
remote sensing  

Article

A Novel LSTM Model with Interaction Dual Attention for
Radar Echo Extrapolation

Chuyao Luo , Xutao Li *, Yongliang Wen, Yunming Ye and Xiaofeng Zhang

����������
�������

Citation: Luo, C.; Li, X.; Ye, Y.;

Wen, Y.; Zhang, X. A Novel LSTM

Model with Interaction Dual

Attention for Radar Echo

Extrapolation. Remote Sens. 2021, 13,

164. https://doi.org/10.3390/

rs13020164

Received: 28 November 2020

Accepted: 30 December 2020

Published: 6 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

The Department of Computer Science, Harbin Institute of Technology, Shenzhen 518055, China;
luochuyao.dalian@gmail.com (C.L.); yongliangwen.hit@gmail.com (Y.W.); yeyunming@hit.edu.cn (Y.Y.);
zhangxiaofeng@hit.edu.cn (X.Z.)
* Correspondence: lixutao@hit.edu.cn; Tel.: +86-8618-5559

Abstract: The task of precipitation nowcasting is significant in the operational weather forecast.
The radar echo map extrapolation plays a vital role in this task. Recently, deep learning techniques
such as Convolutional Recurrent Neural Network (ConvRNN) models have been designed to solve
the task. These models, albeit performing much better than conventional optical flow based ap-
proaches, suffer from a common problem of underestimating the high echo value parts. The drawback
is fatal to precipitation nowcasting, as the parts often lead to heavy rains that may cause natural
disasters. In this paper, we propose a novel interaction dual attention long short-term memory
(IDA-LSTM) model to address the drawback. In the method, an interaction framework is developed
for the ConvRNN unit to fully exploit the short-term context information by constructing a serial
of coupled convolutions on the input and hidden states. Moreover, a dual attention mechanism on
channels and positions is developed to recall the forgotten information in the long term. Comprehen-
sive experiments have been conducted on CIKM AnalytiCup 2017 data sets, and the results show
the effectiveness of the IDA-LSTM in addressing the underestimation drawback. The extrapolation
performance of IDA-LSTM is superior to that of the state-of-the-art methods.

Keywords: precipitation nowcasting; radar echo extrapolation; deep learning

1. Introduction

Precipitation nowcasting refers to predicting the future rainfall intensity within a
relatively short period (e.g., 0∼6 h) based on the observation of radar. The prediction is
significant for alerting natural disasters caused by heavy rain and guiding the travel plan
of people. The key part of the task is the radar echo map extrapolation, namely predicting
the radar echo map sequences in the future based on the historical observations. Once
the extrapolation is obtained, precipitation nowcasting can be easily obtained with many
methods such as the Z-R relationship [1].

Existing radar echo map extrapolation methods can be mainly classified into two types:
(1) optical flow-based models [2,3] and (2) deep learning-based algorithms [4–8]. The for-
mer calculates a motion field between the adjacent maps based on the assumption that
the brightness of pixels is constant. Then, the extrapolation can be made by applying the
motion field iteratively. However, the intensity of the echo map always keeps changing, for
example, strengthening or weakening. Therefore, the constant assumption on brightness is
unreasonable. Moreover, the generation of movement only uses a few recent radar images,
which suggests the type of methods cannot utilize the valuable historical observations. The
latter builds a mapping from previous radar observations to future echo maps by construct-
ing a neural network, for example, the convolution neural network (CNN) [9,10], recurrent
neural network (RNN) [11], and the Spatial Transformer Networks (STN) [12]. One of
the representative approaches is the ConvLSTM . The method combines the Convolution
(CNN) and Long Short-Term Memory (LSTM). Here, the LSTM captures the temporal
dynamics of the hidden states into the temporal memory. CNN is responsible for extracting
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spatial information. The deep learning extrapolation approaches usually perform better
than the optical flow methods [13], because they do not have the unreasonable constant
assumption and they can effectively leverage the valuable historical observations.

However, there is a fatal problem for almost all deep learning-based methods, namely
the high echo value part is often underestimated, as shown in Figure 1. We observe that the
high radar echo region of the prediction has the trend of disappearing. This phenomenon
is universal for other deep learning-based models, which will lead to a serious negative
influence on the prevention of disasters caused by strong rainfall. It can be attributed
to the following two primary reasons. First, in each step of operation, the various gates
in Convolutional Recurrent Neural Network (ConvRNN) are generated by independent
convolutions on input and hidden state and a sum fusion. The independent convolution
has a limitation because the input and hidden state do not help each other to identify
and preserve important information. Consequently, the ConvRNN may lose short-term
dependency information in each step. Second, LSTM has a forgetting mechanism to
control whether discarding information from previous temporal memory and this process
is irreversible [14]. Therefore, in terms of the long-period, the representation of high echo
value cannot be found once it is forgotten by temporal memory. That is, the long-term
dependency is not nicely modeled.

