations. Between NRT and GNRT, the latter generally had better metrics (i.e., 

larger CC and smaller RMSE) regardless of v6 or v7. This suggests that the application of 

gauge information to NRT has reduced error in depicting the warm season daily rainfall 

variations in Taiwan. The difference in rank of the performance of SPPs from Figures 2 

and 4 may be attributed to the fact that the area-averaged value (Figure 2) did not consider 

spatial information, whereas the point-to-point comparison (Figure 4) did. Notably, by 

separating the calculation of CC and RMSE for stronger rainfall (CWB >80 mm·day��) and 

weaker rainfall grids (CWB between 0.1 and 80 mm·day��) during the warm months, it 

was found that GNRT6 is superior at either level (Table 3). In addition, the difference 

between SPPs is more pronounced in stronger rainfall events than in weaker. Therefore, 

the performance of SPPs in depicting the stronger rainfall grids during the warm months 

was subsequently examined with respect to spatial distribution. 

Table 3. Statistical values of correlation coefficient (CC) and RMSE for the comparison between 

CWB and the SPPs shown in Figure 4 for the warm months under three different conditions: all 

rainfall events (CWB >0.1 mm·day��), stronger rainfall events (CWB >80 mm·day��), and weaker 

rainfall events (CWB is between 0.1 to 80 mm·day��). The highest CC values, as well as the lowest 

RMSEs, are marked with an *. The unit of RMSE is mm·day−1. 

 
Diagnostic 

Statistics 
NRT6 GNRT6 NRT7 GNRT7 

All rainfall events  

CWB > 0.1 mm·day�� 

CC 0.62 0.72 * 0.63 0.68 

RMSE 50.9 25.1* 32.4 26.3 

Stronger rainfall events  

CWB > 80 mm·day�� 

CC 0.49 0.62 * 0.53 0.58 

RMSE 209.7 88.8 * 104.9 94.8 

Weaker rainfall events  

CWB~0.1–80 mm·day�� 

CC 0.40 0.48 * 0.41 0.45 

RMSE 29.1 17.9 * 25.1 18.5 

Figure 5a shows the horizontal distribution of rainfall averaged from all grids with 

daily CWB rainfall >80 mm·day�� during the warm months from May 2017 to April 2020, 

compared to the four selected SPPs. Overall, when compared to CWB, it appeared that 

NRT6 overestimated the stronger rainfall events, mainly over southwestern and eastern 

Taiwan. After including gauge information, this overestimation was changed to an issue 

of underestimation seen in GNRT6. Similar to v6, the overestimation seen in NRT7 over 

eastern Taiwan was changed to an underestimation in GNRT7. These differences between 

NRTs and GNRTs are consistent with those inferred from Figures 2–4. Similar 

underestimation issues to those seen in GNRTs are also noted by [30] across other regions 

of the world. To further clarify the performances of SPPs, we calculated the corresponding 

RMSE between CWB and SPPs. As noted by the RMSE values (Figure 5b), the major 

improvement from NRT6 to GNRT6 (i.e., RMSE is smaller) occurred over southwestern 

Taiwan and eastern Taiwan. Similarly, the major improvement from NRT6 to NRT7 also 

occurred over southwestern Taiwan, but the errors in eastern Taiwan did not show much 

reduction. In contrast, there was a major improvement in eastern Taiwan from NRT7 to 

GNRT7 (Figure 5b). Among SPPs, GNRT6 had the smallest RMSE over most Taiwan 

(Figure 5b), supporting the idea that it is the most suitable product for monitoring stronger 

rainfall events during the warm months. Notably, the enhanced performance of GNRT6 

over GNRT7 is more obvious in southern Taiwan (Figure 5a), where there is greater 

rainfall during warm months [41] and is consistent with what was revealed in Figure 1 

during the case study. 



Remote Sens. 2021, 13, 202 9 of 16 
 

 

 

Figure 5. (a) Spatial distribution of rainfall averaged from grids with CWB’s daily rainfall >80 

mm·day�� during warm months of May 2017 to April 2020, estimated from CWB, NRT6, GNRT6, 

NRT7, and GNRT7. (b) The related root mean square error (RMSE) between CWB and each SPP for 

the grids meeting the same criterion. 

