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Abstract: With the advancement of light detection and ranging (LiDAR) technology, the mobile laser
scanner (MLS) has been regarded as an important technology to collect geometric representations
of the indoor environment. In particular, methods for detecting indoor objects from indoor point
cloud data (PCD) captured through MLS have thus far been developed based on the trajectory of
MLS. However, the existing methods have a limitation on applying to an indoor environment where
the building components made by concrete impede obtaining the information of trajectory. Thus,
this study aims to propose a building component detection algorithm for MLS-based indoor PCD
without trajectory using random sample consensus (RANSAC)-based region growth. The proposed
algorithm used the RANSAC and region growing to overcome the low accuracy and uniformity of
MLS caused by the movement of LiDAR. This study ensures over 90% precision, recall, and proper
segmentation rate of building component detection by testing the algorithm using the indoor PCD.
The result of the case study shows that the proposed algorithm opens the possibility of accurately
detecting interior objects from indoor PCD without trajectory information of MLS.

Keywords: building component detection; indoor point cloud; mobile laser scanner; random sample
consensus; region growing

1. Introduction

In recent decades, light detection and ranging (LiDAR) has been used for obtaining a
three-dimensional (3D) geometric representation of the indoor environment in the architec-
tural, engineering, and construction (AEC) industry [1–3]. The LiDAR-based geometric
representation indicates the shape descriptors of indoor building components by a format
of point cloud data (PCD) [4,5]. Given the high speed and accuracy of LiDAR, methods for
deriving the information of building components (e.g., structural member, non-structural
member, and furniture) from the indoor PCD are developed to secure the effectiveness
of facility management [6–8]. The information includes the location and size of mechan-
ical, electrical, and plumbing [9–11], building components [12–14], and furniture in 3D
space [15–17]. In the case of an indoor environment, the 3D scanning method for collecting
PCD of the object as many as possible is selected for minimizing the occlusion caused
by numerous objects [18,19]. The mobile laser scanner (MLS) has been widely used for
scanning the indoor environment, which minimizes interference by moving the LiDAR.

The existing methods for deriving the information of building components from
indoor PCD detect and segment the components based on the trajectory information of
MLS. Considering the non-rigid shape of the indoor environment, the existence of openings
(e.g., door, and window) is used for properly separating adjacent rooms using the trajectory
of MLS [20–23]. In the process of deriving building components, the proper separation of
room decreases the error on the segmentation of the inner wall’s PCD [4,24,25]. Since the
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adjacent rooms share an inner wall whose thickness is thinner than the vertical structural
member, the existing method uses the LiDAR-oriented normal vector to minimize the error.
The normal vector-based segmentation divides the under-segmented inner wall into two
clusters that are included in different rooms respectively [26].

However, the existing methods have a limitation on applying to an environment
that restricts the acquisition of trajectory information of MLS. In particular, the indoor
environment has building components made of concrete, which makes it hard to use
navigation systems that provide the real-time trajectory. Thus, MLS’s trajectory in building
interior is estimated by inversely calculating from the moving direction and distance
obtained by the inertial measurement unit [27–29]. The approximate trajectory causes
the error in detecting building components [30,31]. If the number of scanning positions
increases, it has limitations on applying the existing methods to PCD without additional
sensors because the accumulated error in PCD causes confusion of detecting the existence of
building components based on the existing method suitable for high-quality PCD [32–34].

In this regard, this study proposes a building component detection algorithm that does
not need trajectory information of MLS by using random sample consensus (RANSAC)-
based region growing for low-quality indoor PCD captured through MLS. This study is
organized as follows: In Section 2, a literature review is conducted to derive the limitations
of existing object detection methods for building components in indoor PCD. In Section 3,
a building component detection algorithm is proposed that improves the limitation of
existing object detection methods. In Section 4, a case study is conducted to verify the
algorithm, and in Section 5, the proposed method is verified by analyzing the result of the
case study. In Section 6, our conclusions are presented.

2. Related Work
2.1. Object Detection on Indoor PCD

Object detection on indoor PCD is conducted by localizing objects based on their
feature descriptors (e.g., planar, cylindrical, and cone shape) followed by segmenting the
clutter that belongs to a corresponding descriptor. This detection is used in many fields,
especially the AEC industry to recognize obstacles (e.g., building components, doors, furni-
ture, and stairs). For example, the path optimization for pedestrians and the assessment of
structural members are conducted using recognized objects of indoor environments [35,36].
To accurately detect objects from indoor PCD that includes various objects, highly accu-
rate PCD is needed because it is difficult to detect closed clutters such as the inner wall
sharing adjacent rooms [21]. Furthermore, the density of points including the detected
object must be uniform since a segmentation of the object is conducted by comparing it
with a constant uniformity model to ensure the accuracy of geometric representation [37].
However, indoor PCD acquired through MLS has low accuracy and uniformity because of
the LiDAR movement, which requires manipulation of PCD to suit object detection through
pre-processing (e.g., segmentation, rotation, transferring, and labeling) [38]. Accordingly,
this study analyzes the limitations of existing object detection caused by low accuracy and
uniformity MLS, and derives why applying existing object detection methods is difficult.
Finally, this study presents a measure to solve these difficulties.