Figure 1. An instance of radar echo map prediction. The first line denotes the ground truth and the
second line is the prediction by the ConvLSTM model. (Best view in color).

Recently, some methods were proposed to address the issues. First, to preserve the
short-term dependency, Wang. et al. proposed PredRNN [15] and PredRNN++ [16] by in-
troducing a spatial memory into the original ConvLSTM. The spatial memory can preserve
the spatial information from the bottom to the top layer. Also, Tran., et al. [17] showed
that it can be applied in radar echo extrapolation and deliver better performance than
ConvLSTM. However, the extra spatial memory does not help the input or the hidden
state to select important features because they are convolved independently. Secondly,
to preserve the long-term spatiotemporal correlation, Eidetic 3D LSTM(E3D-LSTM) [18]
utilizes the self-attention [19,20] module. It can preserve more spatiotemporal represen-
tation because the information can be found from historical memories by the attention
mechanism. Nevertheless, it merely uses the single spatial attention mechanism to recall
the previous temporal memories. The channel correlations are not modeled [21].

To overcome the limitations of existing models, we propose a novel Interactional
Dual Attention Long Short-term Memory (IDA-LSTM) by adding (1) an interaction scheme
between the hidden state and the input to preserve more import representation, and (2) a
dual attention module for both channel and temporal information to obtain better long-term
spatiotemporal representation. For the interaction part, we develop a coupled convolution
framework for the input and hidden state. In the framework, the input and hidden state
are interacted and fused by a serial of coupled convolutions. As a result, a novel input and
hidden state are formed, where the important information are selected with the coupled
convolutions. For the dual attention part, we combine channel attention and spatial
attention module to substitute for the update of the temporal memory at the forget gate.
The single spatial attention module used in E3D-LSTM only considers how to selectively
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reorganize the feature at each position. However, it ignores the correlation between the
different channels. Therefore, channel attention is introduced to further improve the
representation in the long term. The experimental results show that the proposed IDA-
LSTM is valid to improve the accuracy of precipitation nowcasting, especially in the high
echo region. The contribution of our method can be summarized as follows:

1. We first develop the interaction scheme to enhance the short-term dependency model-
ing ability of ConvRNN approaches. The interaction scheme is a general framework,
which can be applied in any ConvRNN model.

2. We introduce the dual attention mechanism to combine the long-term temporal and
channel information for the temporal memory cell. The mechanism helps recall the
long-term dependency and form better spatiotemporal representation.

3. By applying the interaction scheme and the dual attention mechanism, we propose our
IDA-LSTM approach for radar echo map extrapolation. Comprehensive experiments
have been conducted. The IDA-LSTM achieves state-of-the-art results, especially
in the high radar echo region, on the CIKM AnalytiCup 2017 radar datasets. To
reproduce the results, we release the source code at: https://github.com/luochuyao/
IDA_LSTM.

2. Proposed Method

In this section, we present the proposed IDA-LSTM model. We first introduce the
interaction framework which can be applied in any ConvRNN model. Then, we elaborate
the dual attention mechanism and describe how to embed the dual attention mechanism
and interaction into our model. Finally, we introduce the whole architecture of the proposed
IDA-LSTM model.

2.1. Interaction Framework

The original ConvRNN models independently apply a convolution into the input and
hidden state respectively. This process cannot effectively model the correlations between the
input and hidden state. To address it we propose a novel interaction scheme by constructing
a serial of coupled convolutions as shown in Figure 2. We assume that the original input
and hidden state are x0 and h0 in ConvRNN models. The new input x1 is obtained by the
convolutions on x0 and h0 respectively and adding them together. Upon the summation
result, a rectified linear threshold unit (ReLU) is appended. Similar to x1, the new hidden
state h1 is obtained according to x1 and h0. The process can be repeated for i times to
obtain the new hidden state hi and xi. The new hidden state hi and xi will be fed into the
ConvRNN unit. Formally, the operation of hi and xi in ith iterator can be expressed as the
following equation:

xi = relu(xi−1 ∗Wxx + hi−1 ∗Whx)

hi = relu(xi ∗Wxh + hi−1 ∗Whh)
(1)

Here, ‘∗’ denotes the 2D convolution. From this equation, we can see that each update
of the input always uses the information of the hidden state, which means it merges the
representation of the hidden state. Besides, the hi−1 ∗Whx also can help the old input xi−1

to leverage significant representation by convolution. The same advantage also can be
reflected in the hidden state. It aggregates the information from the input and can extract
better representation under the guidance of the input. By repeating this process, the formed
input and the hidden state can nicely exploit the context information before going into the
ConvRNN unit.

https://github.com/luochuyao/IDA_LSTM
https://github.com/luochuyao/IDA_LSTM
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Figure 2. The interaction block. It interacts with the representation between the hidden state h and
the input x.

