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Abstract: Forest canopy height is a basic metric characterizing forest growth and carbon sink ca-
pacity. Based on full-polarized Advanced Land Observing Satellite/Phased Array type L-band
Synthetic Aperture Radar (ALOS/PALSAR) data, this study used Polarimetric Interferometric Syn-
thetic Aperture Radar (PolInSAR) technology to estimate forest canopy height. In total the four
methods of differential DEM (digital elevation model) algorithm, coherent amplitude algorithm, co-
herent phase-amplitude algorithm and three-stage random volume over ground algorithm (RVoG_3)
were proposed to obtain canopy height and their accuracy was compared in consideration of the
impacts of coherence coefficient and range slope levels. The influence of the statistical window
size on the coherence coefficient was analyzed to improve the estimation accuracy. On the basis of
traditional algorithms, time decoherence was performed on ALOS/PALSAR data by introducing
the change rate of Landsat NDVI (Normalized Difference Vegetation Index). The slope in range
direction was calculated based on SRTM (Shuttle Radar Topography Mission) DEM data and then
introduced into the s-RVoG (sloped-Random Volume over Ground) model to optimize the canopy
height estimation model and improve the accuracy. The results indicated that the differential DEM
algorithm underestimated the canopy height significantly, while the coherent amplitude algorithm
overestimated the canopy height. After removing the systematic coherence, the overestimation of
the RVoG_3 model was restrained, and the absolute error decreased from 23.68 m to 4.86 m. With
further time decoherence, the determination coefficient increased to 0.2439. With the introduction of
range slope, the s-RVoG model shows improvement compared to the RVoG model. Our results will
provide a reference for the appropriate algorithm selection and optimization for forest canopy height
estimation using full-polarized L-band synthetic aperture radar (SAR) data for forest ecosystem
monitoring and management.

Keywords: ALOS/PALSAR; DEM; forest canopy height; PolInSAR; s-RVoG; time decoherence

1. Introduction

A forest is a terrestrial ecosystem with the most complex structure and abundant
functions. It is one of the most abundant natural resource pools. With the global climate
change and frequent forest fires, a large number of countries are actively carrying out
carbon cycle studies while protecting and monitoring forest ecosystems [1,2]. Forest
ecosystems, as one of the major contributors to carbon sinks, are critical to climate change
and ecological balance, and countries around the world attach great importance to forest
monitoring and management [3,4]. Canopy height is one of the most fundamental forest
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structural parameters, and acts as a basic indicator to characterize forest growth and
carbon sink capacity [5–7]. Ground measurements of tree height are not only labor- and
time-consuming, but also limited to obtain information in specific plots, which make it
difficult to achieve large-scale and long-term observation. In addition, large areas are
inaccessible to investigators due to topographical and climatic reasons, which leads to gaps
in full-coverage monitoring [8,9].

In recent years, the rapid development of remote-sensing technology has made it
possible to avoid the impacts of the aforementioned factors and obtain large-scale, long-
term forest structural parameters. Among multi-source remote-sensing data, high-density
light detection and ranging (LiDAR) point cloud data, high-resolution optical and syn-
thetic aperture radar (SAR) images provide important data support for forest structural
parameters estimation [10]. Multispectral and hyperspectral optical images are suitable for
estimation of two-dimensional parameters [11], which are insensitive to and potentially
saturated by vertical distribution information. The estimation of vertical parameters (e.g.,
canopy height) mainly relies on LiDAR and SAR data [12]. However, the spatial resolution
of spaceborne LiDAR data is too low, the acquisition cost of airborne LiDAR data is too
high [13], and the ground-based LiDAR data is not convenient and inefficient, while SAR
data has the advantages of weather-free, multiple data sources, high spatial resolution, as
well as flexibility and efficiency. Their high sensitivity to the forest vertical structure makes
it advantageous in extracting forest canopy height, and thus it is widely used in estimation
and dynamic monitoring of canopy heights [9,14–16].

The extraction of forest canopy height based on SAR is mainly conducted from three as-
pects: backscattering coefficient, polarization decomposition information and interference
information [17]. In the early stage, SAR can only acquire complex data or power value un-
der specific transmitting and receiving polarizations, and can only extract canopy height by
regression modeling or machine learning. With the development of SAR technology, multi-
polarization SAR is emerging, which is sensitive to the shape and orientation of vegetation
components. It can determine the proportion of ground and canopy in the signal according
to the polarization information in the scattering matrix, and provide an effective basis for
quantitative extraction of canopy height. Interferometric SAR extracts the elevation of
ground objects from the interferometric phase of SAR images acquired from two different
viewing angles, and then extracts forest canopy height by combining a digital elevation
model (DEM) [18,19]. Polarimetric Interferometry Synthetic Aperture Radar (PolInSAR)
technology combines the advantages of polarization and interference information and has
become a key technology of forest structural parameters estimation [15,20].