2.2. Limitation on the Accuracy of MLS

LiDAR captures PCD by converting the flight time of light from the laser to the
object surface into a distance (Figure 1a). In the case of indoor 3D scanning, the PCDs
captured from one scanning are aligned according to the LiDAR’s origin (Figure 1b). The
aligned indoor PCD captured by an MLS has an error because the movement of origin is
ignored (Figure 1c) [39]. Furthermore, the PCD acquisition for continuous 3D scanning on
a large-scale environment accumulates the error in an integrated PCD.
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Figure 1. (a) 3D scanning by LiDAR at 𝜃 ൌ 0 °; (b) 3D scanning by LiDAR at 𝜃 ൌ 180 °; (c) Inte-
gration error of point captured at 𝜃 ൌ 180 °. LiDAR: light detection and ranging. 
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ever, it is hard to provide a proper format for the PCD that has a non-rigid shape, such as 
in an indoor environment. Thus, this study reviews the literature about the Manhattan-
world assumption to transform the raw indoor PCD into a suitable format for object de-
tection. Also, the literature of RANSAC is surveyed to solve the accuracy limitation using 
an MLS because of clutter with irregular thickness. 

2.2.1. Manhattan-World Assumption 
The Manhattan-world assumption is a hypothesis that defines the locational charac-
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PCD is that indoor building components (e.g., walls, floors, and ceilings) are mostly com-
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walls and columns) [42]. This assumption yields effective analysis because it uses the top-
ological feature to simplify the PCD acquired from the AEC industry whose size is larger 
than that of existing data from small objects (e.g., rabbits and statues). 
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building components based on the angle between the normal vector of individual compo-
nents and the ground after recognizing that an object exists based on the ground in the 
PCD. In other words, using the Manhattan-world assumption is difficult in object detec-
tion with indoor PCD that only has geometric data. Thus, this study segments points into 
components through aligning the components into planes (i.e., an XY-, XZ-, or YZ-plane) 
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model’s shape out of all points in the PCD as the RANSAC result, and all other unselected 
points are classified as outliers. To apply RANSAC, the number of points (N) and the 
shape of the model for comparison are set. Subsequently, the RANSAC conducts pro-
cesses to change the locations of the model and to derive the least gross error of distance 
among the points of the clutter with the model (e.g., lines, curves, planar surfaces, and 
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The RANSAC result is similar to that of regression. The difference is that regression 
finds the optimal line for all points that exist in the data, whereas RANSAC sets N for the 
detection of objects and removes unnecessary outliers to optimize the result (Figure 2). In 
particular, if more than two objects exist in the PCD, a threshold of N is set to ensure the 
efficiency and accuracy of object detection. Because RANSAC is used to derive points with 
the least gross error based on the feature descriptors of the model regardless of the PCD 

Figure 1. (a) 3D scanning by LiDAR at θ = 0◦; (b) 3D scanning by LiDAR at θ = 180◦; (c) Integration error of point captured
at θ = 180◦. LiDAR: light detection and ranging.

The accumulated error provides a thickness of planar objects, decreasing the accuracy
of object detection by comparing clutters with predefined models. Since the models for
comparing with clutters need uniformly distributed points on their surface, the thickness
of the object decreases the accuracy of object detection. The existing methods transform the
raw PCD into a suitable format for object detection to ensure accuracy [40]. However, it
is hard to provide a proper format for the PCD that has a non-rigid shape, such as in an
indoor environment. Thus, this study reviews the literature about the Manhattan-world
assumption to transform the raw indoor PCD into a suitable format for object detection.
Also, the literature of RANSAC is surveyed to solve the accuracy limitation using an MLS
because of clutter with irregular thickness.

2.2.1. Manhattan-World Assumption

The Manhattan-world assumption is a hypothesis that defines the locational character-
istics between objects that exist in a building [41]. The assumption regarding indoor PCD
is that indoor building components (e.g., walls, floors, and ceilings) are mostly composed
of horizontal components (i.e., floors and ceilings) and vertical components (i.e., walls and
columns) [42]. This assumption yields effective analysis because it uses the topological
feature to simplify the PCD acquired from the AEC industry whose size is larger than that
of existing data from small objects (e.g., rabbits and statues).

However, the Manhattan-world assumption regarding indoor PCD can classify build-
ing components based on the angle between the normal vector of individual components
and the ground after recognizing that an object exists based on the ground in the PCD.
In other words, using the Manhattan-world assumption is difficult in object detection
with indoor PCD that only has geometric data. Thus, this study segments points into
components through aligning the components into planes (i.e., an XY-, XZ-, or YZ-plane)
based on the normal vector. The raw indoor PCD is transformed into suitable formats of
data using the Manhattan-world assumption.

2.2.2. RANSAC

RANSAC is a detection method for unstructured clutters that exist in the PCD by
comparing the prior input model and clutters [43]. It selects points that are similar to
the model’s shape out of all points in the PCD as the RANSAC result, and all other
unselected points are classified as outliers. To apply RANSAC, the number of points (N)
and the shape of the model for comparison are set. Subsequently, the RANSAC conducts
processes to change the locations of the model and to derive the least gross error of distance
among the points of the clutter with the model (e.g., lines, curves, planar surfaces, and
curved surfaces).