To examine the performance of the interaction method, we depict Figure 3 which
shows the eight one-hour prediction samples w. (with) and w/o. (without) interaction.
We utilize the black box to mark the areas with high reflective to emphasize these parts.
We can see that the model with the interaction mechanism can effectively improve the
nowcasting, especially in the high rainfall regions. For the models without interaction,
it even cannot generate the red parts. It implies the interaction scheme is more effec-
tive in predicting the high echo value parts. We will further validate its effectiveness in
Section 3. We note that this scheme is a general framework which can be applied in any
ConvRNN models.

Figure 3. The first line is the eight ground truth examples and the rest are predictions after an hour
without (second row) interaction and with (the last row). The color scheme is based on the color code
in the right part (Best view in color).

2.2. Dual Attention Mechanism

To further model the long-range dependency, we develop a dual attention mechanism
for both the spatial and channel module, shown as in Figure 4. Next, we detail the dual
attention mechanism.

Spatial Attention Module Given the feature map ft ∈ RN×C×H×W and it can be
regarded as the query Qs, where N, C, H and W denote the batch size, channel, height and
width of the feature map respectively, we directly reshape it to Qs ∈ RN×(H∗W)×C. For a
series of feature maps Ct−τ:t−1 ∈ RN×C×τ×H×W , it can be seen as the key Ks and value Vs.
Here, the τ is length of the series. Similarly, it can be reshaped into Ks ∈ RN×(τ∗H∗W)×C

and Vs ∈ RN×(τ∗H∗W)×C. Next, according to the Equation (2), we can obtain the output of
spatial attention:

As = Attns( ft, Ct−τ:t−1)

= norm(Ct−1 + so f tmax(Qs · KT
s ) ·Vs)

Qs = ft; Ks = Vs = Ct−τ:t−1,

(2)

which is shown as the green part in Figure 4. Here, the so f tmax(Qs ·Ks
T) ∈ RN×H∗W×τ∗H∗W

denotes to apply a softmax layer to the matrix product operation of Qs and Ks. It represents
position similarity between the Qs and Ks. The value implies the degree of correlation of
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given feature maps ft and the long-term series maps Ct−τ:t−1. Then, it can be regarded
as the weight to update spatial information by the calculation of matrix product with Vs,
which selectively integrates the location information from Ct−τ:t−1 into the final result As
in terms of the spatial similarity. Finally, we rebuild the shape of As ∈ RN×C×H×W to let
the ft and Ct−1 as the output of the module.

Figure 4. The dual attention mechanism embeding in proposed model.

Channel Attention Module aims to model the correlations between the channels. Dif-
ferent from the spatial attention module, the query ft ∈ RN×C×H×W are transformed and
reshaped to the query Qc ∈ RN×C×(H∗W). Also, the series of feature maps Ct−τ:t−1 ∈
RN×C×τ×H×W can be reshaped into key Kc ∈ RN×τ∗C×(H∗W) and value
Vc ∈ RN×(τ∗C)×(H∗W). The channel attention can be expressed as the following equation:

Ac = Attnc( ft, Cr−τ:t−1)

= norm(Ct−1 + so f tmax(Qc · KT
c ) ·Vc).

Qc = ft; Kc = Vc = Ct−τ:t−1.

(3)

Here, the so f tmax(Qc · Kc
T) ∈ RN×C×(τ∗C) denotes the query ft’s impact representa-

tion on the key Ct−τ:t−1 in terms of channels. Then, we perform matrix product between it
and the value Vc. In the same way, we reshape the result of Equation (3) into appropriate
sizes shown as the blue part in Figure 4 and then sum it with the spatial attention result.

Sum Fusion finally integrates the output from the two attention modules. Figure 5
shows the structure of the part in detail. Specifically, it independently applies two convolu-
tion layers on As and Ac respectively. The first convolution layer involves a convolution
with 3 kernel size, a layer normalization and the activate function of ReLU. The second
utilizes a convolution operation where kernel size is 1. Then, the element-wise sum is
performed on the two results. At last, a convolution layer is applied to generate the
final result.

The combination of the results from both parts not only involves the local spatial fea-
tures but also includes the channel relationship at corresponding position in the long period
of τ. Therefore, the output of the dual attention module is more effective than each single
module. In summary, the dual attention module can be shown as the following formula:

Ad = Attnd( ft, Ct−τ:t−1)

= SumFusion(Attns( ft, Cr−τ:t−1), Attnc( ft, Cr−τ:t−1)).
(4)
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Figure 5. The structure of SumFusion modular.