The canopy height from PolInSAR technology refers to the average height of the
canopy from the ground in all observation directions within the pixel. Izzawati et al. [5]
pointed out that canopy shape, tree density and slope were the main factors affecting the
accuracy of tree height estimation. Balzter et al. [21] used L- and C-band interferometric
information to invert tree height and the results indicated that C-band SAR images pro-
duced higher estimation accuracy than L-band; there is baseline disturbance in repeat-orbit
observation, and its estimation accuracy are lower than a single observation. The larger the
observation angle, the lower the estimation accuracy. Breidenbach et al. [22] analyzed the
effects of slope, aspect, canopy shape and tree density on the forest height estimation by
LiDAR and SAR. The results showed that the brightness against the observation direction
was higher. Ghulam et al. [9] integrated optical and microwave (InSAR/PolInSAR) data
to detect sub-canopy invasive plant species and found that InSAR phase difference and
PolInSAR HH(Horizontal)-VV(Vertical) coherence PALSAR (Phased Array type L-band
Synthetic Aperture Radar) images were the most important variables in mapping invasive
plant species in tropical rainforest. Arnaubec et al. [23] showed that symmetry has no
influence on vegetation height estimation within the assumptions of the RVoG (random
volume over ground) model. Tahraoui et al. [15] extended a covariance symmetry de-
tection framework to the PolInSAR scenario and investigated the potential of using joint
polarimetry and interferometry techniques in PolInSAR data for the image classification.
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There are three types of model for tree height estimation based on PolInSAR technol-
ogy: the first is the independent scattering center model, which divides the vegetation
canopy into multi-layers according to the shape and orientation of scattering elements, and
assumes that the scattering centers of each layer have independent scattering mechanisms,
then the backscattering of the same layer can be equivalent to the scattered echo from a
“point” scattering center. Forest heights are obtained from separated canopy and surface
phase centers [24–26]. The second type is a complex coherence model, for example, the
RVoG model, which expresses the coherent amplitude and phase of polarimetric interfero-
metric SAR data by terrain phase, extinction coefficient, canopy height and ground-volume
scattering ratio, and constructs six-element equations for estimation. The estimation meth-
ods mainly include six-dimensional non-linear optimization and three-stage estimation
based on coherence trajectory [27] and the optimization methods include a neural net-
work [28], simulated annealing [29] and genetic algorithm [30]. The third is the combination
of the above two, which can improve the computational efficiency and forest height es-
timation accuracy [7,31,32]. The forest height estimation algorithm based on PolInSAR
has been mature, but the lack of polarimetric interferometric data limits the application
of this technology [2]. The serious time decoherence due to long repeat-pass period in
spaceborne polarimetric SAR is another important limited factor. Ghasemi et al. [18,32]
proposed a multi-baseline method to increase the height estimation accuracy when us-
ing SAR tomographic data and found the tree height estimation accuracy increased after
modeling of time decoherence. Managhebi et al. [20] proposed a novel model to improve
the effects of the three-stage estimation algorithm, using polarimetric SAR interferometry.
Biondi [33] proposed a new algorithm of maximum likelihood PolInSAR coherence change
detection (ML-PolInSAR-CCD) and the application showed surprising recovery of both
amplitude and phase CCD information. Liao et al. [7] used three PolInSAR measures of
coherence magnitude, interferometric phase, and backscatter to estimate above-ground
biomass (AGB) in tropical forests. A new method was developed by integrating multiple
information derived from P-band single-baseline PolInSAR data and produced an AGB
map with an average R2 of 0.7 and root mean squared error (RMSE) of 34 tons/ha (relative
RMSE of 9.4%). Results also indicated that volume backscatter from the forest canopy was
the best predictor of AGB in tropical forests.

Treuhaft et al. [34] proposed a method to extract vegetation features and undergrowth
terrain based on InSAR data, which is called the RVoG model. It is a function of vegetation
characteristics, including (1) vegetation depth, (2) extinction coefficient of vegetation, (3) av-
erage backscattering amplitude and scattering volume density, and (4) ground elevation.
In 2000, Treuhaft extended the model to PolInSAR data, and constructed three simplified
mechanism models for random scatterers, random scatterers with surface reflection and
directional scatterers, respectively [35]. Results showed the vegetation height measurement
accuracy based on polarimetric interferometry is better than 4.2 m and that of understory
topography is better than 6.5 m under the condition of satisfying constraints and consider-
ing surface roughness. To reduce uncertainty, Cloude proposed a three-stage estimation
algorithm: fitting coherent lines according to the measured coherence coefficients; esti-
mating the ground phase to find the maximum deviation coherence coefficient-volume
coherence coefficient; and obtaining forest height and extinction coefficient by looking up
tables or searching methods [28].

On this basis, more scholars applied and improved this three-stage algorithm [36–38].
Praks et al. [39] estimated the canopy height of a broad-leaved forest based on E-SAR
X-band PolInSAR, and compared it with the results from HUTCAT X-band waveform
data. Garestier and Le Toan [40] considered the non-uniform extinction coefficient in the
vertical direction, and improved the model. Neumann et al. [41] considered the anisotropic
scattering characteristics of the vegetation canopy and performed time decoherence. Results
indicated that the model achieved an improvement in accuracy of 2 m over that with
random scattering of vegetation canopy. Roueff et al. [42] concluded that Cloude’s estimator
is optimal and thus it is useless to search for another estimator when using RVoG model.
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Ballester-Berman et al. [37] proposed a simple methodology for evaluating the validity of
the RVoG model aiming at PolInSAR-based estimation techniques. Feng et al. [43] proposed
a classification framework for forest growth stage types and land-cover types based on
the PolInSAR data acquired by the Chinese multidimensional space joint-observation SAR
system. Sportouche et al. [39] used a dual-baseline (DB) system and analyzed the precision
of vegetation height estimations based on RVoG model with temporal decorrelation. Khati
et al. [44] acquired PolInSAR data at the L-, C-, and X-band frequencies to explore their
potential for forest height estimation over Indian tropical forests. Brigot et al. [16] presented
a machine learning-based method to estimate some forest structural parameters (i.e., canopy
height, cover and vertical profile) from the L-band airborne Uninhabited Aerial Vehicle
Synthetic Aperture Radar (UAVSAR) system. This method adopted the shape of the
observed PolInSAR coherence region and then the canopy height and cover were estimated
with a normalized RMSE of 13%, 15%, while the vertical profile was divided into 3 classes
with 66% accuracy.

The forest height estimation studies based on PolInSAR technology in China is still
in the tracking stage. They mainly focused on the improvement of forest parameter es-
timation methods, and it was also not common to perform algorithm verification using
real PolInSAR data. It is difficult to acquire a high coherence coefficient due to the long
re-visit period and high time decoherence using most spaceborne polarimetric SAR data.
Simultaneously, it is difficult to carry out ground verification. All these factors place restric-
tions on the application potential of PolInSAR technology. Aiming at these concerns, this
study proposes to use four methods of differential DEM algorithm, coherent amplitude
algorithm, coherent phase-amplitude algorithm and three-stage RVoG algorithm (RVoG_3)
to estimate canopy height and compare their accuracies. The influence of the statistical
window size on the coherence coefficient was analyzed to improve the estimation accuracy.
The change rate of Landsat TM (Thematic Mapper) NDVI (Normalized Difference Vegeta-
tion Index) was introduced to characterize the time decoherence in ALOS (Advanced Land
Observing Satellite)/PALSAR data. The SRTM (Shuttle Radar Topography Mission) DEM
data was used to calculate the range slope and then optimize the s-RVoG (sloped-Random
Volume over Ground) model to improve the canopy height estimation accuracy. This study
provides a reference for the algorithm selection and optimization of forest canopy height
estimation using PolInSAR technology, and gives technical support for forest ecosystem
monitoring and resource management.

