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Abstract: Pine nematode is a highly contagious disease that causes great damage to the world’s pine
forest resources. Timely and accurate identification of pine nematode disease can help to control
it. At present, there are few research on pine nematode disease identification, and it is difficult to
accurately identify and locate nematode disease in a single pine by existing methods. This paper
proposes a new network, SCANet (spatial-context-attention network), to identify pine nematode
disease based on unmanned aerial vehicle (UAV) multi-spectral remote sensing images. In this
method, a spatial information retention module is designed to reduce the loss of spatial information;
it preserves the shallow features of pine nematode disease and expands the receptive field to enhance
the extraction of deep features through a context information module. SCANet reached an overall
accuracy of 79% and a precision and recall of around 0.86, and 0.91, respectively. In addition,
55 disease points among 59 known disease points were identified, which is better than other methods
(DeepLab V3+, DenseNet, and HRNet). This paper presents a fast, precise, and practical method for
identifying nematode disease and provides reliable technical support for the surveillance and control
of pine wood nematode disease.

Keywords: UAV remote sensing; pine wood nematode disease; deep learning; intelligent identifying

1. Introduction

Pine wood nematode is a forest disease caused by Bursaphelenchus xylophilus. Since 1982,
this disease has caused damage to hundreds of millions of pine trees when it invaded
China, with economic losses amounting from hundreds to 30 billion yuan and damaging
an area of 700 thousand hectares [1]. It is highly contagious and destructive, causing great
damage to forest resources worldwide, especially in Europe and Asia [2]. The identification
of pine wood nematodes is important for prevention and control.

Remote sensing technology has become an important technical means for identifying
forest diseases and insect pests [3,4]. The spectral characteristics of infected plants constitute
the main basis for identifying forest pests via remote sensing technology [5]. When forests
are invaded by diseases and insect pests, the spectral characteristics of vegetation will
change, such as chlorophyll, water content, and cell activity [6,7]. In as early as the 1970s,
resource satellites were used to study forest pests and diseases, and forest information
was effectively identified [8]. Satellite remote sensing images were used to conduct more
in-depth research on pine disease identification, and the results showed that the spectral
characteristics of pine trees before and after infection are quite different. This proves the
feasibility of identifying pine wood nematodes via the relationships among transpiration
rate, spectral response, and different vegetation indices [9,10]. Since then, an increasing
number of studies have been conducted on the identification of forest disease by different
types of remote sensing images [11,12]. However, the spatial resolution of the early satellite
remote sensing images was low, and most remote sensing studies only used the spectral
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information of the images to perform identification. By selecting the spectral index of forest
diseases and insect pests, pine wood nematode diseases were determined [13].

With the development of technology and the improved quality of remote sensing data,
identifying disease in forest areas is now one of the most important applications of land
cover monitoring using remote sensing data. However, if only the spectral information
of high-resolution remote sensing imagery is considered, misclassification can easily re-
sult [14]. Therefore, some studies have started to make use of spectral information as well
as the textural and geometric information of the image target and to use the K-nearest
neighbour (KNN) and maximum entropy methods to establish a pine wood nematode
disease identification model; these methods have achieved good classification and have
been able to rapidly identify large-scale pine disease areas [6,15]. For example, using the
colour and texture features of unmanned aerial vehicle (UAV) images as input and using
the minimum relative distance method and membership function method to identify dis-
eased pine, pine trees and other ground objects in different health states can be accurately
classified [3,16]. However, the accuracy of the pine wood nematode disease results is
dependent on many factors, such as geographic location, calibration, and the experience
of the analyst. Making use of the detailed information and high-level features in some
classification methods are difficult, since they only consider low-level features, such as
colour or texture features, which greatly affects the identification of pine nematodes in
high-resolution UAV images [17,18]. Therefore, modification of these algorithms is a must
in order to minimize misclassification and to improve the accuracy of identifying pine
wood nematode disease.