Figure 6 shows the eight one-hour prediction examples with the position attention
module, channel attention module and dual attention module, respectively. We can see the
channel attention module and spatial attention model cannot accurately predict the high
echo value regions. Both of them underestimate the parts. As for the dual attention module,
its prediction is more accurate and the high echo value region parts are not underestimated,
which implies that the combination of the two attention modules is very effective. We will
further demonstrate its advantages in Section 3.

Figure 6. The first line is the eight ground truth examples and the rest are predictions after an hour
merely with spatial attention (second row), channel attention (third row), and dual attention (the last
row). (Best view in color).

2.3. The IDA-LSTM Unit

In this subsection, we will introduce how to embed the dual attention mechanism
into the LSTM unit to form our IDA-LSTM. Figure 7 illustrates the inside structure of
our proposed IDA-LSTM unit. We can see that the input of IDA-LSTM block contains
the current input Xt, spatial memory Ml−1

t , historical temporal memories Cl
t−τ:t−1 and

hidden state Hl
t−1. The current input Xt and hidden state Hl

t−1 are first transformed by the
developed interaction block. The resulting new input and hidden state are then combined
with Cl

t−τ:t−1 and as the input of the developed dual attention mechanism to update the
temporal memory Cl

t . By the dual attention on the multiple previous temporal memories
Cl

t−τ:t−1, the Cl
t can recover the forgotten information. Finally, the temporal memory Cl

t is
delivered to the next time. In addition to temporal memory, in our IDA-LSTM unit, we
follow PredRNN and introduce the spatial memory Ml

t. Its update scheme is the same as
that in the PredRNN. Formally, the calculation of the IDA-LSTM unit is expressed as:
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it = σ(Wxi ∗ Xt + Whi ∗ Hl
t−1 + bi),

gt = tanh(Wxg ∗ Xt + Whg ∗ Hl
t−1 + bg),

ft = σ(Wx f ∗ Xt + Wh f ∗ Hl
t−1 + b f ),

i′t = σ(W ′xi ∗ Xt + Wmi ∗Ml−1
t + b′i),

g′t = tanh(W ′xg ∗ Xt + Wmg ∗Ml−1
t + b′g),

f ′t = σ(W ′x f ∗ Xt + Wm f ∗Ml−1
t + b′f ),

Cl
t = it ◦ gt + Attnd( ft, Ct−τ:t−1),

Ml
t = i′t ◦ g′t + f ′t ◦Ml−1

t ,

ot = σ(Wxo ∗ Xt + Who ∗ Hl
t−1 + Wco ∗ Cl

t + Wmo ∗Ml
t + bo),

Hl
t = ot ◦ tanh(W1×1 ∗ [Xl

t , Ml
t]),

(5)

where ◦ is the matrix product and τ is the number of previous temporal memories. The ∗
denotes the 2D convolution and the LayerNorm is layer normalization [22] that is designed
to stabilize the training process. Attnd in Equation (5) denotes the dual attention module
in Section 2.2. Here, the forget gate ft is the query, and the historical memories Ct−τ:t−1
denotes the key and value. The function of this mechanism is to control where and
what information to emphasize on previous memories so as to produce good predictions.
Obviously, the dual attention mechanism can nicely model the long-term dependency.

Figure 7. The inside structure of Interactional Dual Attention Long Short-term Memory (IDA-
LSTM) unit.

2.4. The IDA-LSTM Extrapolation Architecture

The architecture of our model is similar to the convolutional recurrent network such
as PredRNN [15], PredRNN++ [16] , and Eidetic 3D LSTM [18] model as shown in Figure 8.
Our architecture is a four-layer network built upon the IDA-LSTM units. In the architecture,
the temporal memory information is delivered along the horizontal direction (shown as
black dot lines) and the spatial memory information is transmitted in an zigzag manner
(shown as red dot lines). The prediction X̂t is generated from the output of the top layer
after going throw a convolution layer.
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Figure 8. The architecture of our model.

3. Experiment
3.1. Experimental Setup

In this part, we show the introduction of the experiment including the dataset, evalua-
tion metrics, parameter and training setting.

