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Abstract: Sea state estimation from wide-swath and frequent-revisit scatterometers, which are
providing ocean winds in the routine, is an attractive challenge. In this study, state-of-the-art
deep learning technology is successfully adopted to develop an algorithm for deriving significant
wave height from Advanced Scatterometer (ASCAT) aboard MetOp-A. By collocating three years
(2016–2018) of ASCAT measurements and WaveWatch III sea state hindcasts at a global scale, huge
amount data points (>8 million) were employed to train the multi-hidden-layer deep learning model,
which has been established to map the inputs of thirteen sea state related ASCAT observables into
the wave heights. The ASCAT significant wave height estimates were validated against hindcast
dataset independent on training, showing good consistency in terms of root mean square error of
0.5 m under moderate sea condition (1.0–5.0 m). Additionally, reasonable agreement is also found
between ASCAT derived wave heights and buoy observations from National Data Buoy Center
for the proposed algorithm. Results are further discussed with respect to sea state maturity, radar
incidence angle along with the limitations of the model. Our work demonstrates the capability of
scatterometers for monitoring sea state, thus would advance the use of scatterometers, which were
originally designed for winds, in studies of ocean waves.

Keywords: Advanced Scatterometer (ASCAT); significant wave height; WaveWatch III; deep learning;
multi-hidden-layer neural network

1. Introduction

The knowledge of ocean surface wave is important for various scientific and opera-
tional studies. Significant wave height (SWH), which is traditionally defined as the average
of the 1/3 largest in a record of ocean wave heights, is the most valuable and commonly
used parameter for ocean wave applications, e.g., ocean engineering, marine navigation
and wave power evaluation. For decades, the SWH observations from space have mostly
relied on altimeters at a global scale. The space-borne altimeters provide robust SWH with
the precise <0.5 m. However, their nadir measurements along track suffer from a sparse
spatial sampling (see e.g., [1,2]). Another globally SWH data source is from synthetic
aperture radars (SARs) operating in wave mode, which could produce reliable estimates
only for long waves (swells) [3] or total SWH by empirical algorithms (i.e., CWAVE-like
models see [4–7]). Additionally, SAR wave mode measurements are even less dense than
altimeters (e.g., 100 km sampling along the Sentinel-1 orbit).
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Polar-orbiting scatterometers, the real-aperture radar instruments, are monitoring
oceans for large regions with high temporal revisit compared to altimeters and SARs.
For instance, the Advanced Scatterometer (ASCAT) onboard Meteorological Operational
satellite (MetOp-A) of European Organization for the Exploitation of Meteorological Satel-
lites (EUMETSAT), which was launched in 2006 and is still in orbit presently, achieves
global ocean coverage in 1.5 days approximately. Unfortunately, the primary oceanic
objective of scatterometers is to provide information on the winds [8] rather than waves.
Thus, estimating SWH from the scatterometers with wide swath and rapid revisit is an
attractive alternative compared to other existing wave sensors from space.

In fact, the long ocean waves indeed affect the normalized radar cross section (NRCS,
or σ0) observed by the C-band radars using real (scatterometer) or synthetic aperture
(SAR) [9–11]. Moreover, it is evident that sea state is a factor impacting wind speed
retrieval from radars in C-band [12]. The main mechanism for this is that the presence
of large-scale waves changes the wind stress [13,14], and impact small-scale roughness,
consequently, changes the radar backscattering over the ocean. In this context, although
they are typical ocean wind sensors, theoretically, estimating sea state information is
feasible from the wide-swath scatterometers.

However, it remains a challenge. Nowadays, the operational scatterometers wind
retrieval is based on the relationship between radar backscattering and the wind vec-
tors, which has been well described by the empirical geophysical model function (GMF)
(e.g., the continuously updated CMOD family for C-band, see [15,16]). In contrast, the re-
lation between the scatterometer NRCS and SWH is complex and subtle compared to
the known wind-NRCS GMF, so that no GMF explicitly exists relating waves to NRCS
at present.

In the literature, the only efforts aiming at SWH estimation from scatterometers
were made by Guo et al. These studies focused on retrieving SWH from ERS-1/2 [17]
and QuikSCAT [18] sensors through the simple artificial neural network, which could
be considered as a nonlinear data driven technique to interconnect the complicated rela-
tionships between inputs and outputs. In recent years, the technology of artificial neural
network has dramatically progressed and been widely used for geophysical retrieving
ocean wind/waves from microwave sensors, for example, estimating SWH [6] and ocean
winds [19,20] from C-band SARs. Especially, as the growing availability of big Earth data,
deep learning techniques (by employing larger and deeper neural networks) have emerged
and been increasingly applied in remote sensing field [21–23]. However, the pioneering
works [17,18] conducted a decade ago utilized a shallow architecture of three-layer neural
networks which are based on a small dataset of co-locations between scatterometer and the
geographical limited buoys.