2. Study Area and Data
2.1. Study Area

The study area is located in Washington County and Columbia County, Oregon, on
the west coast of the United States (Figure 1). Its forest coverage area is 1101.88 km2,
accounting for 47.8% of the total land area. The main forest types are coniferous forests
with mixed distribution of evergreen coniferous forests and deciduous forests. The main
tree species are Yellow fir, Sequoia sequoiae, Alnus koraiensis and California hemlock. The terrain
is characterized by low mountains and hills with an elevation of 0–630 m and gentle slope
(Figure 2). Forests are mainly located on slopes, of which 23.2% are located on the flat land
with a slope of 0–5 degrees, 36% are located on gentle slopes of 5–10 degrees, and 2.6% are
located on regions with a slope of higher than 24 degrees.
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Figure 1. The spatial distribution of the field sample plots and remote-sensing data.

Figure 2. The digital elevation model (DEM) map of the study area.

2.2. Data and Preprocessing
2.2.1. Remote-Sensing Data

The remote-sensing data used in this study include 4 full-polarized ALOS/PALSAR
images and 2 Landsat/TM images. These data cover two counties of Columbia and
Washington, OR, USA (Figure 3). The relevant information of the images was shown in
Table 1. The spatial interference (e.g., baseline distance) of the four ALOS/PALSAR images
paired separately was shown in Table 2. As shown in Table 2, the maximum tree heights
extracted from 73–93 and 75–95 InSAR image pairs are 27.72 m and 21.31 m, respectively.
Since the maximum height of forest in the study area is 60.4 m, the estimation requirements
cannot be satisfied. Therefore, this study mainly focused on the estimation and analysis
using 73–75 and 93–95 InSAR image pairs.
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Figure 3. The Pauli decomposition of the four Advanced Land Observing Satellite/Phased Array
type L-band Synthetic Aperture Radar (ALOS/PALSAR) data.

Table 1. The information of remote-sensing data used in this study.

No. Dataset Name Acquisition Date & Time Format SNR

73 PASL1100703160622521312040013 16 March 2007 06:22 DRSDAC-PLR L1.1 65.2
75 PASL1100705010622521312040015 1 May 2007 06:22 DRSDAC-PLR L1.1 38.2
93 PASL1100903210623171312040014 21 March 2009 06:23 DRSDAC-PLR L1.1 91.8
95 PASL1100905060623391312040016 6 May 2009 06:23 DRSDAC-PLR L1.1 185.3

TM73 LT50460282007088PAC01 29 March 2007
10:50 TIF –

TM75 LT50460282007152PAC01 1 June 2007
10:50 TIF –

Table 2. The list of baselines of four ALOS/PALSAR image pairs

PolInSAR Image Pair Spatial Baseline
Distance (m)

Top Baseline
Distance (m) H2pi (m) Temporal Baseline

Distance (Days) Kz

73–75 593.71 3727.91 61.22 46 0.103
75–95 1706.35 3727.91 21.31 736 0.295
73–93 1311.49 3727.91 27.72 736 0.227
93–95 198.91 3727.91 185.69 46 0.034

Two simultaneous Landsat TM images were also collected for studies of time decoherence.
The specific information was shown in Table 1. The SRTM DEM data covering the PALSAR
data range (Figure 2) were collected to optimize the canopy height estimation algorithm.

2.2.2. Field Survey Data

The ground data used in this study was the ground survey results of 1999–2012
downloaded from the Forest Service Bureau of the United States Department of Agriculture.
There were 121 ground points. The distribution of these ground points was shown in
Figure 1. The accuracy of tree height measurement is ±0.5 m and the accuracy of ground
positioning is ±0.8 m.

2.2.3. ALOS/PALSAR Data Pre-Processing

(a) Registration of the Main and the Secondary Images

PolInSAR technology extracts the phase from single-look complex (SLC) data files
for canopy height estimation. Before the estimation based on PolInSAR, radiation and
polarization calibration of SLC data with HH, HV and VV polarizations were needed, and
then registration of two full-polarized SAR images acquired at a certain distance (main and
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secondary images) was conducted. Figure 4 is the interferometric phase diagram of 73–75
image pair in HV polarization, and Figure 5 is that of 93–95 image pair in HV polarization.
Figures 4a and 5a indicated that when the two SAR images were directly interfered, many
fringes were obtained, including flat phase, terrain phase and canopy phase. In order
to obtain canopy information, the flat and terrain phases should be removed. After the
calibration and registration, the quality of the two SAR images was effectively improved
(Figures 4b and 5b).
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(b) Removal of Terrain Phase from Secondary Images

Through the analysis of interferometric information, it was found that the flat and
terrain phase should be removed to obtain canopy information. The vertical component
of the baseline distance will lead to interferometric phase difference at different incident
angles, and the equation is as follows.

fs =
2Bn

λR0tanθ
(1)

Here, fs is the phase change rate under flat ground condition; R0 is the slope distance;
Bn is the vertical baseline distance; λ is the wavelength.

The terrain phase in the interferometric image needs to be removed based on DEM
and observed geometric parameters. Assuming that the change rate of terrain phase is
fDEM, the flat and terrain phase can be eliminated by multiplying a complex conjugate
phase on the basis of the original interference, as shown in Equation (2).

s1s2e−i2π( fs+ fDEM)R0 (2)

Here, s1 and s2 represent the main image and the secondary image respectively.
After removing the flat and terrain phase, only the canopy information is reserved. Before
estimation of canopy height, the conversion factor between phase and height is also needed,
which is the vertical wave-number.

(c) Estimation of Vertical Wave-Number

The vertical wave-number kz represents the phase change corresponding to the vertical
height change of 1 m. Its unit is rad/m. See Equation (3).

kz =
4π∆θ

λsinθ
≈ 4πBn

λHtanθ
(3)

Here ∆θ denotes the difference of incident angle between two observations; θ denotes
the incident angle; and λ denotes the wavelength, Bn denotes the vertical baseline distance.
Equation (3) shows that the vertical wave-number is a function of the incident angle. For a
fixed baseline distance, kz is larger at short distance and small incident angle, but smaller
at long distance and large incident angle, as shown in Figure 6.