3.1.1. Dataset

We utilize the Conference on Information and Knowledge Management (CIKM) Ana-
lytiCup 2017 challenge dataset to evaluate our model. It contains 10,000 samples as the
training set and 4000 samples as the testing set. The sample time of both is different, the
data in the training set come from two consecutive years and the test-set is sampled within
the next year. We randomly select 2000 samples from the training set as the validation set.
Each sample includes 15 CAPPI radar images with an interval of 6 min and elevation-angles
(0.5, 1.5, 2.5 and 3.5 km). In this paper, we select the 3.5 km level images to train and test
our models. In each sample, the first five echo maps are treated as input and the last ten as
the expected output. That is, we aim to predict the one-hour extrapolation based on the
half-an-hour observations in the past. Each image covers 101 km × 101 km square with the
size of 101× 101 (pixel). Each pixel represents a resolution of 1 km × 1 km and the original
range of it is [0, 255]. We give the Figure 9 to show the distribution of pixels of train-sets,
validation-set and test-set. The distribution gap between the training-sets and test implies
the challenge of this nowcasting task.

Figure 9. The histograms of non-zeros pixel values in the train-sets, validation-set and
test-set respectively.
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3.1.2. Evaluation Metrics

As a preprocessing step, we convert the pixel value of each pixel value as follows:

dBZ = pixel_value× 95/255− 10. (6)

As for evaluation, we convert the prediction echo map and the ground truth one
by thresholding. If the value larger than the given threshold, the corresponding value
is set to 1; otherwise it is set to 0. Then we calculate the number of positive predictions
TP (prediction = 1, truth = 1), false-positive predictions FP (predictio = 1, truth = 0), true
negative predictions TN (prediction = 0, turth = 0) and false-negative predictions FN
(predition = 0, truth = 1). Specifically, we use three thresholds namely 5 dBZ, 20 dBZ and
40 dBZ. Finally, we compute the Heidke Skill Score (HSS) [23] and Critical Success Index
(CSI) metrics to evaluation the results:

HSS =
2(TP× TN − FN × FP)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)

CSI =
TP

TP + FN + FP
.

(7)

Moreover, we also apply MAE and SSIM to evaluate our model from a different view.

3.1.3. Parameter and Training Setting

The parameter configuration details of IDA-LSTM model are described in Table 1.
Here, ‘In Kernel’, ‘In Stride’, and ‘In Pad’ denotes the kernel size, stride, and the padding
in the input-to-state 3D convolution respectively. ‘State Ker.’ and ‘Spatial Ker.’ denotes
the kernel size of the state-to-state and spatial memory 3D convolution respectively. Its
stride and padding setting is the same as ‘In Stride’ and ‘In Pad’. For the interaction part
as Figure 2 shown, each convolution block applies the convolution kernel with 32 filters,
5 × 5 kernel size, 1 stride and the same padding. Besides, each input with shape (101, 101,
1) is padded with zeros into the shape (128, 128, 1) and then is patched to the shape (32,
32, 16). Eventually, at any time step, the output with the shape (32, 32, 16) in the top layer
transforms the shape to (128, 128, 1) as the final prediction.

Table 1. The details of the IDA-LSTM model . The output of the Layer 5 will be transform the prediction with same shape
of input.

Layer In Kernel In Stride Pad State Ker. Spatial
Ker. Ch I/O In Res Out Res Type

Layer 1 5 × 5 1 × 1 2 × 2 5 × 5 5 × 5 16/32 32 × 32 32 × 32 IDA-
LSTM

Layer 2 5 × 5 1 × 1 2 × 2 5 × 5 5 × 5 32/32 32 × 32 32 × 32 IDA-
LSTM

Layer 3 5 × 5 1 × 1 2 × 2 5 × 5 5 × 5 32/32 32 × 32 32 × 32 IDA-
LSTM

Layer 4 5 × 5 1 × 1 2 × 2 5 × 5 5 × 5 32/32 32 × 32 32 × 32 IDA-
LSTM

Layer 5 1 × 1 1 × 1 0 × 0 - - 32/16 32 × 32 32 × 32 Conv2D

Before training, all radar echo maps were normalized to [−1, 1] as the input. our
model is optimized with an L1+L2 loss. In the training step, all models are trained by
utilizing the ADAM optimizer [24] with the 0.001 learning rate. The batch size of each
iteration process and the maximum number of iterations is set to 4 and 80,000 respectively.
Besides, the early-stopping strategy was applied. All experiments are implemented in
Pytorch and executed on NVIDIA TITAN GPU.
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3.2. Experimental Results

Table 2 shows the results of all the methods. Here, ConvLSTM, ConvGRU, TrajGRU
and PredRNN were previously applied and tested on the data set. From this table, DA-
LSTM denotes our model with the dual interaction module but without the interaction part.
We can see that the proposed model including DA-LSTM and IDA-LSTM achieves the best
performance in terms of the HSS, CSI at all thresholds. Particularly, the evaluated metrics
reach 0.2262 and 0.1287 when the threshold is at 40 dBZ, which is 21.74% and 24.47% higher
than the second-rank algorithm (MIM model), respectively. It implies that the developed
dual attention and interaction modules are helpful for the high rainfall region prediction,
which is especially important to alert significant threats on human activity and economy.
For the MIM model, it delivers the the second result at two relatively high thresholds
(20 dBZ and 40 dBZ). This can be attributed to its memory in memory scheme, which can
help to preserve the high echo value regions. Besides, the results of PredRNN, PredRNN++
and TrajGRU are superior to ConvLSTM and ConvGRU. E3DLSTM performs the worst
among all the methods.