This paper proposes a novel approach for estimating SWH from MetOp-A/ASCAT
based on deep learning neural network by training enormous matchups of scatterometer
and numerical wave model hindcast at a global scale. The remainder of the paper is
organized as follows. The data sources and methods for collecting matchups are introduced
in Section 2, followed by the analysis on ASCAT-buoy data in Section 3 to investigate the
possibility of estimating SWH from ASCAT variables. In Section 4, we develop the deep
learning neural network model for inferring SWH from ASCAT. The validation results
with respect to the deep learning SWH approach for ASCAT are presented in Section 5,
followed by the discussion in Section 6. Finally, conclusions and perspectives are given in
the last section.

2. Data Sets
2.1. ASCAT Data

MetOp-A/ASCAT is a vertically polarized C-band (5.255 GHz) scatterometer with
two sets of three antennae. The fixed fan-beam antennae are oriented at 45◦ (fore-beam),
90◦ (mid-beam), and 135◦ (aft-beam) with respect to the satellite flight direction, resulting
in two swaths of 550 km on both sides separated by a gap of about 360 km [24]. Here,
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we focus on the ASCAT data over a three-year period from January 2016 to December
2018. Two types of MetOp-A/ASCAT products are used: Level-1B data containing NRCS
measurements released by EUMETSAT, and the Level-2 wind vector products which were
generated based on Level-1B data by Royal Netherlands Meteorological Institute (KNMI)
using GMF of CMOD5n [15]. Both Level-1B and Level-2 ASCAT products are with grid
spacing of 25 km and approximately 50 km resolution.

For each 25 × 25 km wind vector cell (WVC) of ASCAT, the following variables are
employed for the development of deep learning based SWH algorithm:

(1) Triplet of NRCS (σ0
f ore, σ0

mid, and σ0
a f t, denoting fore-beam, mid-beam and aft-beam,

respectively);
(2) Triplet of incidence angles, (θmid, θ f ore, and θa f t, ranging of 25–53◦ and 34–64◦ for

middle beam and side beams, respectively);
(3) Triplet of radar backscattering variability factor (Kp) defined as

Kp =

√
var(σ0)

σ0 (1)

This value can be regarded as a metric of the uncertainty in the mean backscatter (σ0)
resulted from sensor speckle noise, data processing, and also spatial heterogeneities
of the ocean surface [25,26];

(4) Ocean wind vectors, including 10-m wind speed (U10) and triplet of cosine values of
wind direction relative to the radar beams (cos ϕ f ore, cos ϕmid and cos ϕa f t).

2.2. Numerical Wave Model Hindcast

The significant wave height hindcast used here are from the database of Integrated
Ocean Waves for Geophysical and other Applications (IOWAGA) project of Institut Français
de Recherche pour l’Exploitation de la Mer (IFREMER). The wave hindcasts were per-
formed using the numerical ocean wave model of WaveWatch III (WW3) with the param-
eterization described in [27,28]. The spatial and temporal sampling of WW3 is 0.5◦ and
three hours, respectively.

IOWAGA WW3 is forced by the European Centre for Medium-range Weather Fore-
casts (ECMWF) winds (T1279, since January 2010), which is of approximately 64 km
effective resolution [29], and the corresponding resolution of IOWAGA WW3 used here is
around 64 km. Hence, datasets of WW3 (~64 km resolution) and 25 km spacing ASCAT
(~50 km resolution) are roughly of the same scale (note that 12.5 km spacing ASCAT is of
approximately 28 km resolution, much smaller than WW3), making sampling artefacts less
of an issue here for training our deeply learned algorithm.

2.3. ASCAT-WW3 Matchups: Training, Validation and Test Data

In this study, the deep learning dataset was built by col-locating the ASCAT measure-
ments and WW3 SWH hindcasts within the spatio-temporal criteria of 0.1◦ and 0.5 h. Here,
we did not adopt the col-location methodology by linearly interpolating (in space and time)
the model grided data to every points of satellite data, since it would modify the model
outputs and bring additional uncertainties.

Following the procedure used previously e.g., [25], ASCAT data at high latitudes
(>50◦) and less than 100 km offshore distance are excluded, in order to avoid sea ice
and land/island contaminations, respectively. In addition, the following quality control
procedures are applied.