Figure 6. The gradient map of kz in range orientation: (a) 73–75; (b) 93–95 (X: distance; Y: kz).
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Phase deviation caused by vegetation is not simply equivalent to tree height, but
usually smaller than true height. This is due to the influence of the extinction coefficient,
forest structure and ground scattering. In dense forest area, SAR signal cannot reach the
ground, thus there is in need of forest canopy height estimation algorithm.

(d) Computation of Coherence Coefficient

Coherence coefficient is not only an important indicator to evaluate the registration
accuracy of the main and secondary images, but also a basic parameter for canopy height
estimation, which directly affects the accuracy of tree height estimation. Equation (4) is
used for calculating the coherence coefficient.

γ =
∑L

i=1 s1is∗2i√
∑L

i=1 s1is∗1i

√
∑L

i=1 s2is∗2i

(4)

Here, s1i and s2i represent the pixel values of two single-look images (complex num-
bers). L denotes the number of pixels participating in the statistics.

To analyze the influence of statistical window size on the estimation accuracy of
coherent phase and amplitude, the scattering data covering the sample region of (528, 2050;
1182, 2552) were selected from a woodland (Figure 7) and the coherence calculation was
performed using windows size of 3, 7, 11, 15, 19 and 23, respectively. The results are shown
in Tables 3 and 4.
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As can be seen from Table 3, when the statistical window size is 7, the estimation result
of coherent amplitude is similar to that of a larger window, but the estimation accuracy
of the coherent phase is very poor. Until the window size increases to 23, the standard
deviation (SD) of coherence coefficient is less than 0.24, which will lead to a height error of
2.4 m. In Table 4, for 93–95 image pairs, the SD of coherence coefficient is less than 0.1 and
the estimated height error is 2.95 m when the window size is 23.

In addition to calculating the complex coherence coefficients of HH, HV, VV, HH+VV,
HV+VH and HH-VV from Pauli decomposition, the phase diversity (PD) polarization
interference coherence method and the singular value decomposition (SVD) technique
were used to optimize the complex coherence coefficients. After obtaining high-precision
complex coherence coefficients, four algorithms were adopted for canopy height estimation,
respectively.
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Table 3. The mean and standard deviation (SD) of coherence amplitude and phase for different
statistical window size in 73–75 (H: Horizontal; V: Vertical).

Polarization Mode 3 7 11 15 19 23

mean_amplitude

HH 0.574 0.408 0.380 0.375 0.375 0.376
HV 0.563 0.383 0.339 0.323 0.319 0.318
VV 0.588 0.413 0.372 0.356 0.351 0.347

HH-VV 0.558 0.367 0.332 0.328 0.327 0.328

mean_phase

HH −0.095 −0.136 −0.210 −0.244 −0.262 −0.278
HV −0.071 −0.153 −0.193 −0.176 −0.153 −0.140
VV −0.152 −0.098 −0.086 −0.095 −0.117 −0.148

HH-VV −0.051 −0.071 −0.059 −0.079 −0.101 −0.126

SD_amplitude

HH 0.210 0.165 0.104 0.067 0.051 0.046
HV 0.204 0.143 0.109 0.097 0.088 0.079
VV 0.209 0.154 0.118 0.103 0.090 0.082

HH-VV 0.213 0.167 0.119 0.086 0.074 0.068

SD_phase

HH 1.198 0.730 0.415 0.325 0.275 0.241
HV 1.271 0.803 0.550 0.387 0.283 0.237
VV 1.243 0.833 0.613 0.505 0.450 0.387

HH-VV 1.333 0.907 0.514 0.374 0.298 0.234

Table 4. The mean and SD of coherence amplitude and phase for different statistical window size in
93–95.

Polarization Mode 3 7 11 15 19 23

mean_amplitude

HH 0.701 0.649 0.641 0.637 0.635 0.633
HV 0.720 0.666 0.658 0.653 0.649 0.646
VV 0.740 0.694 0.687 0.688 0.691 0.692

HH-VV 0.697 0.639 0.632 0.630 0.630 0.631

mean_phase

HH 0.474 0.476 0.461 0.458 0.459 0.464
HV 0.470 0.474 0.485 0.492 0.495 0.498
VV 0.606 0.609 0.606 0.601 0.602 0.602

HH-VV 0.550 0.527 0.511 0.508 0.508 0.509

SD_amplitude

HH 0.190 0.116 0.086 0.075 0.068 0.064
HV 0.186 0.118 0.075 0.057 0.046 0.041
VV 0.178 0.121 0.099 0.083 0.071 0.057

HH-VV 0.188 0.115 0.078 0.061 0.055 0.053

SD_phase

HH 0.648 0.283 0.182 0.131 0.109 0.097
HV 0.629 0.274 0.181 0.139 0.116 0.100
VV 0.560 0.264 0.174 0.138 0.118 0.105

HH-VV 0.636 0.267 0.168 0.131 0.106 0.092
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3. Methodology
3.1. Differential Digital Elevation Model (DEM) Algorithm

The differential DEM algorithm calculates the phase difference of different polariza-
tions, one of which represents the ground phase and the other represents the top of the tree
crown. Then, dividing the phase difference by the vertical wave-number, the tree height
can be obtained, as shown in Equation (5).

hv =
arg(γ̃w

¯ V
)− φ̂

kz
(5)

Here, φ̂ indicates ground phase. γ̃w
¯ V

is the phase of the top layer of vegetation, which
is often approximated by the phase of HV polarization.

There are many methods for choosing the two phases. In this study, two combinations
were used. First, HV polarization was used to represent tree-top phase and HH-VV polar-
ization was used to represent ground phase. The second method used the PD coherence
decomposition algorithm to extract the high phase and low phase channels. The high
phase was used to represent the top of the canopy (PDHigh) and the low phase was used to
represent the ground phase (PDLow).