In recent years, deep learning has been able to automatically learn in the field of
target identification in remote sensing images [19–21]; it has been widely used to identify
targets in ultra-high-resolution remote sensing images, and significant results have been
achieved [22–24]. Compared with traditional machine learning algorithms such as support
vector machines (SVMs) [25], deep learning has been recognized as a high-precision identi-
fication method [26]. To improve the detection accuracy of pests and diseases, some studies
have used convolutional neural networks (CNNs) such as AlexNet to automatically iden-
tify forest pests and diseases. These networks use a convolutional layer to extract target
information, the full connection layer is used to highly purify the feature, and a classifier
determines whether the image contains diseases [27]. However, these methods have not
been able to provide accurate location information, and ground staff is still needed to
find the specific location of diseases through visual interpretation [18]. The fully convo-
lutional networks (FCNs) proposed in 2014 can locate targets more accurately and can
separate them from the background [20,22]. They remove fully connected layers on the
basis of a CNN and the spatial information of the image, and a deconvolution operation
establishes the output segmentation results of the upsampling process. Some studies
have proposed a series of semantic models, including DeepLab V3+ [28], HRNet [29],
and DenseNet [30]. In the task of tree species classification, FC-DenseNet and other seman-
tic segmentation networks can effectively identify different tree species in images and can
position different tree species [14,31]. When acquiring target information, conventional
deep learning methods have difficulty accounting for detailed spatial information and the
receptive field, resulting in a loss of details. Additionally, the disease target of a single pine
wood nematode is too small to lose target information during the downsampling process,
which affects identification.

Therefore, we propose a new method to reduce the loss of detailed information in the
convolution process focused on the problem of small targets and complex backgrounds
in images acquired by UAVs, which have an ultra-high spatial resolution. In order to
improve the accuracy of disease identification, this method identifies high-level and low-
level features. This method is called the spatial-context-attention network (SCANet).
SCANet is mainly composed of a spatial information retention module (SIRM) and a context
information module (CIM), which can reduce the loss of spatial information, expand the
receptive field, and obtain rich context information. In addition, to effectively suppress
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the interference of background information and to highlight target feature information,
we added the attention refinement module (ARM) to the context information module
to strengthen the target feature in this study [32]. The contributions of this paper are
summarized as follows:

(1) We present a new method to identify pine wood nematode disease with high accuracy
using UAV images.

(2) An SIRM is used to retain spatial information to obtain low-level features, and a CIM
can expand the receptive field to obtain high-level features.

(3) The method can also be used to identify trees with single pine wood nematode disease.

The rest of this paper is organized as follows. A detailed description of the proposed
method is given in Section 2. The experimental data and the sample base are introduced in
Section 3. The results and analysis are presented in Section 4. Finally, the conclusions are
given in Section 5.

2. Methods
2.1. The Network Structure

In order to comprehensively consider spatial information and the receptive field and
to reduce the loss of single pine wood nematode disease information, we proposed SCANet
to better identify pine nematode disease. The network structure is shown in Figure 1.
In downsampling, after the original image entered the first convolutional layer, we divided
the network into two branches: the SIRM and the CIM. We then performed feature fusion
after the end of the two branches. The SIRM was mainly composed of three dense blocks
and three transition layers (mainly composed of a convolutional layer, a dropout layer,
and a pooling layer). The CIM consisted of three convolutional layers, three pooling layers,
and two ARMs. The stride of the first pooling layer was 4, and two ARMs were then used
to refine the results of the latter two pooling layers. The output of the ARM was fused with
the output of the SIRM. In upsampling, the network mainly consisted of three dense blocks
and three transposed convolutions. Rapid upsampling allowed for amplification of the
feature map to produce the same resolution as the original image, and a softmax classifier
was used to output the prediction map.

2.2. Spatial Information Retention Module

Aiming at the problem that spatial information of a single plant disease is easy to
lose in the process of downsampling, this paper proposes an SIRM to extract the spatial
details of the target. The module consisted of three dense blocks and three transition
layers. There was direct information transformation between two feature layers of a dense
block [33]. For each layer, the output of all the previous layers was used as the input, and its
output was used as the input for subsequent layers. Dense blocks have several advantages,
such as enhanced feature reuse, a reduced number of parameters, and mitigated gradient
dispersion, which make the network easier to train. Its formula is expressed as follows:

Xl = Hl ([X0, X1, . . . , Xl−1]) (1)

where [X0, X1 . . . , Xl−1] represents the connection of the output of all previous layers and
where the nonlinear transformation Hl is usually a composite function consisting of a batch-
normalization layer, an activate function, and a 3 × 3 convolution layer. The transition
layer includes a 1 × 1 convolutional layer, a dropout layer, and an average pooling layer
with a step size of 2. Abundant spatial information and detailed features can be obtained
by using dense blocks to reuse information from the front layer and sampling under the
transition layer.
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Figure 1. SCANet network structure.