(1) Data flagged as suspicious wind retrievals in ASCAT Level-2 products, with rejection
percentage of 12.7% approximately.

(2) Apart from the wind and sea state, oceanic rainfall also affects the C-band radar
backscattering (e.g., for scatterometers [30] and SARs [31]). Thus, we used Integrated
Multi satellite Retrievals for Global Precipitation Measurement (Imerg) [32] late
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product (version 6) with global grid of 0.1◦ and 0.5 h to reject rainy conditions (rain
rate >0 mm/h). Rate of rejection according to this quality control is around 9.4%.

This yields a database containing more than 16 million data pairs. The entire matchups
are then randomly shuffled and split into three groups: training (50%), validation (20%),
and test (30%) set. The training and validation data set are used for the developing of
the deep learning model, while the formal is for directly tuning the parameters (weights
and biases) of the model and the latter is for the cross-validating and determining the
hyperparameters (see Section 4 for details). In contrast, the test data, which are never
seen by deep learning model during the tuning procedure (i.e., independent on the model
training), are remained for the evaluation. The locations of ASCAT-WW3 col-locations
(training set totaling of 8,102,567 points) are shown in Figure 1, representing a global
spatial distribution.
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Figure 1. Number of Advanced Scatterometer (ASCAT)-WW3 matchups (training dataset) on 1◦ × 1◦ grid.

2.4. ASCAT-Buoy Co-Locations

We also carried out additional co-location against buoy in situ. Hourly SWH records
were collected from buoy network of National Data Buoy Center (NDBC). As depicted
in Figure 2, 39 NDBC buoys used here are moored off Hawaii Islands (red box), Gulf of
Mexico (green box) and the North America coasts. In this study, we collocated the ASCAT
data with the buoy in situ by limiting the distance within 25/√2 km and time separation
less than 30 min.
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It should be emphasized here that, the ASCAT data that are co-located with buoys
were excluded from the training data (ASCAT-WW3) to ensure the independence of the
evaluating using buoys on the modeling of deep learning algorithm.

3. Data Analysis Based on ASCAT/Buoy Co-Locations
3.1. Wind–Wave Relationship

Figure 3 shows the dependency of significant wave height on wind speed measured
from buoy. Here, buoy wind speeds at different heights have been converted to the equiva-
lent neutral 10-m winds (U10 using the coupled ocean atmosphere response experiment
bulk algorithm [33].
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It is clear from Figure 3 that the connection of wind speed and SWH is not good
enough so that it is difficult to predict SWH only from wind speed via simply regression
approach. For instance, under different sea condition (developing or fully developed wind
wave, swell, and mixed sea), wind–wave relations differ. This is illustrated in Figure 3 with
colors denoting the values of wave age (ratio of peak phase speed of wave to wind speed),
which characterize the sea state maturity.

Regarding fully developed sea state, which corresponds to unlimited wind fetch
and wave age of approximately 1.2, the wind–wave connection could be modelled by
well-known Pierson–Moskowitz spectrum [34]:

SWHpm ≈ 0.22
U2

10
g

(2)
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where g denotes the gravity acceleration. The curve of this relationship is plotted as dashed
line in Figure 3. Using this assumption, the SWH prediction from wind speed has accuracy
of 1.25 m against in situ in terms of root mean square error (RMSE) defined as:

RMSE =

√√√√ 1
N

N

∑
j=1

(xi − yi)
2 (3)

If we employ the advanced wave spectrum model proposed by Elfouhaily [35],
in which the wave age is taken into account, the RMSE of 1.01 m is obtained for Elfouhaily
SWH prediction against buoy.

Although wind and wave are highly coupled with each other, from our study, the pre-
diction only using wind speed (even take sea state maturity, which is unknown in ASCAT,
and the geophysical law into consideration) could not reach a good performance. We need
to seek the possibility of using ASCAT NRCS as additional inputs in our deep learning
approach.

3.2. ASCAT Wind Speed Accuracy and Sea State Impact

Since we plan to use ASCAT-derived wind speed instead of the surface truth, it is
necessary to explore its accuracy and particularly the SWH impact on scatterometer derived
U10 in advance. In the literature, assessments of ASCAT wind speed retrievals against buoy
in situ show reliable accuracy (e.g., [36]). On the basis of our dataset, comparison provides
good consistency with RMSE of 0.85 m/s and bias of 0.14 m/s for ASCAT wind speed
retrievals, which is in agreement with independent studies (e.g., RMSE of 1.10 m/s in [37]).