3.2. Coherent Amplitude Algorithm

Coherent amplitude algorithm estimates forest height through coherent amplitude
with only one volume scattering channel. The principle is to calculate the tree height
corresponding to the coherent amplitude based on the attenuation model of random
scatters. When extinction coefficient is 0, the relationship between coherent amplitude and
tree height is a sinc function, as shown in Equation (6). When extinction coefficient is not 0,
Equation (7) is used for estimation.

sinc = eikzz0 eikv
hv
2

sin( kzhv
2 )

kzhv
2

(6)

min
hv

L1 =

∥∥∥∥∥∣∣∣γ̃w
V

∣∣∣− ∣∣∣∣∣ p
p1

ep1hv − 1
ephv − 1

∣∣∣∣∣
∥∥∥∥∥where

{
p = 2σ

cosθ
p1 = p + ikz

(7)

Here, θ denotes the incident angle; hv is the canopy height; and γ̃w
¯ V

represents the
coherent amplitude of the wv channel.

3.3. Coherent Phase-Amplitude Algorithm

The coherent phase-amplitude algorithm combines the advantages of the differential
DEM algorithm and the coherent amplitude algorithm. It takes into account the extinction
coefficient and the vertical structure and has less computational complexity. The algorithm
requires two interferometric channels, one is the ground-dominated channel ws and the
other is the volume scattering-dominated channel wv. The forest canopy height can be
expressed by Equation (8).

hv = arg(γ̃wv )−φ̂
kz

+ ε
2sinc−1(|γ̃wv |)

kz
where

φ̂ = arg
(
γ̃w

¯ V
− γ̃w

¯ s

(
1− Lw

¯ s

))
0 ≤ Lw

¯ s
≤ 1

AL2
w
¯ s

+ BLw
¯ s

+ C = 0⇒ Lw
¯ s

= −B−
√

B2−4AC
2A

A =
∣∣γ̃w

¯ s

∣∣2 − 1

B = 2Re
((

γ̃w
¯ V
− γ̃w

¯ s

)
· γ̃∗w

¯ s

)
C =

∣∣γ̃w
¯ V
− γ̃w

¯ s

∣∣2

(8)
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Here, γ̃wv represents the complex coherence coefficient of the wv channel, φ̂ denotes the
ground phase, kz is the vertical wave-number and ε is the weight coefficient. Equation (8)
consists of two parts. The first part is the phase height, that is, the phase difference between
the canopy and the ground. Unlike Equation (5), this algorithm does not require the phase
center of volume scattering to be located at the top of the tree, and uses coherent amplitude
to compensate the low estimation. In this study, sinc function was used as theoretical
amplitude to estimate tree height. Therefore, only a one-dimensional look-up table with
extinction coefficient of 0 was needed.

The weight coefficient ε is very crucial. When extinction coefficient is 0, it is 0.5. When
extinction coefficient increases to the maximum, the value of ε is reduced to 0, and the
phase center is the tree height position. For L-band estimation, the extinction coefficient is
not more than 0.1 dB/m. The algorithm considers both the accuracy and the computational
complexity, thus is an optimized canopy height estimation algorithm based on PolInSAR.
In this study, the parameters of canopy height estimation based on this model were set as
follows: ε = 0.4; the ground channel and the volume scattering channel were set through
two options: (1) HH-VV and HV polarization; (2) surface scattering coherence coefficient
γws and volume scattering coherence coefficient γwv from PD polarization interference
PDHigh and PDLow.

3.4. Three-Stage Random Volume over Ground Algorithm (RVoG_3)

Here the RVoG model assumes the following coherence function:

γ(w) = ejφ0
[
γvo +

µ(w)

1 + µ(w)
(1− γvo)

]
(9)

In the vegetation vertical direction, the structure function of the model decreases
exponentially, and the effect of understory surface scattering is taken into account. µ(w) is
the polarization-dependent terrain scattering ratio, γvo is a “pure” volume decoherence
without terrain phase. Equation (9) shows that in the complex plane, the complex inter-
ference coherence is distributed in a straight line. One of the intersections of the straight
line and the unit circle is the ground point. The distance between the volume scattering
coherence and the terrain phase point is the farthest. Based on this principle, Cloude and
Papathanassiou [27] proposed a three-stage RVoG algorithm:

(1) Line fitting by least square method. Linear fitting was performed on the complex
plane and the intersection points between the straight line and the unit circle were
calculated. Generally, there were two intersections.

(2) Ground points determination. The ground points were judged by the coherence value
farthest from HV polarization.

(3) Vegetation height estimation. First, the complex coherence coefficient was multi-
plied by e−iφ to remove the phase of the ground point. Then, the forest height and
attenuation coefficient were obtained from a look-up table.

4. Results
4.1. Canopy Height Estimation Results

The canopy height was retrieved from 73–75 image pair and 93–95 image pair based
on a differential DEM algorithm, coherent amplitude algorithm, coherent phase-amplitude
algorithm, and three-stage RVoG algorithm, respectively. The statistical information of the
results were obtained and are shown in Tables 5 and 6. In the two tables, DEM_dif denotes
the differential DEM algorithm which uses HV and HH-VV polarization to represent the
canopy-top phase and the ground phase, respectively; DEM_pd denotes the differential
DEM algorithm which uses the PDHigh and PDLow as the canopy-top and ground phase;
Coh represents the coherent amplitude algorithm; RVoG_3 indicates the three-stage RVoG
estimation algorithm; PC denotes the coherent phase-amplitude algorithm which uses
the HV and HH-VV polarization to represent the canopy-top and the ground phase,
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respectively; PC_pd denotes the coherent phase-amplitude algorithm which uses the
PDHigh and PDLow to represent the canopy-top and the ground phase, respectively.

Table 5. The error table of the estimation methods for 73–75 (DEM_dif: the differential DEM algorithm which uses
HV and HH-VV polarization to represent the canopy-top phase and the ground phase; DEM_pd: the differential DEM
algorithm which uses the PDHigh and PDLow as the canopy-top and ground phase; Coh: the coherent amplitude algorithm;
RVoG_3: the three-stage RVoG estimation algorithm; PC: the coherent phase-amplitude algorithm which uses the HV and
HH-VV polarization to represent the canopy-top and the ground phase; PC_pd: the coherent phase-amplitude algorithm
which uses the PDHigh and PDLow to represent the canopy-top and the ground phase).