3.3. Rainfall Evaluation for Cold Months 

Next, an analysis of the performance of SPPs in cold months was conducted to help 

determine whether SPPs’ performances differed between warm and cold months. First, 

we focused on the occurrence frequency of rainfall during the cold months of the study 

period. Figure 6 shows that all SPPs overestimated non-rainy grids, but underestimated 

moderate and stronger rainfall grids (>20 mm·day��). This may be the reason why all SPPs 

showed an underestimation of monthly rainfall in cold months (Figure 2). Relative to v6 

products, v7 products performed better (i.e., the frequency of v7 is closer to CWB than v6; 

Figure 6). This might be part of the reason why v7 products were superior to v6 products 

in estimating the monthly rainfall during cold months (Figure 2). Similarly, consistent 

with the results shown in Figure 2 for the cold months, there are not many differences 

observed between GNRT and NRT regardless of v6 or v7 (Figure 6). 

 

Figure 6. Distribution of occurrence frequency of daily rainfall (in % of total rainy days) for the cold 

months of May 2017 to April 2020 for varying rain strengths: non-rainy (0–0.1 mm∙ day��), light 

(0.1–5 mm∙ day��), moderate (5–20 mm∙ day��), and heavy or extreme (>20 mm∙ day��). 
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Figure 7 shows the point-to-point comparison between CWB and SPPs for all rainy 

days during the cold months throughout the study period. Visually, from the distribution 

of red linear regression lines, we noted that all SPPs tended to underestimate the daily 

rainfall during the cold months. The major difference between NRT6 (Figure 7a) and 

GNRT6 (Figure 7c) is that the former greatly overestimated some stronger rainfall grids 

(>20 mm·day��), while this error is reduced in the latter. A similar improvement was also 

revealed from NRT7 (Figure 7b) to GNRT7 (Figure 7d). 

 

Figure 7. Scatterplot density of point-to-point comparison for daily rainfall during the cold months 

of May 2017 to April 2020 between CWB and (a) NRT6, (b) NRT7, (c) GNRT6, and (d) GNRT7. A 1:1 

fit line is presented in black, and the red line represents the linear regression using the equation 

listed. The value of R2 (coefficient of determination) of the linear regression is provided. 

Statistically, when compared to all rainfall events in CWB (>0.1 mm·day��), GNRT7 

(CC = 0.43, RMSE = 12.1 mm·day��) is superior to the other SPPs in depicting daily rainfall 

variation over Taiwan during cold months (Table 4). Comparatively, this is different from 

what was seen in Figure 4 and Table 3, which showed that GNRT6 is the best for depicting 

the daily rainfall during warm months. In addition, when separating the calculation for 

stronger rainfall (CWB >20 mm· day�� ) and weaker rainfall events (CWB~0.1–20 

mm·day��) during the cold months, although the statistical values of all SPPs are close, 

GNRT7 is better than the others for monitoring cold season daily rainfall variation in 

Taiwan at either level. To further reveal the spatial variation between the performances of 

SPPs in depicting the cold season stronger rainfall events, we constructed the horizontal 

distribution of rainfall averaged from all grids with daily CWB rainfall >20 mm·day�� and 

compared to the four selected SPPs (Figure 8a). 
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Table 4. Statistical values of CC and RMSE for the comparison between CWB and the SPPs shown 

in Figure 7 for the cold months under three different conditions: all rainfall events (CWB >0.1 

mm·day��), stronger rainfall events (CWB >20 mm·day��), and weaker rainfall events (CWB is 

between 0.1 to 20 mm·day��). The highest CC values, as well as the lowest RMSEs, are marked with 

an *. The unit of RMSE is mm·day−1. 

 
Diagnostic 

Statistics 
NRT6 GNRT6 NRT7 GNRT7 

All rainfall events 

CWB > 0.1 mm·day�� 

CC 0.37 0.39 0.41 0.43 * 

RMSE 12.8 12.4 12.3 12.1 * 

Stronger rainfall events 

CWB > 20 mm·day�� 

CC 0.08 0.10 0.10 0.12 * 

RMSE 37.6 36.3 36.1 34.7 * 

Weaker rainfall events  

CWB~0.1–20 mm·day�� 

CC 0.28 0.35 0.36 0.37 * 

RMSE 7.4 6.8 6.7 5.9 * 

  

Figure 8. (a) Spatial distribution of rainfall averaged from grids with CWB’s daily rainfall >20 

mm·day�� during cold months of May 2017 to April 2020, estimated from CWB, NRT6, GNRT6, 

NRT7, and GNRT7. (b) The related root mean square error (RMSE) between CWB and each SPP for 

the grids meeting the same criterion. 