In order to investigate the impact factors in ASCAT wind speed retrievals, we com-
puted the residuals between ASCAT and buoy wind speed. Then, the correlation coeffi-
cients between the U10 residuals and various buoy measured parameters including SWH
were calculated and listed in Table 1. The COR is expressed as:

COR =
∑N

i=1(xi − 〈xi〉)− (yi − 〈yi〉)√
∑N

i=1(xi − 〈xi〉)2 ∑N
i=1(yi − 〈yi〉)2

(4)

Table 1. Correlation coefficients between U10 residuals (ASCAT minus buoy) and various
oceanic/atmospheric parameters.

Parameter Correlation Coefficient

Buoy U10 −0.24
Buoy SWH 0.12

Air temperature at sea surface −0.21
Sea surface temperature −0.18

Air-sea temperature difference −0.20
Air pressure −0.07

Our analysis indicates that SWH and ASCAT retrieved U10 error are related (COR
of 0.12), which is consistent with the findings from previous studies (e.g., [9]). In fact,
Table 1 shows that SWH is not the only and even not the most significant impact factor for
wind speed residual. As addressed by Stopa et al. [11], this could be explained by the fact
that merging of the three antennae measured NRCS (at different azimuthal and incidence
angles) in wind retrieval processing mitigates the sea state impacts.

Therefore, from this experiment, it is possible to use ASCAT-derived wind speed in
our SWH deep learning model instead of the surface truth of U10.
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3.3. Influence of Sea State on ASCAT NRCS

The first studies on sea state impact on backscattered radar cross section were con-
ducted in the 1980s [38,39]. From previous works, it is evident that sea state (ocean wave
height and/or the sea maturity) influences on the NRCS from altimeters (e.g., [39,40]) and
scatterometers (e.g., [9]). This property has been taken into account and were used to
develop two-parameter wind retrieval algorithms for nadir-viewing altimeters [40,41].

Here, we investigate the wave height influence on ASCAT NRCS by computing corre-
lation coefficients between NRCS residual and buoy observed SWH at each wind speed
bins from 3.5 ± 0.1 to 11.5 ± 0.1 m/s. NRCS residuals were computed as the difference
between ASCAT observations and predictions using GMF of CMOD5n [15]. As illustrated
in Figure 4, the correlations are stronger under low wind conditions (corresponding large
value of wave age, or swell dominated sea state). In addition, we carried out the analysis
using winds derived from ASCAT (blue curve in Figure 4) or buoy “surface truth” (red in
Figure 4) as inputs to CMOD5n. Although the correlations are lower when using ASCAT
winds than buoy in situ, the same dependency trend could be clearly seen from Figure 4. It
is worth noting that we obtained the same results (not shown) by using another GMF of
CMOD5h [42].
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measured minus geophysical model function (GMF) of CMOD5n predicted) and SWH for various
wind speed bins. Red and blue symbols denote the inputs to CMOD5n from winds derived from
ASCAT or measured by the buoy. Green squares present the corresponding wave age for each
wind speed.

To summarize, from our analysis based on the ASCAT-buoy data, we expect that
combining radar backscattering and wind speed from ASCAT could work in deeply learned
SWH prediction.

4. Development of Deep Learning Model
4.1. Establishment of Deep Learning Network

As illustrated in Figure 5, the proposed neural network contains input layer repre-
senting ASCAT observables, several hidden layers and the rightmost output layer with
one node corresponding to significant wave height estimates. The inputs here are 13
ASCAT observables: 4 × 3 measurements (NRCSs, incidence angles, azimuthal angles and
backscattering variability factor) from fore, mid and aft-beams along with ASCAT inferred
wind speed. The selection of these observables will be discussed in Section 4.2.
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In this multi-hidden layer network, for each neuron (hi), the computation is a linear
combination of nodes in the previous layers (hi−1), followed by a nonlinear activation
function f . The expression for this unit processing is:

hi = f (dot (Wi, hi−1) + bi) (5)

where Wi (weights) and bi (bias) are the training parameters corresponding to this node,
and the entire network is constructed by these layer-wise operations from the input to
output layer.

Here, to tune the optimal training parameters (weights and biases) using the training
dataset, we use the standard back-propagation algorithm to minimize the loss function:

J =
m

∑
n=1

(yn −Yn)
2 (6)

where yn are the output value (i.e., SWH estimated from the model), and Yn are the “true”
data (i.e., SWH from WW3).