Influence Factor Level Indicator DEM_dif DEM_pd Coh RVoG_3 PC PC_pd

Overall Overall

R2 0.00 0.06 0.07 0.07 0.01 0.00
RMSE 12.96 11.55 12.96 13.66 7.47 8.10

Mean value −0.13 2.98 45.55 46.45 22.30 27.11
Absolute error −22.00 −18.88 23.68 23.68 0.44 5.24

Range slope level

<−5

R2 0.10 0.42 0.61 0.61 0.00 0.09
RMSE 13.59 12.53 12.90 12.90 7.62 7.64

Mean value 1.01 3.71 44.91 44.91 21.49 26.60
Absolute error −22.98 −20.27 20.93 20.93 −2.50 2.62

[−5, 5]

R2 0.05 0.00 0.02 0.00 0.01 0.01
RMSE 12.11 10.81 14.46 9.15 7.92 8.62

Mean value 0.21 3.00 45.34 32.25 23.50 27.31
Absolute error −24.91 −22.12 20.22 7.13 −1.62 2.19

>5

R2 0.00 0.12 0.18 0.38 0.02 0.08
RMSE 14.20 12.17 13.00 6.65 6.51 7.54

Mean value −1.97 2.22 46.61 31.28 20.73 27.22
Absolute error −25.64 −21.46 22.94 7.60 −2.94 3.54

Coherence
coefficient

<0.5

R2 0.00 0.01 0.00 0.02 0.01 0.01
RMSE 13.21 11.82 13.40 7.90 7.33 7.88

Mean value −0.16 2.74 46.12 32.07 22.15 27.20
Absolute error −30.42 −27.52 15.87 1.82 −8.11 −3.06

>0.5

R2 0.01 0.50 0.67 0.58 0.09 0.34
RMSE 6.92 5.55 14.65 8.69 8.14 8.70

Mean value 1.56 6.92 37.99 25.67 24.42 24.91
Absolute error −9.92 −4.55 26.51 14.19 12.94 13.44

From Table 5, it was found that the absolute errors of DEM_dif and DEM_pd algorithm
were both less than 0, and the DEM_pd algorithm can reduce the low estimation relatively.
By contrast, the absolute errors of the Coh algorithm and RVoG_3 algorithm were 23.68 m,
which were significantly higher than true value. The absolute error of PC algorithm was
0.44 m, with the highest accuracy. Coh algorithm and RVoG_3 algorithm performed the best
in terms of the determination coefficient (R2), but the R2 was still too low, and there was also
a large overestimation phenomenon. Comparing the performance of the RVoG_3 algorithm
on different range slope levels, it can be found that the R2 of canopy height on the slope
against sensor direction was the highest. This was due to the fact that the ground-volume
scattering ratio in SAR signal on the slope against sensor direction was smaller than that in
flat terrain and sensor-oriented slope, and the volume scattering played a dominant role.
Comparing the accuracy of each algorithm under different coherence coefficients of HV
polarization, it can be found that when the coherence coefficient was greater than 0.5, the
estimation effect was generally better than that of a coherence coefficient less than 0.5. Coh
and RVoG_3 algorithms achieved higher R2, reaching 0.67 and 0.58, reflecting the influence
of the coherence coefficient on the estimation accuracy of canopy height.
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Table 6. The error table of the estimation methods for 93–95.

Influence Factor Level Indicator DEM_dif DEM_pd Coh PC PC_pd

Overall Overall

R2 0.04 0.04 0.00 0.00 0.00
RMSE 12.36 11.02 49.33 29.05 42.25

Mean value 1.27 30.75 113.83 67.39 98.00
Absolute error −16.75 12.72 95.81 49.37 79.98

Range slope level

<−5

R2 0.06 0.04 0.04 0.00 0.08
RMSE 14.07 10.99 50.38 33.46 41.33

Mean value −0.30 31.27 114.81 75.87 92.11
Absolute error −18.88 12.69 96.23 57.29 73.53

[−5, 5]

R2 0.00 0.05 0.01 0.00 0.01
RMSE 11.26 12.32 49.81 28.50 43.94

Mean value 0.80 30.83 112.76 65.89 100.74
Absolute error −15.37 14.66 96.59 49.72 84.57

>5

R2 0.30 0.09 0.17 0.02 0.01
RMSE 12.71 7.88 48.87 26.24 40.78

Mean value 3.85 30.05 115.14 62.67 98.03
Absolute error −17.44 8.75 93.85 41.38 76.74

Coherence
coefficient

<0.5

R2 0.30 0.16 −0.04 0.06 −0.05
RMSE 12.52 9.93 51.81 29.48 42.55

Mean value 1.93 26.88 119.06 69.23 99.56
Absolute error −15.89 9.05 101.23 51.41 81.73

>0.5

R2 0.01 0.14 0.00 0.00 0.00
RMSE 12.28 11.97 45.93 28.72 42.35

Mean value 0.71 36.05 106.59 64.91 98.78
Absolute error −17.70 17.63 88.17 46.49 80.36

Through the above analysis, it can be clearly seen that coherent optimization can
effectively separate the phase, thus improving the accuracy of canopy height estimation
using differential DEM algorithm. In this study, coherent amplitude was generally small,
among which estimation results based on 73–75 SAR image pair were more reasonable. The
height obtained by the differential DEM algorithm was half of the measured tree height,
while the calculation error from 93–95 was larger. The results of the RVoG_3 algorithm
based on the 93–95 image pair were almost invalid (thus not shown in Table 6). On the
one hand, it was caused by the time decoherence; on the other hand, it was caused by
the short baseline distance of 93–95, which leaded to the increase of ambiguity in height,
thus increasing the influence of phase error on canopy height. Therefore, the algorithm
optimization described later will only be conducted for the 73–75 image pair.

4.2. Optimized Canopy Height Estimation Considering Decoherence

To detect the effect of decoherence on the canopy height estimation accuracy, here
four types of decoherence were considered and their results were compared. Firstly, the
signal-to-noise ratio (SNR) was found from the metadata of 73 and 75 images, and the
noise decoherence was calculated using Equation (10). The result was 0.98.

γsnr =
|a|2

|a|2 + |n|2
=

SNR
1 + SNR

(10)

Here, a and n refer to the effective information and noise; SNR is the signal-to-noise
ratio and γsnr indicates the noise decoherence.
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The pre-processing decoherence caused by registration error was 0.97 through the
calculation using Equation (11).