Table 2. Comparison results of ablation study on the CIKM AnalytiCup 2017 competition dataset in terms of Heidke Skill
Score (HSS) and Critical Success Index (CSI). Bold denotes the best evaluate index among all models.

dBZ Threshold
HSS ↑ CSI ↑

MAE ↓ SSIM ↑
5 20 40 avg 5 20 40 avg

ConvLSTM [4] 0.7035 0.4819 0.1081 0.4312 0.7656 0.4034 0.0578 0.4089 15.06 0.2229
ConvGRU [6] 0.6776 0.4766 0.1510 0.4351 0.7473 0.3907 0.0823 0.4068 16.27 0.1370
TrajGRU [6] 0.6828 0.4862 0.1621 0.4437 0.7499 0.4020 0.0888 0.4136 15.99 0.1519

PredRNN [15] 0.7080 0.4911 0.1558 0.4516 0.7691 0.4048 0.0839 0.4198 14.54 0.3341
PredRNN++ [16] 0.7075 0.4993 0.1574 0.4548 0.7670 0.4137 0.0862 0.4223 14.51 0.3357
E3D-LSTM [18] 0.7111 0.4810 0.1361 0.4427 0.7720 0.4060 0.0734 0.4171 14.78 0.3089

MIM [8] 0.7052 0.5166 0.1858 0.4692 0.7628 0.4279 0.1034 0.4313 14.69 0.2123
DA-LSTM 0.7184 0.5251 0.2127 0.4854 0.7765 0.4376 0.1202 0.4448 14.10 0.3479
IDA-LSTM 0.7179 0.5264 0.2262 0.4902 0.7752 0.4372 0.1287 0.4470 14.09 0.3506

We draw Figure 10 to describe the HSS and CSI curves of all models at all nowcasting
lead time stamps. We can see that our models always keep top positions at all thresholds
and any time, which demonstrates the robust superiority of our approach. It is worth
pointing out that the gaps between our IDA-LSTM model, and other models are most
obvious at the 40 dBZ, which demonstrates our method significantly improves the high
rainfall region prediction. Besides, the MIM model delivers the second best performance
due to the design of memory in memory. Moreover, the result of PredRNN is always worse
than the proposed models, particularly at the high threshold. It implies the effectiveness
of the proposed interaction and dual attention mechanisms, because the two parts are the
only differences between PredRNN and our IDA-LSTM. As for ConvGRU and ConvLSTM
model, they deliver the worst performance.

To better compare and understand the results, we visualize some prediction examples
produced by different methods in Figure 11. We can see that only PredRNN, DA-LSTM,
and IDA-LSTM can preserve the high echo value regions (red parts) in the 10th prediction
image. Among the three methods, IDA-LSTM is the best, followed by DA-LSTM and then
PredRNN. The reason is that IDA-LSTM applies both the interaction and dual attention
schemes, which better model the short-term and long-term dependency. DA-LSTM applies
only the dual attention module. Hence, the performance degenerates a little bit. As for
PredRNN, it does not have the interaction and dual attention modules, but only leverages
the spatial memory cell. Thus, it can only preserve parts of the high echo value regions.
Moreover, we can see from the ground-truth sequence that the high echo value regions
increase and the intensity becomes higher as the lead time goes on. The proposed IDA-
LSTM can nicely predict the trend. As for other deep learning models, they cannot predict
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the high echo value regions and the red parts gradually disappear as the lead time goes on.
The fact further confirms our motivation of this paper.

(a) HSS = 5; (b) CSI = 5;

(c) HSS = 20; (d) CSI = 20;

(e) HSS = 40; (f) CSI = 40;

Figure 10. The performance changes against different nowcasting lead time in terms of HSS and CSI scores. (Best view
in color).
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Figure 11. The prediction results of all methods on an example from the CIKM AnalytiCup 2017 competition. The first five
images in the first row are the input, and the remainders denote the ground-truth output. Other rows are the prediction of
various models.

3.3. Ablation Study

To further investigate the effectiveness of the two proposed mechanisms, we conduct
ablation study in this subsection.