The RANSAC result is similar to that of regression. The difference is that regression
finds the optimal line for all points that exist in the data, whereas RANSAC sets N for the
detection of objects and removes unnecessary outliers to optimize the result (Figure 2). In
particular, if more than two objects exist in the PCD, a threshold of N is set to ensure the
efficiency and accuracy of object detection. Because RANSAC is used to derive points with
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the least gross error based on the feature descriptors of the model regardless of the PCD
density, it can be highly applicable when the object type and number are limited [44–46].
For example, indoor PCD has limited simple shapes such as planes, cylinders, and boxes
as building components among objects, which is highly applicable to RANSAC [47,48].

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 20 

 

density, it can be highly applicable when the object type and number are limited [44–46]. 
For example, indoor PCD has limited simple shapes such as planes, cylinders, and boxes 
as building components among objects, which is highly applicable to RANSAC [47,48]. 

 
Figure 2. Comparison regression line with the result of RANSAC. RANSAC: random sample con-
sensus. 

However, when the number of objects is over two, the number of objects that satisfy 
the prior inputted N for RANSAC-based detection can be larger than the actual number 
of objects if RANSAC is applied to all PCD. In particular, the curved part of connected 
planes causes the wrong detected objects concerning the points located in the part. Figure 
3a and b show examples of RANSAC-applied objects that exist in indoor PCD, in which 
gray points refer to raw PCD, and blue points refer to segmented points by RANSAC. 
Figure 3a shows the PCD with one object presented. Although the actual object is recog-
nized by RANSAC based on pre-inputted N, many points are classified as outliers. Figure 
3b shows fewer segmented blue points than Figure 3a because of the shared portion of 
objects in the edge [49]. To solve this problem, this study applied RANSAC to the seg-
mented PCD, which was separated into each plane of the coordinate space based on the 
Manhattan-world assumption to minimize the error of building components detection. 

 
Figure 3. (a) RANSAC on one object; (b) RANSAC on three objects. 

2.3. Limitation on the Uniformity of MLS 
The performance of LiDAR is determined by the number of lasers inside it. As the 

number of lasers increases, the scannable angle in the vertical direction (𝜽 in Figure 4a) 
and the scannable area (Figure 4b) are increasing. However, there were unscanned sur-
faces among the object surfaces as shown in Figure 4b, and the number of points may 
differ even for the planar surfaces of the same area. In addition, the distance between 
points increases as the distance between the LiDAR and object increases, resulting in an 
increased unscanned surface ratio compared to the scanned surface. Thus, the density of 

Figure 2. Comparison regression line with the result of RANSAC. RANSAC: random sample
consensus.

However, when the number of objects is over two, the number of objects that satisfy
the prior inputted N for RANSAC-based detection can be larger than the actual number of
objects if RANSAC is applied to all PCD. In particular, the curved part of connected planes
causes the wrong detected objects concerning the points located in the part. Figure 3a,b
show examples of RANSAC-applied objects that exist in indoor PCD, in which gray points
refer to raw PCD, and blue points refer to segmented points by RANSAC. Figure 3a
shows the PCD with one object presented. Although the actual object is recognized by
RANSAC based on pre-inputted N, many points are classified as outliers. Figure 3b shows
fewer segmented blue points than Figure 3a because of the shared portion of objects in
the edge [49]. To solve this problem, this study applied RANSAC to the segmented PCD,
which was separated into each plane of the coordinate space based on the Manhattan-world
assumption to minimize the error of building components detection.
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2.3. Limitation on the Uniformity of MLS

The performance of LiDAR is determined by the number of lasers inside it. As the
number of lasers increases, the scannable angle in the vertical direction (θ in Figure 4a) and
the scannable area (Figure 4b) are increasing. However, there were unscanned surfaces
among the object surfaces as shown in Figure 4b, and the number of points may differ
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even for the planar surfaces of the same area. In addition, the distance between points
increases as the distance between the LiDAR and object increases, resulting in an increased
unscanned surface ratio compared to the scanned surface. Thus, the density of points on
the object surface differs in an environment where the distance between LiDAR and object
changes according to the LiDAR location.
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Figure 4. (a) Scanning process of LiDAR; (b) Scanned surface of object.

This characteristic degrades the uniformity of the indoor PCD acquired through an
MLS, reducing the accuracy of object detection using a feature descriptor suitable for a
constant density PCD [50]. To solve this problem, 3D scanning is conducted while moving
a scanner in the x-, y-, and z-axes. However, it is difficult to acquire points on the surfaces
of all objects at the same density. Thus, this study conducted a literature review of space
decomposition and region growth to solve the aforementioned problem of an uneven PCD.

2.3.1. Space Decomposition

Space decomposition simplifies 3D PCD (w) into regular size box (Figure 5b) in
which each box with points is called a voxel (Figure 5c). PCD acquired from large objects
such as the indoors have numerous points, requiring excessive time for data processing if
object detection is conducted on all points [51,52]. Thus, PCD with many planar objects
(e.g., walls, floors, and ceilings) such as the case with indoor environments have a low
accuracy reduction rate for data through data decomposition, which is why voxels are
mainly used in object detection [53–55]. However, if voxels were produced according
to whether points exist, a voxel with many points and one created by outlier would be
regarded as the same point. For example, the space decomposition on indoor PCD where
outlier frequently occurs by openings (e.g., windows, doors, and mirrors) degrades the
accuracy of object detection [56]. Thus, this study aims to minimize the effect of outlier
through individual data processing on voxels created through space decomposition.
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2.3.2. Region Growing