To optimize the model hyperparameters, grid search tests were carried out and the
ones that maximize the model scores with respect to the validation dataset [43] was selected.
Finally, the model proposed here has 4 hidden layers with neurons number of 512, 256, 128,
and 64, respectively, by employing Mish [44] as the nonlinear activation function.

In addition, in order to obtain a more robust multi-hidden layer network, the following
techniques are used.

(1) The optimizer to train neural network. Nesterov Adaptive Moment Estimation
(Nadam) [45,46] with a batch size of 512 has been selected among several other
existing optimizers (i.e., stochastic gradient descent [47] or Adam [48]). This is
because the loss function minimizing process converges much faster when using
Nadam after a series of experiments for our model. We follow the recommendation
of Nadam parameters [46]: β1 = 0.9, β2 = 0.999.

(2) A learning rate schedule, called “ReduceLRonPlateau”, is employed. This simple trick
decreases the learning rate by a factor of 10 once performance regarding validation
dataset has stopped improving. Consequently, the model could efficiently benefit
from this reducing strategy once learning stagnates.

(3) For denser and deeper networks, the model complexity often makes the training
process continue for too long, and this results in an overfitted model which fails to
generalize. In our experiment, we invoke a “early stopping” trick, which monitors loss
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function on validation dataset and quits training when there is no further improving
for 10 continuous epochs.

In our study, the algorithm is implemented based on the Python deep learning library
of Keras (version 2.2.4) [49] with Tensorflow backend [50].

4.2. Feature Selection for Deep Learning Network

In this section, we aim at quantifying the importance of the input features and seeking
the optimal in the constructed deep learning neural network by comparing model scores
based on validation dataset.

Recall the description in Section 2.1. For a certain ASCAT WVC, addition to wind
speed U10, possible inputs could consist in two sets of observation regarding at least three
beams: (1) NRCS σ0 along with associated geometric parameters θ and cos ϕ, and (2)
backscattering variability factor Kp. Hence, there are a total of 14 permutations as listed in
Table 2, together with their performances using the metric RMSE.

Table 2. Performance (root mean square error, unit: m) of deep learning model against validation set
using different variables from ASCAT.

Radar Beam Permutations σ0 + θ + cosϕ + U10 σ0 + θ + cosϕ + U10 + Kp

One beam
Fore 0.7367 0.7261
Mid 0.7153 0.7030
Aft 0.7319 0.7263

Two beams
Aft+Fore 0.6168 0.6087
Mid+Aft 0.6384 0.6335

Mid+Fore 0.6365 0.6305
Three beams Fore+Mid+Aft 0.5841 0.5746

Two trends are revealed from Table 2.

(1) Performance is improving due to diversity of antenna.

The accuracy of the estimates is considerably improved by RMSE of approximately
0.15 m when using the combination of three beams as opposed to only one. This result
indicates that jointly use of the ASCAT triplet is critically important for deriving sea states
from scatterometer, whereas observations from only one beam were considered when Guo
et al. developed their neural network for ERS-1/2 [17].

There are two aspects of antenna diversity, i.e., incidence angle and antenna-looking
azimuth, impacting the model skill. Regarding incidence angle, if only one antenna
observation is used, the best is found when applying the mid beam. The possible reason is
that wave impact on scatterometer NRCS decreases with increasing incidence angle [10],
noting that mid beams cover the range 25◦ to 55◦, and the side beams 35◦ to 65◦, and in
terms of antenna-looking azimuth, as shown in two beam permutations, it is apparent that
the model using combination of two side beams outperforms the combination of mid-side
beams. These findings implicate that the wave-led tilt modulation of NRCS is dependent
on both incident and azimuthal angle.

(2) Adding Kp works for performance improvement.

A slightly improved verification score is obtained after incorporating Kp regardless of
beam permutations, reflecting the relative importance of Kp for SWH estimation. In fact,
although Kp is commonly regarded as metric of scatterometer measurement noise, it is
evident that Kp contains geophysical information and has been demonstrated in ice-type
classification [25]. Besides, in analogy to Kp, there is a parameter called normalized variance
cvar in SAR community for descripting the image Is homogeneity. cvar is expressed by

cvar = var(
Is − 〈Is〉
〈Is〉

) (7)
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and it has been proved that, in addition to SAR NRCS, the SWH is related to the image
homogeneity cvar [4,6,7].

Additionally, very little improvement (no shown) has been found when incorporating
NRCS predictions using the GMF of CMOD5n [15] or CMOD7 [16]. This is likely due
to the fact that the neural networks, which are known to be good at modeling nonlinear
interactions between the input variables, have already taken the wind-NRCS GMF into
account implicitly.