When compared to CWB, all SPPs underestimated stronger rainfall events during the 

cold months; in particular, they cannot capture the stronger rainfall distribution that 

occurred over northeastern Taiwan. It also appeared that v7’s rainfall estimation was 

closer to CWB (Figure 8a). By calculating the related RMSE (Figure 8b), it was shown that 

all SPPs had a larger error in northern Taiwan compared to the south. From NRT6 to 

GNRT6, the major improvement (i.e., smaller RMSE) was seen over northwestern and 

southwestern Taiwan. A similar improvement over southwestern Taiwan is also revealed 

from NRT7 to GNRT7 (Figure 8b). Altogether, it seems that monitoring of stronger rainfall 

events over southwestern Taiwan using GNRT has led to an improvement, regardless of 

whether it is v6 or v7, or for warm (Figure 5b) or cold months (Figure 8b). However, 

although GNRT6 is best for monitoring stronger rainy grids during warm months (Figure 5), 

GNRT7 has the smallest RMSE for depicting the stronger rainy grids during cold months 

(Figure 8). This seasonal difference should be considered for further research interested in 

using GSMaP near-real-time products in monitoring stronger rainfall events over Taiwan. 
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3.4. More Discussions and Explanations for the Difference Between SPPs 

To further clarify the improvement from NRTs to GNRTs, we examined how the 

stronger rainy grids (>80 mm·day�� ) in NRTs were changed in GNRTs for the warm 

months during the study period (Figure 9). It is noted that GNRTs helped reduce the error 

seen in NRTs’ stronger rainfall events for warm months in both v6 and v7 (Figure 9). 

Contrarily, we noted that GNRTs also helped reduce the bias seen in NRTs’ stronger 

rainfall events (>20 mm·day��) for cold months (Figure 10), but the improvement is not as 

defined as in the warm months (Figure 9). The related values of CC and RMSE calculated 

from the data shown in Figure 9 (Figure 10) are given in Table 5 (Table 6). Again, one can 

note from Table 5 (Table 6) that GNRT6 (GNRT7) is superior for studying stronger rainfall 

events in warm (cold) months. Apparently, the feature seen in warm months is different 

from the general expectation that the latest version (i.e., GNRT7) should perform better 

than its predecessor. Some explanations for this feature might be inferred from Figure 5. 

As can be seen, prior to including the gauge information using statistical methods, NRT7 

is indeed superior to NRT6 in monitoring stronger rainfall events in warm months. It can 

be concluded then that the reason GNRT7 is worse than GNRT6 stems from the statistical 

methods applied for including the gauge information (gauge-adjustment algorithm) [11]. 

Algorithm improvements should be sought in the production of future versions of GNRT. 

 

Figure 9. Rainy grids >80 mm day�� during the warm months of May 2017 to April 2020 estimated 

from (a) NRT6 and (b) NRT7, and compared to CWB. (c) is related to (a) and shows how the rainy 

grids with NRT6 > 80 mm·day�� are estimated by GNRT6 and CWB. (d) is related to (b) and shows 

how the rainy grids with NRT7 >80 mm·day��  are estimated by GNRT6 and CWB. A 1:1 fit is 

represented by the black line, and the red line represents the linear regression using with equation 

listed. The value of R2 (coefficient of determination) of the linear regression is provided. 
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Figure 10. Rainy grids >20 mm·day�� during the cold months of May 2017 to April 2020 estimated 

from (a) NRT6 and (b) NRT7, and compared to CWB. (c) is related to (a) and shows how the rainy 

grids with NRT6 >20 mm·day�� are estimated by GNRT6 and CWB. (d) is related to (b) and shows 

how the rainy grids with NRT7 >20 mm·day��  are estimated by GNRT6 and CWB. A 1:1 fit is 

represented by the black line, and the red line represents a linear regression using the equation 

listed. The value of R2 (coefficient of determination) of the linear regression is provided. 