γproc =
sinπδrg

πδrg

sinπδaz

πδaz
(11)

Here, δrg and δaz indicate the deviation in the range and azimuth direction, respectively,
γproc indicates the pre-processing decoherence.

The baseline distance decoherence was 0.81 calculated by Equation (12).

γB =
Bn,crit − Bn

Bn,crit
= 1− Bn

Bn,crit
= 1− cBn

WλR0tan(θ − η)
(12)

Here, c represents the speed of light, W and λ means the signal bandwidth and
wavelength, θ and η is the incident angle and slope in range direction, Bn is the vertical
baseline distance, γB indicates the baseline distance decoherence.

The combination of the above three decoherences was 0.77. These decoherence factors
were related to the coherent amplitude, but not to the phase, so dividing the coherence
coefficients of the original image pair by 0.77, the coherence coefficient after decoherence
were obtained. Finally, the canopy height was inverted using the Coh algorithm and
RVoG_3 algorithm, as shown in Table 7.

Table 7. The accuracy statistics of the results from Coh and RVoG_3 algorithms considering noise decoherence, pre-
processing decoherence, and baseline distance decoherence.

Coherence Coefficient Indicator Coh RVoG_3 Range Slope Level Indicator Coh RVoG_3

Overall

R2 0.08 0.02

<−5

R2 0.54 0.49
RMSE 11.93 8.02 RMSE 11.37 7.78

Mean value 42.62 30.28 Mean value 41.80 29.54
Absolute error 17.20 4.86 Absolute error 14.78 2.53

<0.5

R2 0.00 0.00

[−5, 5]

R2 0.00 0.01
RMSE 11.80 7.85 RMSE 12.84 9.18

Mean value 44.13 30.47 Mean value 42.87 30.94
Absolute error 17.78 4.12 Absolute error 18.39 6.46

>0.5

R2 0.60 0.60

>5

R2 0.10 0.03
RMSE 8.83 6.42 RMSE 10.89 5.65

Mean value 34.91 28.21 Mean value 42.97 29.70
Absolute error 12.81 6.12 Absolute error 17.27 4.00

Comparing Tables 5 and 7, it was found that the overestimation of tree height by the
Coh algorithm still existed, but it was suppressed after pre-processing decoherence, baseline
distance decoherence and noise decoherence. The determination coefficient changed little,
RMSE decreased from 12.96 m to 11.93 m, and absolute error decreased from 23.68 m
to 17.20 m. The accuracy of the RVoG_3 algorithm was improved obviously when the
coherence coefficient was greater than 0.5. The determination coefficient increased from
0.58 to 0.60, and absolute error decreased from 14.19 m to 6.12 m. This demonstrated
the importance of decoherence processing for the forest parameter estimation algorithm.
By comparing the estimation results of different coherence coefficients, it was found that
the sample with higher coherence coefficients achieved higher estimation accuracy. This
indicated that high coherence was an important guarantee for canopy height estimation
with high precision.

Compared to the above three types of decoherence, time decoherence poses a difficulty
for repeated observation technology. Considering PALSAR data were acquired in March
and May, respectively, which was the season of vegetation growth in Oregon, the change
of vegetation is the main factor leading to time decoherence. Thus, we used the NDVI
variation from two Landsat/TM images acquired at the same date of PALSAR data to cal-
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culate the time decoherence. Then the total decoherence was obtained by the combination
of noise decoherence, pre-processing decoherence, baseline distance decoherence and time
decoherence. Considering the total decoherence, the canopy height was estimated by the
RVoG_3 algorithm. Time decoherence was calculated by Equation (13).

γt= 1− 2
NDVI5 − NDVI3

NDVI3 + NDVI5
(13)

Here, NDVI5 and NDVI3 represent the NDVI values from TM images corresponding
to the acquisition date of 75 and 73 PALSAR images, respectively.

Figure 8 is a scatter plot of the retrieved and measured canopy heights based on the
RVoG_3 algorithm after time decoherence. It can be seen from the figure that although the
R2 was 0.2439, higher than the estimation result without time decoherence, the estimation
result still had the problem of serious overestimation.

Figure 8. The scatter plot of field forest canopy height and those from RVoG_3 algorithm considering
noise decoherence, pre-processing decoherence, baseline distance decoherence and time decoherence.

4.3. Optimized RVoG_3 Algorithm Considering Terrain

A previous study showed that the slope in azimuth direction had little influence
on tree height, which can be ignored. Range slope was the main factor affecting canopy
height estimation. In this study, the slope in range direction was extracted from SRTM-
DEM, as shown in Figure 9, and canopy height estimation using the s-RVoG model was
performed. Figure 10 shows the scatter plot of the canopy height estimation result from
s-RVoG model and the field measured canopy height. As shown, the estimation considering
time decoherence and terrain effect gave higher accuracy. Compared with Figure 8, it was
found that the s-RVoG model performed better than the RVoG model. The R2 was increased
from 0.2439 to 0.3344, and the RMSE was reduced to 6.23 m.
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Figure 9. The slope map of the study area in the range direction.

Figure 10. The scatter plots of s-RVoG estimation result considering all four decoherence and terrain
effects.

5. Discussion

In this study, two InSAR image pairs, 73–75 and 93–95, were selected for estimation
and analysis in the experimental areas of Washington and Columbia counties in the United
States. It should be noted that the climate conditions during the acquisition date of the
images have a great influence on the coherence coefficient of PolInSAR. According to
the date and time of SAR image acquisition, the meteorological information of Portland,
Longvilon, Astoria and Hillsborough stations around the study area was collected. Through
comparative analysis, it was found that the meteorological conditions of 73 and 75 images
were extremely similar, thus they had little influence on the coherence coefficient and the
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estimation accuracy; for the 93–95 image pair, it was foggy in Astoria station when acquiring
the 93 image, and cloudy and rainy during the 95 image acquisition time, and thus visibility
was quite low. Table 6 showed that canopy height was significantly overestimated on the
93–95 image pair based on a coherent amplitude algorithm. This was because when the
data were acquired, the weather varied greatly, and thus the decoherence was large. From
Table 3, it can be seen that the coherent amplitude of the vegetation area was only 0.35.
These inevitably affected the coherence coefficient, which was one of the causes for the low
precision of parameter estimation based on the 93–95 image pair in this study.