4.3. Primary Comparison against Baseline

Here, we define a baseline for SWH estimation solely from wind speed. Using Pierson–
Moskowitz spectrum in assumption of fully developed sea [34], a RMSE of 1.33 m is
obtained using validation data for this simple solution. Since Pierson–Moskowitz model is
only applicable to the fully developed sea state, another baseline could be defined by the
more mature model from Elfouhaily spectrum [35], by using inverse wave age computed
from WW3 outputs. We obtained a better result with RMSE of 0.95 m by Elfouhaily model.

From Table 2, performances of all neural networks using different variable combina-
tions (the largest RMSE = 0.7367 m) outperform the baselines of Pierson–Moskowitz or
Elfouhaily. This indicates the effectiveness of the proposed deep learning model.

To end, optimal combination of the inputs has thirteen variables: four sets of triplets
for three ASCAT beams (NRCS, incident angles, azimuthal angles, and backscattering
variability factors) and the ASCAT derived wind speed. Thus, the neural network trained
using these inputs features will be evaluated and discussed hereafter.

5. Performance Verification

In this section, the performance of the established deep learning model with afore-
mentioned optimal input variables combination (σ0 + θ + cos ϕ + U10 + Kp for three beams
and U10) is assessed using WW3 hindcast and buoy in situ. The statistics of bias, RMSE,
the Scatter Index (SI), and correlation coefficient (COR) used in the evaluation:

bias =
1
N

N

∑
i=1

(xi − yi) (8)

SI =
1
〈xi〉

√√√√ 1
N

N

∑
i=1

[(yi − 〈yi〉)− (xi − 〈xi〉)]2 × 100% (9)

5.1. Comparison against WW3

Figure 6 shows the comparison of significant wave heights from ASCAT against WW3
based on the collocation independent on the deeply learning process of neural network
(i.e., test dataset, see Section 2.4). From the entire dataset, the performance of 0.59 m RMSE,
0.85 correlation coefficient, and 23.12% SI is presented. If we exclude the outliers that had a
SWH difference between ASCAT and WW3 larger than three standard deviations, with the
percentage of rejection on the order of 1%, the RMSE and SI could be reduced to 0.54 m
and of 21%, respectively.

Wave height data are binned in 1 m intervals from WW3 hindcast as overlaid in
the scatter plots in Figure 6, with the error bar representing the standard deviation for
each bin. At low sea state (<1 m), one could see a remarkable overestimation of ASCAT
estimates from deep learning. The explanation for this low-SWH insensitiveness of our
approach is probably the fact that the radar backscatter signals are weak and noisy due to
the nondominant contribution of Bragg scattering in this circumstance (note that low sea
states are commonly associated to light winds).
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Besides, an underestimation (bias of −0.67 m) and the relatively large RMSE (0.94 m)
could be found for high waves (>5 m). Likewise, degradation performance of scatterometer
derived winds is also found at high winds region (e.g., [51]). In addition, number of
matchup for high sea state is limited (account for 3% only when SWH > 5 m), which may
be responsible for the imperfect modelling skill by deep learning in this regime.

Hence, from this comparison, against WW3 hindcast at global scale, the best perfor-
mance (RMSE of 0.5 m, SI of 20% and correlation coefficient of 0.80) could be achieved
under moderate sea condition ranging from 1.0 to 5.0 m (93% for total test dataset). In terms
of the wind speed, this favorable sea state (1.0–5.0 m) corresponds to the range from 3.2 m/s
(0.1th percentile) to 16.8 m/s (99.9th percentile) in this study. These scores are close to the
SWH retrieval requirement of altimeters.

5.2. Buoy Comparison

Figure 7 shows the comparison of the SWH retrieval from MetOp-A/ASCAT and
NDBC buoy in situ. One can see a reasonable SWH estimates from ASCAT with respect
to buoy. The results provide larger RMSE and SI (0.7 m and 28%) compared to the WW3
verification although the similar correlation coefficient of 0.78.

The degraded scores regarding SI and RMSE against buoys than numerical modeling is
consistent with the published studies (see SAR SWH empirical algorithms with WW3 [4,6]).
For instance, WW3 trained neural network for SAR radar images yields SWH retrievals of
0.58 m and 0.72 m RMSE compared to WW3 and buoy data, respectively, as reported by
Stopa et al. [6], which is quite close to our results here.
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The reasons could be various:

(1) Modelling predictions versus in situ observations. Although IOWAGA WW3 has
been proved to be a reliable database [28], predictions are actually numerical instead
of in situ and may result in discrepancies. For instance, on the basis of our dataset,
RMSE of 0.32 m is found for WW3 against buoy SWH.