Region growing aggregates points into larger regions to detect planar objects that
exist in the PCD. As shown in Figure 6, points are connected based on preset criteria
(e.g., distance and normal vector) starting from seed points or regions that exist in the
PCD [56]. Region growing in 2D PCD combines points positioned closer than the preset
distance based on points that belong to the seed region [57]. However, region growing in
3D PCD is conducted based on both the distance and the point’s normal vector because
many object shapes in 3D PCD are not planes but rather 3D curves [58,59]. This can be
applied to all cases when the objects’ surfaces are smooth and when the distance between
points does not exceed the threshold of distance.
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However, because points that share the same object surface are combined based on
the normal vector, accurate normal vectors are required for individual points. In particular,
because MLS cannot provide accurate normal estimation when there is no trajectory infor-
mation, it is difficult to use region growing based on normal vectors [60,61]. Accordingly,
the present study aims to minimize the accuracy reduction of object detection through
directly applying region growing to voxels.

3. Proposed Algorithm

This study conducted a literature review of object detection in the case of indoor PCD
acquired through an MLS to verify that existing methods have limitations on applying to
that PCD. Moreover, the alternatives for indoor PCD are derived through a literature review
of MLS trajectory-based building component detection to propose a suitable algorithm
for indoor PCD where trajectory information is not available. The algorithm in this study
applies RANSAC to voxels based on the space decomposition of indoor PCD to remove
a thickness of planar objects. In addition, region growing is applied to conduct building
component detection where the lack of uniformity is solved by RANSAC.

3.1. Overview

There are four steps in the algorithm: pre-processing, seed region generation, region
growing, and building component detection. Each step is a data process on indoor PCD
captured through an MLS. The pre-processing step has the following substeps: alignment
the raw PCD with the coordinate planes, normal estimation based on the k-nearest neighbor
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(k-NN) algorithm, PCD segmentation based on the normal vectors of points, and voxel
generation by applying space decomposition on PCD. In the next region growing step,
component candidates are made of connected regions through checking the connectivity
between the seed region with the surrounding voxels. In the pre-processing and region
growing steps, outliers are detected by applying RANSAC on voxels based on the inputted
number of points. Finally, outlier is removed in the building component detection step
based on the number of points, and building component detection is conducted through
the normal vectors of regions without outlier.

3.2. Pre-Processing

As described, the pre-processing step has four substeps: alignment, normal estimation,
PCD segmentation, and space decomposition. The raw indoor PCD captured through
MLS without additional sensors which can provide the location information of MLS needs
manual alignment with coordinate planes (i.e., XY, YZ, and XZ-plane). In this study, the raw
PCD is rotated through manually aligning in CloudCompare to maximize the orthogonal
feature of indoor environment as defined in the Manhattan-world assumption: the indoor
environment has planar objects which are perpendicular or parallel with others [41]. In
the normal estimation, the normal vectors of points are calculated based on the k-NN
algorithm. The normal estimation based on k-NN algorithm derives the normal vector
calculating a mean value of cross products concerning the k-th adjacent points located in
planar surface [62]. In fact, the planar surface derived from k-NN differs from the real
object. However, the PCD used in this study has no LiDAR trajectory; thus, the normal
vector indirectly estimated by the k-NN algorithm is used. To create a planar surface that
belongs to clutter, k points that are close to the target point are grouped into one, and a
3D planar surface is derived as a planar surface whose normal vector is mean value of
cross product among target point k points. After this, PCD is segmented based on the
normal vector of each point. Please note that the normal vector calculated through k-NN is
rounded with an infinite decimal; thus, the rounded normal vector to two decimal places
identifies the tendency of the normal vector. This is to use the characteristic that most
points existing in indoor PCD belong to a building component, as shown in Figure 7 [42].
Candidates of possible building components are segmented by the normal vector, as shown
in Figure 7a–c, using the fact that indoor building components are either horizontal or
vertical to each other based on the Manhattan-world assumption [41]. PCDs of Figure 7a–c
are points that have the normal vector perpendicular to the YZ-plane, XZ-plane, and XY-
plane, respectively. This process is applied to minimize the error when applying RANSAC
to many building components.
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After completing the segmentation of raw PCD based on the normal vector, space
decomposition is conducted to build voxels where RANSAC will apply. This process
creates voxels including the minimum points required for RANSAC, through which it
prevents applying RANSAC to outliers that are included in objects. The required variables
in space decomposition in this study are the edge length of voxel (E in Figure 8a) and the
minimum number of points inside a voxel to distinguish outliers (N in Figure 8b). The
edge length of the voxel is related to the rate of PCD simplification. The longer the edge
length, the simpler the PCD. However, this may cause a problem where the indoor features
decrease. Thus, this study sets the length of edge between the maximum and minimum
values of the LiDAR error. In addition, the minimum number of points inside a voxel is set
to distinguish between points on the planar surface of the actual object and outliers. The
number is set to three in this study, which is the minimum number of points that can make
a planar surface. If the number of points selected through RANSAC based on the degree
for filtering outlier, as shown in the selected points in Figure 8b, is more than three, the
voxel is recognized as a region.
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3.3. Seed Region Generation

Seed region generation is a process of inputting the selected points in Figure 8b into
a seed region after selecting a voxel without outliers. The voxel excluding outliers is a
voxel whose N is greater than three. This process filters points that have a large difference
with the normal vector of the plane where the voxel is present (Figure 8b). Based on the
parameter of difference regarding the normal vector, the algorithm calculates the included
angle between the mean value of normal vector of points in the voxel with each point,
and removes the point whose normal vector has larger degree than the parameter. Model
fitting was conducted with all points (Figure 9a) including outliers. The result obtained
by voxel-based RANSAC proposed in this study was similar to the surface of the object
where the voxel was present, as shown in Figure 9c, in contrast with the previous RANSAC
where an unsuitable plane fitting was made as shown in Figure 9b. The seed region of the
raw PCD was derived by applying the voxel-based RANSAC, and outliers was removed to
improve the accuracy of the region growing.