2.3. Context Information Module

In semantic segmentation tasks, the receptive field has an important influence on the
performance of semantic segmentation. To expand the receptive field, some methods use
pyramid pooling modules [34], atrous space pyramid modules [35,36], or large convolution
kernels [37]. Although these modules consider part of the spatial information, they require
a large number of computations and considerable memory consumption, resulting in a
slow training speed. To solve this problem, the context information module was designed.
By strengthening the context background information, the deep features of the target were
highlighted, the accuracy of model recognition was improved, the shadow caused by a
single spectral feature was reduced, and the phenomenon of a “foreign object in the same
spectrum” and the “same object with different spectrums” was avoided. The CIM primarily
included a series of downsampling layers (including simple convolution and pooling) and
two ARMs. The rapid pooling operation can make the network obtain a larger receptive
field, reducing the number of parameters and memory consumption. The ARM mainly
consisted of an average pooling layer, a 1 × 1 convolutional layer, a batch standardization
layer, and a sigmoid layer, shown in Figure 2. The attention vector was calculated to guide
the learning of target features, which could effectively suppress interference of complex
backgrounds and enhanced the target features.
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2.4. Evaluation Index

In order to verify efficiency of the model in identifying the disease, the results were
quantitatively evaluated. The main evaluation methods included (1) overall accuracy,
i.e., the ratio of the number of correctly extracted targets to the total number of samples;
(2) precision, i.e., the ratio of the number of correctly extracted targets to all extracted
targets; (3) recall, i.e., the ratio between the number of correctly extracted targets and the
number of true targets; and (4) the missing alarm rate, i.e., the ratio between the number of
missed targets and the true number of missed targets. We set Ptp as the number of correctly
extracted targets, Pfp as the number of erroneously extracted targets, Ptn as the number
of correctly extracted negative targets, and Pfn as the number of missed extracted targets.
The formulas for each evaluation method are as follows:

Overall Accuracy =
Ptp + Ptn

Ptp + Pf p + Ptn + Pf n
(2)

Precision =
Ptp

Ptp + Pf p
(3)

Recall =
Ptp

Ptp + Pf n
(4)

MissingAlarm =
Pf p

Ptp + Pf n
(5)

3. Data and Experiments
3.1. Data Information

The experimental aerial flight platform was the FeimaD200 quadrotor. A multi-spectral
camera, model RedEdge-MX, was equipped on the UAV, and the camera included blue
(475 nm), green (560 nm), red (670 nm), rededge (720 nm), and near red (840 nm) bands.
A total of four UAV images were obtained, as shown in Figure 3. The data information
is shown in Table 1. These areas are located in the eastern and central parts of China.
Huangshan-1 and Huangshan-2 are located in Anhui. The main species are bamboo and
Masson pine, with a few hardwood trees. Wuhan is located in Hubei, which has mixed
forests in the flight area. Yantai is located in Shandong, which is dominated by coniferous
forests. Huangshan-2 was used as training data, and Huangshan-1, Wuhan, and Yantai
were used as test data.

Table 1. Flight parameters.

Images Huangshan-1 Huangshan-2 Wuhan Yantai

Locate Anhui Province Anhui Province Hubei Province Shandong Province
Flight height 150 m 150 m 200 m 160 m

Spatial resolution 0.1 m 0.1 m 0.125 m 0.1 m
Flight date 2019-08-12 2019-08-13 2019-8-21 2019-10-16

Centre coordinates E118◦19′12′′

N29◦47′19′′
E118◦18′44′′

N29◦47′33”
E114◦29′36′′

N27◦37′03′′
E121◦55′18′′

N37◦27′30′′

Wavelength (nm)