When calculating the coherence coefficient and exploring the influence of different
window size on the estimation accuracy of coherent phase and coherent amplitude, the
phase of the HV channel is usually higher than that of the HH-VV channel. But it can
be seen from Tables 3 and 4 that the interferometric phase of HV was lower than that of
HH-VV channel. This phenomenon also exists in some simulated data, which has a certain
impact on the accuracy of canopy height estimation, and the specific impact degree needs
to be further studied.

In this study, when the differential DEM algorithm and the coherent phase-amplitude
algorithm were applied, the phase difference of two different polarizations was necessary.
Here two methods were used for choosing these two phases. First, HV polarization was
used to represent tree-top phase and HH-VV polarization was used to represent ground
phase. This assumption was used in areas where scattering is relatively small and the
higher phase is HV. The phase height of HV polarization is between 1/2-1 of the canopy
height, and is related to vegetation attributes such as extinction coefficient and canopy
vertical structure. If the crown is higher and thinner, and the extinction coefficient is lower,
the position of phase center is higher. On the other hand, when the crown is distributed in
the whole vertical section, if the density is low, the height of the phase center is half of the
tree height; if the density is high, the height of the phase center is equal to the tree height.
The phase center of the dihedral scattering corresponds to the ground phase, thus as long
as the dihedral scattering is stronger than the volume scattering, the ground phase can
be approximated by this channel, while the HH-VV channel corresponds to the dihedral
scattering component. Therefore, the two polarization phases were selected to estimate
canopy height. This method had two shortcomings: (1) it seriously underestimated the tree
height. This was because all polarization channels contained volume scattering information,
and the phase center of volume scattering corresponded not to the tree-top, but to half the
canopy height; (2) some of the canopy height estimation results were negative, as shown
in Tables 3 and 4. This was because the phase of HV became lower than that of HH-VV,
which was contrary to the premise of this method.

The second method used the PD coherence decomposition algorithm. The high phase
was used to represent the top of the canopy and the low phase was used to represent
the ground phase. This decomposition algorithm was optimized for phase separation,
which can maximize the separation of ground phase and canopy phase, and effectively
improve the estimation accuracy. Their results were elaborately shown and compared in
Tables 5 and 6. Results indicated that PD coherence decomposition gave better performance
than the HV polarization/HH-VV polarization assignment when the differential DEM
algorithm was used. However, in the application of coherent phase-amplitude algorithm,
opposite results were acquired although the difference between the two is not significant.

The problem of time decoherence is a key problem to be solved urgently in the PolInSAR
system of repeated observation technology. It is also one of the main sources of PolInSAR
parameter estimation error. In this study, Landsat/TM NDVI change rate is used to represent
time decoherence to effectively improve the accuracy of canopy height estimation. The
radiation transmission path and mechanism of visible and near infrared bands in vegetation
canopy are quite different from those of L band. Meanwhile, the acquisition time of SAR data
in this study is just the growing season of vegetation. The applicability of these algorithms in
other sample areas and other time needs to be further studied.
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RVoG model is one of the most successful PolInSAR models for forest vertical parame-
ters estimation based on PolInSAR technology. The ground-volume scattering ratio is an
important parameter of the model, which has a great influence on the accuracy of canopy
height estimation. In this study, it is set as a constant. In order to improve the accuracy
of canopy height estimation, the ground-volume scattering ratio estimation method will
be taken into consideration aiming at different forest structure types. Additionally, the
combination of RVoG model and other methodology (e.g., volume temporal decorrelation
method in [45]) should be explored and compared.

Finally, as LiDAR has also been widely used for the forest canopy height estimation,
and usually achieves high accuracy [12], the combination of LiDAR and SAR data to obtain
forest canopy height will be meaningful and challenging work [16]. LiDAR and SAR
are two main methods of active remote-sensing acquisition. Both of them can penetrate
through the forest canopy to obtain the information of understory terrain and canopy
vertical structure. However, there are obvious differences between the two remote-sensing
technologies in data storage and parameter extraction. For example, LiDAR uses point
cloud/waveform vector for storage and SAR uses raster for storage; and LiDAR mainly
extracts parameters based on spatial distribution characteristics of point cloud, and SAR is
mainly based on scattering matrix and backscattering coefficients. These characteristics
also provide a good theoretical basis for the LiDAR and SAR combination to acquire
canopy height. According to percentage of canopy point clouds in the total LiDAR point
clouds, we have separated the ground points and vegetation canopy to obtain DEM and
forest coverage; according to the Beer–Lambert law, the canopy extinction coefficient was
inversed; based on the Beer–Lambert law and the vertical distribution of point clouds, the
vertical profile of the canopy was obtained. Considering that DEM extinction coefficient and
canopy vertical profile correspond to the terrain, extinction coefficient and vertical changes
of the extinction coefficient in the RVoG model, the three parameters will be respectively
brought into RVoG model to conduct canopy height estimation. The estimation accuracy is
expected to achieve a significant improvement in combination of LiDAR and PolInSAR
technology.

6. Conclusions

This study explored the forest canopy height estimation algorithm based on PolInSAR
technology and analyzed its accuracy. Two PolInSAR image pairs were constructed based
on four full-polarized ALOS/PALSAR images. The four methods of differential DEM
algorithm, coherent amplitude algorithm, coherent phase-amplitude algorithm and a three-
stage RVoG algorithm were used to estimate forest canopy height, and the accuracy was
verified using field measured canopy height data. The results showed that the canopy
height estimated by the differential DEM algorithm was seriously underestimated, while
the coherent amplitude algorithm and the RVoG_3 algorithm overestimated the height. By
removing the system coherence, the overestimation of the RVoG_3 model was suppressed,
and the absolute error was reduced from 23.68 m to 4.86 m. After the time decoherence
using the NDVI change rate of two Landsat/TM images, the determination coefficient was
increased. By comparing the estimation results of different coherence coefficients, it was
found that the estimation accuracy of canopy height was relatively higher at the sample
points with higher coherence coefficients. By introducing the slope in the range direction
from SRTM-DEM, the accuracy of canopy height estimation using the s-RVoG model was
also improved significantly compared with using the RVoG model, which showed that
the determination coefficient was increased from 0.2439 to 0.3344. This conclusion will
provide a reference for algorithm selection when using ALOS/PALSAR data for forest
canopy height estimation.
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