Context Interaction: To validate the effectiveness of the proposed interaction frame-
work, we embed it into the ConvLSTM, PredRNN, PredRNN++ and DA-LSTM, respec-
tively and test their performances. Table 3 shows the results of these models without the
interaction and with different number of interactions. The methods with the prefix “i”
denote the ones with interactions and the superscript number denotes interaction times.
We can see that when equipped with interactions, the performances of these models all im-
prove. The improvement is especially obvious at 40 dBZ threshold. The fact demonstrates
the effectiveness of the proposed interaction framework.

Similarly, we also depict the HSS and CSI curves w.r.t. different nowcasting lead
times at 40 dBZ threshold in Figures 12 and 13, respectively. The methods with the prefix
“i” denote the ones with the interactions. We observe that the performance with the
interactions is better at different nowcasting lead times. The fact further validates the
effectiveness of the developed interaction framework.
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Table 3. Comparison results with the different number of interactions on the CIKM AnalytiCup 2017 competition dataset in
terms of HSS and CSI. Bold denotes the best evaluate index among all models.

dBZ Threshold
HSS ↑ CSI ↑

MAE ↓ SSIM ↑
5 20 40 avg 5 20 40 avg

ConvLSTM 0.7035 0.4819 0.1081 0.4312 0.7656 0.4034 0.0578 0.4089 15.06 0.2229
IConvLSTM 1 0.7149 0.4889 0.1236 0.4424 0.7769 0.4119 0.0667 0.4184 14.62 0.3390
IConvLSTM 2 0.7055 0.5001 0.1215 0.4424 0.7668 0.4120 0.0652 0.4146 14.42 0.3365
IConvLSTM 3 0.7092 0.4740 0.1247 0.4360 0.7784 0.4118 0.0671 0.4191 15.11 0.3372
IConvLSTM 4 0.5645 0.4044 0.0830 0.3503 0.6305 0.3362 0.0453 0.3373 20.65 0.3111

IPredRNN 0.7081 0.4911 0.1558 0.4516 0.7691 0.4048 0.0854 0.4198 14.54 0.3341
IPredRNN 1 0.7133 0.5108 0.2047 0.4762 0.7685 0.4188 0.1151 0.4341 14.03 0.3488
IPredRNN 2 0.7081 0.5039 0.1531 0.4550 0.7710 0.4154 0.0836 0.4233 14.40 0.3312
IPredRNN 3 0.7001 0.5179 0.1951 0.4710 0.7710 0.4289 0.1089 0.4359 14.52 0.3281
IPredRNN 4 0.7111 0.5019 0.2155 0.4762 0.7726 0.4101 0.1218 0.4348 14.20 0.3327

IPredRNN++ 0.7075 0.4993 0.1575 0.4548 0.7670 0.4137 0.0862 0.4223 14.51 0.3357
IPredRNN++ 1 0.7188 0.5100 0.2004 0.4764 0.7759 0.4251 0.1124 0.4378 14.13 0.3513
IPredRNN++ 2 0.7119 0.5037 0.2098 0.4751 0.7715 0.4204 0.1181 0.4367 14.33 0.3423
IPredRNN++ 3 0.7023 0.4995 0.1610 0.4543 0.7665 0.4110 0.0882 0.4219 14.59 0.3255
IPredRNN++ 4 0.7153 0.4968 0.2172 0.4764 0.7774 0.4239 0.1234 0.4416 14.62 0.3487

DA-LSTM 0.7185 0.5251 0.2127 0.4854 0.7765 0.4376 0.1202 0.4448 14.10 0.3479
IDA-LSTM 1 0.7093 0.5065 0.1606 0.4588 0.7683 0.4218 0.0881 0.4261 14.38 0.3345
IDA-LSTM 2 0.7179 0.5264 0.2262 0.4902 0.7752 0.4372 0.1287 0.4470 14.09 0.3506
IDA-LSTM 3 0.7179 0.5156 0.1879 0.4738 0.7798 0.4342 0.1044 0.4395 14.18 0.3436
IDA-LSTM 4 0.7068 0.5085 0.1930 0.4694 0.7631 0.4125 0.1081 0.4279 14.21 0.3461

(a) ConvLSTM; (b) PredRNN;

(c) PredRNN++; (d) DA-LSTM;

Figure 12. The performance changes against different nowcast lead times in interaction ablation study in terms of HSS as the threshold
is 40 dBZ. (Best view in color).
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(a) ConvLSTM; (b) PredRNN;

(c) PredRNN++; (d) DA-LSTM;

Figure 13. The performance changes against different nowcast lead times in interaction ablation study in terms of CSI as the threshold
is 40 dBZ. (Best view in color).