3.4. Region Growing

This study checks the connectivity between the seed region with adjacent n regions,
as shown in Figure 10a, to apply region growing to seed region derived by RANSAC.
However, each region has no shared points because of space decomposition. Thus, this
study conducted connectivity checking on 26 adjacent regions around the seed region (the
red region in Figure 10b). The 26 adjacent regions (the gray regions in Figure 10b) are the
maximum number of regions that share edges, faces, or vertices with the seed region. First,
adjacent regions are checked by determining whether points are present in adjacent regions.
If points are present in regions, the connectivity checking is conducted among the seed
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region and adjacent regions through comparison between the normal vector of points that
exist inside regions. The normal vector of points located in the colored regions is extracted,
and the mean value of each colored regions are compared to check the connectivity as
shown in Figure 10c.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 20 
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3.5. Building Component Detection

The building component detection in this study first distinguishes planar objects
created through a region growing into candidates of horizontal and vertical components
(Figure 11a). Components are distinguished based on the normal vector (i.e., XY-plane = (0, 0, 1),
XZ-plane = (0, 1, 0), YZ-plane = (1, 0, 0)), and then a building component is classified
through checking whether it overlaps with other candidates. In the process of classifying,
the candidate that the number of points of it is lower than the predefined number of points
for eliminating outliers is removed. Overlapping between candidates is determined by
checking the points included in the candidates, as shown in Figure 11, thereby eliminating
overlapping candidates (Figure 11b). If candidates satisfy the presented two criteria, they
are classified as building components according to the normal vector.
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4. Case Study

This case study verifies the building component detection algorithm, detecting and
segmenting building components from the PCD without trajectory information acquired
through MLS. In particular, this study focuses on verifying the applicability of proposed
algorithm for indoor PCD which has high error described as the thickness of planar surface
caused by several reasons such as the absence of additional sensors and movement of MLS.
Although the limitation on detecting building components can be improved by employing
the trajectory information, this study proposes the novel approach based on the geometry
data for detecting components from PCD regardless of quality of data (e.g., registration
error, interference points, etc.).

This algorithm was implemented in MATLAB R2020a. First, the precision and recall
of the building components are calculated after applying the algorithm to indoor PCD.
The precision and recall used in this study are indicators of the recognition rate for this
algorithm. The results were derived by setting three cases: true positive refers to the
recognition of actual components, false positive refers to cases where the recognized
component is not an actual component, and false negative refers to cases where an actual
component is not recognized. The precision and recall of the result are calculated by the
Equations (1) and (2) [63]. Next, the over- and under-segmentation rates of the recognized
building components are derived. Over- and under-segmentation refer to cases where
a single component is segmented into two or more components and where two or more
components are combined into one, respectively, indicating the recognition precision [64].

Precision =
True Psitive

True Positive + False Positive
(1)

Recall =
True Psitive

True Positive + False Negative
(2)

4.1. Overview

The datasets in this case study were acquired through an MLS using HDL-32E and
VLP-16. Table 1 presents the PCD’s information, whose environment includes various
object obstacles (e.g., tables, chairs, and whiteboards) that occlude building components.
To verify the accuracy and applicability of the proposed algorithm, this case study used the
different three datasets that have different shape, type, interior objects, and accuracy of
PCD. In particular, the huge obstacle of segmentation for indoor PCD is non-rigid shape of
it, thus this study employed the datasets whose shapes are definitely different. The number
of rooms in each dataset are seven, four, and five, respectively. Furthermore, the Dataset #2
and Dataset #3 have spaces that are not the room: corridor and kitchen-integrated with
living room. Through comparing the results of Dataset #1 and #2 with Dataset #3, the
applicability of this study would be verified for indoor PCDs that have non-rigid shape.
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Table 1. Datasets of the case study.

Dataset #1 Dataset #2 Dataset #3

Location Goyang, South Korea Seoul, South Korea Pohang, South Korea
Points 26 M 70 M 88 M
LiDAR HDL-32E VLP-16 VLP-16

Next, the datasets that have different type and interior object of indoor environment
were employed to test that the proposed algorithm could properly detect and segment the
building components from the different conditions. Dataset #1, #2, and #3 were captured
from detached house, office, and apartment, respectively.

Lastly, the applicability for capacity of LiDAR will be verified through applying the
proposed algorithm to two PCDs that have different density captured through HDL-32E
and VLP-16. If the algorithm were able to ensure the accurate results of case study on
different LiDAR, this study could be possible to extend the applicability for low-density
indoor PCD.