(2) WW3 outputs are distributed almost globally (Figure 1), but the geographic coverage
of NDBC buoys is regional (Figure 2). Particularly, the average observed SWH is
2.07 m from buoys while WW3 SWH hindcasts have a mean value of 2.52 m in this
study. This means that buoy observations are skewed toward low sea states, where
our proposed model are unfavorable. (See the regionality analysis in Section 6.2.)

(3) Besides, the point observations from buoy could not be regarded as “truth” data free
of error, especially within the 50 km radar footprint. Thus, the representativeness
error of buoy measurements may be also responsible due to the sampling artefacts, as
documented in triple collocation analysis (e.g., [52,53]).

Although these could be the possible explanations of the larger errors compared
against buoys found here, it remains to do further studies. One feasible remedy for this
could be the further cross-calibration between ASCAT derived SWH and buoy data (many
more matchups needed) to refine our model (e.g., see corrections for 10-years SAR sea state
products [54]). However, this is beyond the scope of the paper.

6. Discussion

In this section, we explored the applicability of the proposed deep learning model
under various conditions and regions. Since the huge number of data points, influence
investigations were still based on the WW3 test data.

6.1. Wave Maturity Influence

Mixed conditions of local generated wind sea and remotely propagated swell are
common in the ocean. Although sophisticated sea state classification method has been
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proposed [55], here we simply use parameter wave age to describe the maturity of the sea
state. This mostly used notation is expressed as

β =
gTp

2πU10
(10)

Tp represent the WW3 hindcast wave period at spectral peak. According to Pierson–
Moskowitz [34], the sea state can be classified as swell when the wave age β > 1.2.
In general, lower values of wave age correspond to younger wave maturity.

The variation of RMSE (red) as a function of the wave age along with bias (blue) for
our proposed deep learning model is presented in Figure 8. It is shown that the sea state
maturity indeed affects the ASCAT SWH deep learning model significantly. In other words,
proposed deep learning model performs better for swell (larger wave age) than wind sea
(smaller wave age). This behavior is consistent with sea state influence on ASCAT-CMOD5n
NRCS residual addressed in Section 3.3.
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Figure 8. Performances of the deep learning derived ASCAT SWH against WW3 hindcast with
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6.2. Regionality Analysis

In Figure 9, we show the geographical distribution of the errors regarding our deep
learning prediction. The global maps of bias and RMSE indicate that the proposed approach
performs better in some regions (e.g., eastern tropical of the Pacific, the Atlantic and
the Indian Oceans) while larger errors occur in the areas such as northwest Pacific, the
northwest Atlantic, and the Mediterranean Sea. Interestingly, the favorable regions are
consistent with swell pools found by [56]. Figure 9c also shows the locations of poor (good)
performance are in line with small (large) values of wave age mainly corresponding to the
wind seas (swells).
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Figure 9. Map of (a) bias and (b) RMSE of deep learning ASCAT SWH estimates against WW3
hindcast and (c) wave age computed from WW3. All maps are on the grid of 2◦ × 2◦.

Specifically, the regionality could be highlighted by two regions: Gulf of Mexico
(97◦ W–84◦ W, 21◦ N–29◦ N, green box in Figure 2) and Hawaii Islands (164◦ W–151◦

W, 16◦ N–26◦ N, blue box in Figure 2), which are dominated by wind sea and the swell,
respectively. In the Gulf of Mexico, statistic of bias (RMSE) is 0.80 m (0.88 m) and 0.76 m
(0.84 m) against WW3 and buoys (#42001, 42002, 42019, and 42055), respectively. For
the region of Hawaii Islands, a better performance could be achieved: bias = −0.2 m,
RMSE = 0.53 m against ww3, and bias = −0.1 m, RMSE = 0.56 m against buoy (#51000,
51002, 51003, 51004, and 51101), respectively.

6.3. Incidence Angle Influence

As a fixed-beam scatterometer, incidence angle of ASCAT corresponds to the position
of WVC cross satellite track. In order to investigate the dependent of error characteristics on



Remote Sens. 2021, 13, 195 15 of 18

the incidence angle, we here employed the cross-track index (CTI, from 0 to 41) indicating
the location of ASCAT WVC cross the swath.