To visually compare the results with/without the interactions of the four methods
ConvLSTM, PredRNN, PredRNN++, IDA-LSTM, we depict in Figure 14 four groups of
prediction results. We can see that the models with the interactions predict the high echo
value regions (red parts) better than their counterparts without the interactions. The results
further demonstrate the superiority of the interaction framework.

(a) ConvLSTM;

Figure 14. Cont.
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(b) PredRNN;

(c) PredRNN++;

(d) IDAST-LSTM;

Figure 14. The four group interaction ablation examples from the CIKM AnalytiCup 2017 competition.
These groups are ConvLSTM, PredRNN, PredRNN++, and DAST-LSTM respectively from top to
bottom. The first five images in the first row are the input, and the remainders denote the ground-
truth output. Other rows are the prediction of various models. (Best view in color).

Dual Attention Module: The purpose of the dual attention module is to exploit
more spatiotemporal representation from huge history temporal memories and to preserve
adequate information involving high echo value regions. To validate its effectiveness,
we embed different types of attention schemes into the PredRNN model. The attention
schemes include “without attention”, “with spatial attention”, “with channel attention” and
“with the dual attention”. Table 4 shows the results of the four schemes. Here, CA-LSTM
and SA-LSTM denote the PredRNN model with channel attention and spatial attention
respectively. The DA-LSTM represents the PredRNN model with our dual attention. We
observe from the table that the DA-LSTM delivers the best results, followed by CA-LSTM
and SA-LSTM. The PredRNN method without any attention performs the worst. The
observations validate the effectiveness of the attention schemes and the superiority of our
dual attention mechanism.

Table 4. Comparison results of attention mechanism ablation study on the CIKM AnalytiCup 2017 competition dataset in
terms of HSS and CSI. Bold denotes the best evaluate index among all models.

Model
HSS ↑ CSI ↑

MAE ↓ SSIM ↑
5 20 40 avg 5 20 40 avg

PredRNN 0.7081 0.4911 0.1558 0.4516 0.7691 0.4048 0.0854 0.4198 14.54 0.3341
SA-LSTM 0.7042 0.4982 0.1481 0.4502 0.7689 0.4143 0.0808 0.4213 14.68 0.3241
CA-LSTM 0.7115 0.5066 0.1575 0.4585 0.7733 0.4172 0.0861 0.4255 14.23 0.3296
DA-LSTM 0.7185 0.5251 0.2127 0.4854 0.7765 0.4376 0.1202 0.4448 14.10 0.3479

Again, we show the HSS and CSI curves of the four methods against different now-
casting lead times in Figure 15. It can be seen that the DA-LSTM equipped with our dual



Remote Sens. 2021, 13, 164 16 of 18

attention mechanism consistently performs the best. Moreover, as the threshold increases
from 5 dBZ to 40 dBZ, the improvement of our method becomes more and more obviously.
The observation demonstrates that the developed dual attention mechanism is especially
helpful for the prediction of high echo value parts.

(a) HSS = 5; (b) CSI = 5;

(c) HSS = 20; (d) CSI = 20;

(e) HSS = 40; (f) CSI = 40;

Figure 15. The performance changes against different nowcast lead times in attention mechanisms
ablation study in terms of HSS and CSI scores. (Best view in color).

Figure 16 shows the one-hour prediction echo maps of the four schemes on an example.
We can see that the method with our dual attention mechanism can better preserve the
high echo value parts (red parts) than the one with single attention or without attention.
The result further validates the effectiveness of the developed dual attention mechanism.
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Figure 16. The attention mechanism ablation example from the CIKM AnalytiCup 2017 competition.
The first five images in the first row are the input, and the remainders denote the ground-truth output.
Other rows are the prediction of various models. (Best view in color).

4. Conclusions

In this paper, we propose a novel radar echo map extrapolation method, namely,
IDA-LSTM. In the method, an interaction framework is developed for the ConvRNN unit
to fully exploit the short-term context information, which can be applied in any ConvRNN
based model. The ablation study shows that it can improve the prediction almost in all
ConvRNN models after several interactions. Moreover, a dual attention mechanism is
developed to combine the channel attention and spatial attention, which can recall forgotten
information in ConvRNN to model long-term dependency. The experiment shows that
embedding dual attention into the PredRNN achieve better performance. By combining the
two improvements, we proposed IDA-LSTM which overcomes the underestimation issue
of high echo value parts that existing deep learning extrapolation methods suffer from. By
comparing other existing algorithms, the superiority and performance of it have been fully
demonstrated. In the future, we will explore the prediction of radar echo maps at multiple
heights to improve the nowcasting in some extreme weather events such as convection.
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