The parameters used in this case study is presented in Table 2. The number of points for
estimating normal vector based on k-NN algorithm is 100 since the number is the maximum
number of points calculated by capacity of hardware used in this study. Although the
estimated normal vector is more similar if the number of points for calculating the normal
vector was increasing, the excessive number of points causes the inaccurate normal vector
since the points gathered by the number are regarded as one object. This study set the
number of points 100, which can derive the approximate value of normal vector based
on the iterative testing. In addition, the threshold for filtering outlier and the number of
points for RANSAC are three. The three is minimum number of points for organizing the
surface; thus, this study set the threshold three for filtering the outliers that are insufficient
for creating the triangular plane. The degrees for filtering outlier in voxel and checking
the connectivity between regions are two and five degrees. The degrees for filtering and
checking are optimized value derived through iteratively testing the result of building
component detection; however, the degree depends on the thickness of planar objects
located in PCD. In particular, the LiDAR sensors used in the have different accuracy and
thickness of PCD; thus, the degrees for checking of Dataset #2 and #3 are five since the
VLP-16 has lower accuracy (i.e., ±3 cm) than the HDL-32E (±2 cm).

Table 2. Parameters of the case study.

Parameters (unit) Value

The number of points for k-NN 100
Threshold for filtering 3

The number of points for RANSAC, N 3
Degree for filtering (◦) 2

Degree for checking in Dataset #1 (◦) 3
Degrees for checking in Dataset #2 and #3 (◦) 5

4.2. Result

Figures 12–14 presents the raw PCD and results of the building component detection
from the datasets derived through the algorithm, and Tables 3–5 present the precision,
recall, and over- and under-segmentation rates. Table 6 presents the running time for
processing steps of Dataset #1, #2, and #3.
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Table 3. Experiment results of Dataset #1.

Wall Ceiling Floor

Detected/Real component 39/41 7/7 2/1
Precision (%) 94.9 100.0 100.0

Recall (%) 86.1 100.0 100.0
Over-segmentation rate (%) 5.4 0.0 50.0

Under-segmentation rate (%) 0.0 0.0 0.0

Table 4. Experiment results of Dataset #2.

Wall Ceiling Floor

Detected/Real component 53/51 5/5 3/1
Precision (%) 84.9 100.0 100.0

Recall (%) 80.4 100.0 100.0
Over-segmentation rate (%) 4.8 0.0 66.7

Under-segmentation rate (%) 0.0 0.0 0.0

Table 5. Experiment results of Dataset #3.

Wall Ceiling Floor

Detected/Real component 41/42 4/5 1/1
Precision (%) 95.1 100.0 100.0

Recall (%) 88.6 80.0 100.0
Over-segmentation rate (%) 5.1 0.0 0.0

Under-segmentation rate (%) 0.0 0.0 0.0

Table 6. Running time for processing steps of Dataset #1, #2, and #3. (Unit: seconds).

Dataset #1 Dataset #2 Dataset #3

Pre-processing 230.1 602.3 720.4
Seed Region Generation 12.5 15.8 17.2

Region Growing 125.8 294.4 330.5
Building Component Detection 23.9 30.5 28.2

Total 392.3 943.0 1096.3

The precision set in this study refers to the ratio of objects that correspond to building
components, and the recall refers to the recognized ratio of actual building components that
exist in the building. As the values are higher, the algorithm is used to recognize building
components that exist indoors more accurately. As presented in Tables 3–5, the precision
and recall values of the floor and ceiling in all datasets were all 100% except the ceiling
of Dataset #3; this was because there were few floors and ceilings in the building, and
the interference caused by indoor objects in the building was lower for floors and ceilings
than that for walls. In Sections 4.2.1–4.2.4, this study analyzed the results of horizontal
components (i.e., floors and ceilings) and vertical components (i.e., walls) to verify the
accuracy and applicability of this algorithm.

The running time for processing steps of Dataset #1, #2, and #3 are presented in
Table 6. The time-consuming step is pre-processing since the normal estimation using
k-NN algorithm calculates the normal vector of all points. Furthermore, the time for
normal estimation is proportional with the number of points in PCD; thus, the Dataset
#3 consumed the 514.2 seconds for estimating the normal vector based on the number of
points for k-NN algorithm in MATLAB R2020a since the Dataset #3 has largest number
of points. Compared to the Dataset #3, the cases of Dataset #1 and #2 consumed less
time for estimating, 138.6 and 385.3 seconds, but the step take most portion of time for
pre-processing. The next time-consuming step is region growing because the algorithm



Remote Sens. 2021, 13, 161 14 of 20

iteratively checked all regions generated from the seed region generation step. Although
the time is decreasing through minimizing the size of voxel since the time for region
growing is affected by the size of voxel used in seed region growing, it is difficult to
properly segment the PCD since the big size of voxel removes the topological feature of
objects. The average rate of time for seed region generation and building components
detection took 1.8 and 3.4% of total processing time. Compared with the pre-processing
and region growing whose processing time depends on the number of points, the other
steps depend on the size of voxel; thus, it can be optimized by manipulating the size.