Blue: 475 nm
Green: 560 nm
Red: 670 nm

RedEdge: 720 nm
Near IR: 840 nm
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Since the UAV flight platform adopted in this experiment was equipped with a real-
time kinematic system, high-precision foreign image elements were provided, so a data
acquisition method without image control was adopted. The orthographic production of
multi-spectral images included camera internal orientation, coordinate system selection,
radiation calibration, band registration, aerial triangulation, a digital elevation model,
and multi-spectral orthographic production. The radiometric calibration was performed
with a diffuse plate before flight, as shown in Figure 4 [38].
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3.2. Dataset Details

In this paper, the Huangshan-2 image was taken as sample data, and the vector
data of pine nematode disease is drawn by a visual interpretation method to obtain
the corresponding label of pine nematode disease. Multi-scale segmentation is helpful
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to improve the number and diversity of samples and to prevent overfitting of models.
Therefore, Huangshan-2 images and label data were divided into 128 × 128 pixels and
256 × 256 pixels, and a training sample base of the pine nematode disease identifying
model was constructed after combination. To test the validity of the model, all sample data
were randomly divided into a training set and a test set at a ratio of 3:1. After eliminating
a small number of invalid samples, the training samples contained 4862 sub-images and
1712 sub-images were verified. Some samples are shown in Figure 5.
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4. Results and Analysis
4.1. Identification of Pine Wood Nematode Disease

The test data of pine nematode disease were outlined by visual interpretation. In addi-
tion, 59 disease spots on Huangshan Mountain were verified as test data. The identification
results of Huangshan-1, Wuhan, and Yantai are shown in Figures 6–8, respectively. It can be
seen in the figures that the method presented in this paper identify pine nematode disease
in the test images with good accuracy. Accuracy values are shown in Table 2. The mean
overall accuracy was 79.33%, the mean precision of all test images was 0.86, and the mean
recall of all test images was 0.91. Meanwhile, the recall of the verified Huangshan-1 data
is shown in Table 3. Among 59 known disease spots, 55 were identified by the proposed
method. The recall was 0.93, and the missing alarm value was 0.07. The validity of the
visual interpretation data is demonstrated through the verified data.
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Table 2. The accuracy of pine wood nematode disease identification using SCANet.

Images Total Visual
Interpretation

Total Number
of Identification Correct Number Overall Accuracy Precision Recall

Huangshan-1 186 203 174 80.93% 0.85 0.94
Wuhan 515 521 453 77.70% 0.87 0.88
Yantai 1005 1090 927 79.37% 0.85 0.92
Mean - - - 79.33% 0.86 0.91

Table 3. The identification accuracy of verified Huangshan-1 data.

Images Total Number
of Checkpoint Correct Number Recall Missing Alarm

Huangshan-1 59 55 0.93 0.07

4.2. Comparisons with Related Networks

To verify the method advanced on pine wood nematode disease identification, deep learn-
ing methods (Deeplab V3+ [35], HRNet [39], and DenseNet [33]) were used. Deeplab V3+
uses atrous spatial pyramid pooling (ASPP) to expand the receptor field and to acquire
features of different scales. DenseNet uses dense blocks to enhance feature utilization and
to reduce information loss. HRNet connects different hierarchical network structures in
parallel to maintain low-level and high-resolution features. Ablation experiments were
also carried out. All methods were adopted in contrast to methods with the same postpro-
cessing, including deep learning methods with the same data set and method under the
training and testing environment.

The proposed method was compared with other deep learning methods on Huangshan-
1, Wuhan, and Yantai in Figures 9–11, respectively. Qualitative analysis of the identification
results shows that SCANet was successful in most of the test images. Because the spatial in-
formation and receptive field cannot be taken into account, it is difficult to comprehensively
consider low-level and high-level features. Therefore, DenseNet, DeepLab V3+, and HRNet
show more omissions than SCANet and cause excessive segmentation. By reducing the
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loss of spatial information and by expanding the receptive field, the results show that pine
wood nematode disease can be identified effectively and that misclassification can be re-
duced. In order to make a quantitative comparison between SCANet, DenseNet, DeepLab
V3+, and HRNet, Table 4 lists the correct number, precision, overall accuracy, and recall
of these networks. Compared with the visual interpretation results, except the overall
accuracy of Huangshan-1 being lower than that of HRNet, our evaluation results are better
than that of other deep learning methods, especially on Wuhan and Yantai. SCANet shows
excellent performance in all images, but other methods on Wuhan and Yantai have many
missing and incorrect marks. This may be caused by the different forest types in the regions,
resulting in different feature information from the image and thus causing interference
in other identification methods. In the construction of SCANet, a context information
module and an attention mechanism were added to focus on important disease informa-
tion. The background information was ignored, which enhanced the ability to extract the
characteristics of pine nematode disease, and identification was improved. In general,
although SCANet showed some local omissions, it is better than HRNet or DenseNet.
However, SCANet’s overall performance is better than that of the other networks and still
well identifies pine nematode disease.
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Table 4. Results of different deep learning methods when identifying pine wood nematode disease.