Figure 10 presents the performances of the ASCAT SWH deep learning model with
respect to the CTI or corresponding incidence angle of mid/side-beams, showing almost
constant values in terms of all the metrics: scatter index (blue) and correlation coefficient
(red) in Figure 10a, and bias and RMSE in Figure 10b.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 19 
 

 

6.3. Incidence Angle Influence 
As a fixed-beam scatterometer, incidence angle of ASCAT corresponds to the posi-

tion of WVC cross satellite track. In order to investigate the dependent of error character-
istics on the incidence angle, we here employed the cross-track index (CTI, from 0 to 41) 
indicating the location of ASCAT WVC cross the swath. 

Figure 10 presents the performances of the ASCAT SWH deep learning model with 
respect to the CTI or corresponding incidence angle of mid/side-beams, showing almost 
constant values in terms of all the metrics: scatter index (blue) and correlation coefficient 
(red) in Figure 10a, and bias and RMSE in Figure 10b. 

 

 

Figure 10. Performances of the ASCAT derived SWH against WW3 (test dataset) with respect to cross-track index and 
incidence angle of (a) side-beams and (b) mid-beam. (a) Scatter index (blue) and correlation coefficient (red). (b) Bias (box) 
and RMSE (error bar). 

From previous studies, it was found that the sea state impact of wind speed residual 
decreases with increasing incidence angle for C-band scatterometer of ASCAT [11] and 

Figure 10. Performances of the ASCAT derived SWH against WW3 (test dataset) with respect to
cross-track index and incidence angle of (a) side-beams and (b) mid-beam. (a) Scatter index (blue)
and correlation coefficient (red). (b) Bias (box) and RMSE (error bar).

From previous studies, it was found that the sea state impact of wind speed residual
decreases with increasing incidence angle for C-band scatterometer of ASCAT [11] and
Sentinel-1 SAR [12]. Surprisingly, there is almost no evidence of any radar incidental
dependency on SWH residual of our deep learning algorithm here.

Additionally, we also conducted the experiments against geophysical and instrument
parameters like NRCS and Kp, and similarly found no apparent dependencies on SWH
errors. These could be resulted from the incorporation of these parameters (for instance,
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from low as 25◦ to high as 64◦ for incidence angle) into the model, and thereby bring
adjustment into the SWH estimates due to the deeply learning.

7. Conclusions and Perspectives

In this paper, we have developed and implemented a deep learning neural network
to estimate significant wave height from ASCAT scatterometer by training a big matchup
database of satellite observation and wave model hindcast.

The proposed neural network was devised to include one input layer (ASCAT data),
four hidden layers, and one output layer (SWH estimates). Thirteen variables derived from
L1b/2 ASCAT products were taken as inputs: 4 sets of triplets (NRCS, incident angles,
azimuthal angles, and variability factors) for three antennae, and the ASCAT derived wind
speed. The coefficients of deep learning algorithm were determined by tuning of the neural
network using 8+ million pairs of ASCAT-WW3 col-locations.

The statistical assessment against WW3 SWH hindcast (ranging from 0.5–5 m) shows
the RMSE of 0.5 m, correlation coefficients of 0.80 and SI of 20%, respectively. The deep
learning model tends to overestimate low wave heights and underestimate high wave
heights, and larger errors are found in wind–sea dominated regions. Future research should
focus on improving the proposed deep learning model under these unfavorite conditions.

Results indicate that the proposed data driven approach is reasonable for wave heights
estimation directly from the scatterometers observations, although these remote sensors
with frequent revisit and wide-swath coverage are routinely only adopted for monitoring
ocean winds. Particularly, the SWH estimates from scatterometer through our model could
provide denser spatio-temporal sampling than existing space-borne sensors so far.

The deep learning algorithm could also be trained for other scatterometers, especially
recently launched sensors (e.g., HY-2B [51]). SWH derived from multi-scatterometers
would be combined to produce maps of global wave climate and furthermore towards
long-term climate records [57]. In addition, application to finer 12.5 km spacing ASCAT
data, or even the ultra-high resolution scatterometer products [58] would provide wave
field observation with fine spatial resolution suitable for coastal engineering, provided the
sampling artefacts are tackled.

The proposed deep learning algorithm is encouraging for sea state estimation from
wide swath scatterometers but still leave room for improvements. In the future, the external
parameter of sea state maturity (wave age) could be used for developing correction while
the position information (longitude and latitude) could be employed as QC flags for
improving the retrieved SWH. In addition, further investigations of calibration and cross-
validation against buoy in situ will also be dedicated.
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