4.2.1. Precision and Recall of Vertical Component Detection

The detection of walls in all datasets showed higher precision than recall. The av-
erage precision was 91.63%, meaning that the proposed algorithm accurately detected
components of the indoor PCD. Dataset #1 was acquired from a house with seven rooms
(Figure 15a). Figure 15b shows the comparison between the detected walls and the floor
plan, and Figure 15c presents the yellow-color walls that were not detected. In particular,
the area of No. 1 wall in Figure 15c was very narrow, so the number of points that existed
in the voxel was significantly small, creating an error in the calculation of the normal vector
based on the distance between points. The points in the No. 1 wall were removed through
region growing, causing the non-detection. In addition, the No. 2 wall in Figure 15c was
not detected because it was removed from PCD segmentation in pre-processing. However,
most undetected components in Datasets #2 and #3 were columns inside the buildings, the
same as was observed for the No. 1 wall in Figure 15c. These columns were very narrow
and thus were not detected. Except for such special circumstances, the results verified that
the precision of all walls exceeded 90%.
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4.2.2. Segmentation of Vertical Component

The accurate segmentation of recognized components is also important because it is
necessary to calculate the accurate dimension and location of the building components. In
particular, the thickness of inner wall that shares two rooms is affected by their partition
types (e.g., structural member, non-structural member, etc.), which contrasts with outer
walls. PCD of inner walls acquired through MLS is expressed as two planes that are close
to each other. Therefore, the inner walls that have little thickness may be segmented into a
single plane. To prevent this under-segmentation, the size of voxel used in the RANSAC
and region growing was optimized for separating the surfaces of inner wall into two
rooms. This study verified that no under-segmentation occurred in all datasets. In contrast,
over-segmentation occurred in all datasets because of wall segmentation by indoor curtains.
In particular, Dataset #2 had the segmentation of one side wall into many walls because
curtains had been installed in all windows to minimize the LiDAR error caused by light
from outside (Figure 16).
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4.2.3. Precision and Recall of Horizontal Component Detection

Floors and ceilings, all of which were horizontal components, were fully detected
in all datasets except for the ceiling in Dataset #3, as verified in the precision and recall
of the components. The reason for the undetected ceiling in Dataset #3 was that points
of the ceiling were not acquired because of the narrow ceiling space in the bathroom
attached to the master bedroom. In particular, the ceiling was not scanned because of
the interference of light emitted, while an MLS entered the master bedroom because of
the curb that existed between the ceilings of the master bedroom and bathroom in the
master bedroom (Figure 17). Except for this detection error caused by these characteristics,
the results verified that the precision of the horizontal building components was high for
all datasets.
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4.2.4. Segmentation of Horizontal Component

The over- and under-segmentation of horizontal building components in this study
occurred because of excessive separation or combinations of floors and ceilings. In particu-
lar, ceilings were separated by the curb of the ceiling that separates each room, whereas
floors in all rooms were connected. In this study, accurate detection was obtained when
a single floor was accurately segmented in a single building. As presented in Tables 3–5,
this algorithm accurately detected the ceilings in the segmentation of ceilings, whereas
over-segmentation occurred in floors in Datasets #1 and #2. In particular, the objects inside
the room interfered with the floors and LiDAR in Dataset #2 (Figure 18).



Remote Sens. 2021, 13, 161 16 of 20

Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 20 

 

single floor was accurately segmented in a single building. As presented in Tables 3–5, 
this algorithm accurately detected the ceilings in the segmentation of ceilings, whereas 
over-segmentation occurred in floors in Datasets #1 and #2. In particular, the objects inside 
the room interfered with the floors and LiDAR in Dataset #2 (Figure 18). 

 
Figure 18. Case of over-segmentation on floor. 

5. Discussion 
This study verified the building component detection algorithm through the case 

study of indoor PCD captured through MLS. The mean values of detection precision and 
recall secured over 92% using the proposed building component detection algorithm; in 
addition, the precision and recall of application whose result derived from International 
Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets got over 
95%. The ISPRS benchmark datasets ae public datasets provided by Working Group IV 5. 
Based on the difference between the case of raw PCD and ISPRS datasets, it is found that 
the quality of PCD affects the result of detection since the ISPRS datasets has more uni-
form point density than PCD used in the case study; however, the proposed algorithm 
can recognize over 92% of building components from low-quality data without trajectory 
information through hierarchical steps. In particular, the detection error caused by the 
lack of normal vector was minimized through the process of the segmentation on indoor 
PCD, and the accuracy of the total process was ensured by filtering outliers in raw points, 
segmented clutter, and grown regions in the detection step. Furthermore, RANSAC was 
used for separating outlier that was not eliminated in either the pre-processing or seed 
region generation steps. The PCD without outlier could provide the more uniform feature 
descriptor, which improved the accuracy of detection. 

The main parameter affecting the result of detection is degrees for checking since the 
parameter helps the algorithm properly connecting the adjacent regions. Compared with 
the degree for filtering that removes useless points, the parameter can connect among dif-
ferent planar surfaces or separate one surface into more than two surfaces. In particular, 
the algorithm divided the one surface into numerous planes if the parameter has low de-
gree since the raw indoor PCD with high registration error generates more than two seed 
regions from planar surface. Furthermore, a high degree caused under-segmentation since 
the joint part located between adjacent planar building components has gradually chang-
ing normal vector from one of components to another; thus, the algorithm has trouble to 
decide whether the adjacent regions located in the joint part due to the similarity of nor-
mal vector. The next parameter is the number of points for k-NN because the parameter 
affects the accuracy of normal estimation. Since the algorithm uses the degree calculated 
from normal vector, the accuracy of normal estimation affects the whole processes of the 
algorithm. However, the normal vector can be accurately estimated by k-NN algorithm 

Figure 18. Case of over-segmentation on floor.