Images Models Total Visual
Interpretation

Number of
Identification Correct Number Accuracy Precision Recall

Huangshan-1

SCANet 186 203 174 80.93% 0.86 0.94
Deeplab V3+ 186 173 146 68.54% 0.84 0.78

HRNet 186 175 152 72.73% 0.87 0.82
DenseNet 186 189 160 74.42% 0.85 0.86

Wuhan

SCANet 515 521 453 77.70% 0.87 0.88
Deeplab V3+ 515 801 385 41.53% 0.48 0.75

HRNet 515 460 326 50.23% 0.71 0.63
DenseNet 515 691 405 50.56% 0.59 0.79

Yantai

SCANet 1005 1090 927 79.37% 0.85 0.92
Deeplab V3+ 1005 1098 787 59.80% 0.72 0.78

HRNet 1005 900 617 47.80% 0.69 0.61
DenseNet 1005 1340 660 39.17% 0.49 0.65

4.3. Comparison with Ablation Experiments

The results of these different approaches are shown in Table 5 and in Figures 12–14.
The context information module was removed in SNet, and the spatial information reten-
tion module was removed in CANet. CANet conducted rapid downsampling to increase
the receptive field. Although the attention optimization module was used to enhance
the disease characteristics, spatial information was seriously lost, which made it impossi-
ble to accurately identify pine nematode disease. Although SNet has only a few missed
points, it could not highlight the disease features or suppress the interference of back-
ground features due to the absence of a context information module and an attention
optimization module. As a result, serious misclassification occurs. By combining the
two modules, this paper plays a role in feature selection and fusion, making the model
retain abundant spatial information while enhancing the characteristics of target diseases,
thus having the advantages of fewer misclassifications, fewer missing points, and higher
recognition accuracy.
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Table 5. Results of the ablation experimental when identifying pine wood nematode disease.

Images Models Total Visual
Interpretation

Number of
Identification Correct Number Accuracy Precision Recall

Huangshan-1
SCANet 186 203 174 80.93% 0.86 0.94

SNet 186 297 169 53.82% 0.57 0.91
CANet 186 126 65 26.31% 0.58 0.35

Wuhan
SCANet 515 521 453 77.70% 0.87 0.88

SNet 515 711 462 60.47% 0.65 0.90
CANet 515 367 205 30.28% 0.56 0.40

Yantai
SCANet 1005 1090 927 79.37% 0.85 0.92

SNet 1005 1368 900 61.09% 0.66 0.90
CANet 1005 565 326 26.21% 0.57 0.32
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5. Conclusions

In this paper, based on remote sensing images from UAVs, a new SCANet structure
was designed to automatically identify pine wood nematode disease. In order to reduce
the loss of spatial information, we designed a spatial information retention module to
obtain low-level features. We also designed a context information module to expand the
receptive field and used an attention refinement module to highlight disease characteristics.
SCANet was shown to inhibit background interference and to extract single plant disease
information. The experimental results show that the method presented in this paper
can well recognize infected pine trees. The mean overall accuracy was 79.33%, the mean
precision was 0.86, and the mean recall rate was 0.91. SCANet, with its high-resolution UAV
images, can conveniently and efficiently identify pine nematode disease and therefore has
great potential in locating hitherto undiscovered pine nematode disease and in protecting
pine forest resources. In the future, we will study other models in efforts to reduce the
interference between other tree species and ground objects.
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