Table 5. Statistical values of CC and RMSE for the comparison between warm-month CWB and the 

SPPs shown in Figure 9a,c (Figure 9b,d) under the conditions of NRT6 >80 mm·day�� (NRT7 >80 

mm·day��). The highest CC values, as well as the lowest RMSE, are marked with an *. The unit of 

RMSE is mm·day−1. 

Diagnostic Statistics 
NRT6 > 80 mm·day−1 NRT7 > 80 mm·day−1 

NRT6 GNRT6 NRT7 GNRT7 

CC 0.33 0.62 * 0.46 0.48 

RMSE 226.4 80.1 * 128.8 89.6 

Table 6. Statistical values of CC and RMSE for the comparison between cold-month CWB and the 

SPPs shown in Figure 10a,c (Figure 10b,d) under the conditions of NRT6 >20 mm·day�� (NRT7 >20 

mm·day��. The highest CC values, as well as the lowest RMSEs, are marked with an *. The unit of 

RMSE is mm·day−1. 

Diagnostic Statistics 
NRT6 > 20 mm·day−1 NRT7 > 20 mm·day−1 

NRT6 GNRT6 NRT7 GNRT7 

CC 0.18 0.21 0.19 0.23 * 

RMSE 31.5 27.1 28.6 25.1 * 
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As for why NRT7 is better than NRT6 in both the warm and cold months (Tables 5 

and 6), the reason might be that NRT7 includes GPM dual-frequency PR, which is more 

accurate in estimating rainfall [11,34]. In addition, NRT7 improves on the orographic rain 

correction method [11,34], which can better present the rainfall distribution over regions 

with complex terrain, such as Taiwan. 

4. Conclusions 

This study examined the performance of near-real-time products of GSMaP 

(including NRT6, NRT7, GNRT6, and GNRT7) in depicting the monthly and daily rainfall 

variation over Taiwan. Analyses were focused on the period from May 2017 to April 2020 

and split into the warm (May–October) and cold months (November–April). The major 

findings are summarized as follows: 

(1) For the annual cycle of monthly rainfall, NRT7 is superior in quantitative rainfall 

estimation (Figure 2). Among SPPs, most of them underestimated the monthly 

rainfall throughout the year (except NRT6, which overestimated July rainfall), and 

the observed errors were larger in the GNRTs than the NRTs. The differences 

between NRT and GNRT in depicting monthly rainfall are larger during warm 

months than during cold months. For monthly rainfall during the cold months, v7 

performed better than v6, although this was not always true for the warm months. 

The differences between SPPs in depicting the monthly rainfall variations are mainly 

controlled by the stronger rainfall events (Figure 3). 

(2) Among the four SPPs, GNRT6 and GNRT7 were the best in capturing the daily 

rainfall variations, including stronger rainfall events during warm (Figures 4 and 5) 

and cold months (Figures 6 and 7), respectively. Spatially, the major improvements 

from NRT6 to GNRT6 and NRT7 to GNRT7 in monitoring the stronger rainfall events 

over southwestern Taiwan can be seen during warm and cold months, respectively. 

Between NRT6 and NRT7, NRT7 was better at monitoring larger daily rainfall over 

southwestern Taiwan during both warm and cold months. 

(3) GNRT helped reduce the error seen in NRT’s overestimation of stronger rainfall 

events for both warm and cold months in v6 and v7 (Figures 9 and 10). NRT7 is better 

than NRT6 in both the warm and cold months. Possible explanations for the 

differences between the ability of SPPs are attributed to the algorithms used in SPPs. 

The above findings help us understand the uncertainty of using GSMaP near-real-

time products in studying the daily and monthly rainfall variations over Taiwan. Based 

on these results, we have shown that different near-real-time SPPs should be used for 

monitoring and studying rainfall variations over Taiwan for different purposes (e.g., 

warning of floods in different seasons, and studying monthly or daily precipitation 

features in different seasons). In particular, it should be noted that GNRT7 is not superior 

to GNRT6 in monitoring extreme rainfall over Taiwan during the warm months. Thus, 

the next generation of GSMaP near-real-time products stands to be improved. Based on 

the conclusion of this study, we would suggest that the improvement should be given in 

the extreme rainfall events during the warm months. In addition, a construction of gauge 

bias correction function depending on the month or depending on rainfall rate might be 

helpful for the improvement. 
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