5. Discussion

This study verified the building component detection algorithm through the case
study of indoor PCD captured through MLS. The mean values of detection precision and
recall secured over 92% using the proposed building component detection algorithm; in
addition, the precision and recall of application whose result derived from International
Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets got over
95%. The ISPRS benchmark datasets ae public datasets provided by Working Group IV
5. Based on the difference between the case of raw PCD and ISPRS datasets, it is found
that the quality of PCD affects the result of detection since the ISPRS datasets has more
uniform point density than PCD used in the case study; however, the proposed algorithm
can recognize over 92% of building components from low-quality data without trajectory
information through hierarchical steps. In particular, the detection error caused by the
lack of normal vector was minimized through the process of the segmentation on indoor
PCD, and the accuracy of the total process was ensured by filtering outliers in raw points,
segmented clutter, and grown regions in the detection step. Furthermore, RANSAC was
used for separating outlier that was not eliminated in either the pre-processing or seed
region generation steps. The PCD without outlier could provide the more uniform feature
descriptor, which improved the accuracy of detection.

The main parameter affecting the result of detection is degrees for checking since
the parameter helps the algorithm properly connecting the adjacent regions. Compared
with the degree for filtering that removes useless points, the parameter can connect among
different planar surfaces or separate one surface into more than two surfaces. In particular,
the algorithm divided the one surface into numerous planes if the parameter has low
degree since the raw indoor PCD with high registration error generates more than two seed
regions from planar surface. Furthermore, a high degree caused under-segmentation since
the joint part located between adjacent planar building components has gradually changing
normal vector from one of components to another; thus, the algorithm has trouble to decide
whether the adjacent regions located in the joint part due to the similarity of normal vector.
The next parameter is the number of points for k-NN because the parameter affects the
accuracy of normal estimation. Since the algorithm uses the degree calculated from normal
vector, the accuracy of normal estimation affects the whole processes of the algorithm.
However, the normal vector can be accurately estimated by k-NN algorithm for planar
surface then the excessive points for normal estimation cause meaningless processing
time. The parameter for k-NN is commonly used in normal estimation for indoor PCD. To
optimize the accuracy and efficiency of the algorithm, this study iteratively manipulated
the parameter and set as presented in Table 2. In addition, the parameters—threshold for
filtering and the number of points for RANSAC—are determined based on the minimum
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number of points for generating the plane. The degree for filtering was set for removing
the outliers located in voxel, which has same role in detecting outlier with the degree
for checking; however, the parameter has limitation on removing the region because the
normal vector of points located in same voxel is same if the number of points was lower
than the number of points for k-NN. In this study, the parameter is used for removing the
outliers located in the joint part.

Through applying the proposed algorithm, building component detection can be done
on indoor PCD that has high registration error without trajectory information of MLS. The
proposed algorithm provides three benefits to contribute to the body of knowledge in the
AEC industry. First, the high accuracy of this algorithm makes it possible to derive 3D
geometric representation from scanning data of an indoor environment without trajectory
information of LiDAR. The proposed algorithm employs the Manhattan-world assumption
to check overlap between the building component’s position. The overlap increases the
accuracy of derived building components in the detection step on an indoor PCD without
trajectory of LiDAR. Second, the proposed algorithm secures the consistent accuracy of
building component detection regardless of the quality of indoor PCD. The accuracy
and proper segmentation rate of detection are over 80% in the case study using datasets
captured through two kinds of LiDAR with different capacities. In particular, the result of
building components detection on Dataset #1 and #3 prove that the proposed algorithm
can detect components accurately from the low-quality indoor PCD. Consequently, the
requirement for LiDAR has low relation with the accuracy of detection, which makes it
possible to use low-cost LiDAR on building component detection. Lastly, the 3D geometric
representation derived through the proposed algorithm can be used for supporting the
accurate Building Information Modeling (BIM) generation with low-quality PCD. The
executors who use the traditional method for generating BIM from PCD manually draw
the lines in accordance with the structural members. The unstructured PCD emits the
information of clutters for distinguishing them into structural member because it only has
geometry data; thus, executors who generate as-built BIM must judge whether the clutter
is structural members. In contrast, the proposed algorithm provides the existence and
location of building components, which lets the executors choose a structural member from
the properly segmented components. The candidates of structural member can improve
the accuracy of the judgment since the segmentation of this algorithm removes the outlier
that causes the false geometric representation of member.

Nonetheless, the proposed algorithm had difficulty to apply to non-aligned PCD
whose building components are not aligned with the coordinate planes. To solve the
limitation, the algorithm needs additional process for alignment of raw PCD. In addition,
the comparison of the result derived from the case study with the previous studies is not
conducted because it has limitations on applying the existing methods to our datasets
with higher registration error than the ISPRS benchmark datasets [62–64]; thus, this study
verified the algorithm about applicability of it for low-quality indoor PCD.

6. Conclusions

This study proposed a building component detection algorithm that was suitable
for indoor PCD without MLS trajectory information by using the features of the indoor
environment. The proposed algorithm was verified through the case study, in which
acquiring MLS trajectory information was difficult. In particular, over 90% accuracy of
building components detection was ensured by this algorithm from the low-quality raw
PCD without the additional sensors. Furthermore, the building components detected
by this algorithm has 3D geometric representation which can be used for reconstructing
the interior environment. Through applying the proposed algorithm, we believed that
the reverse engineering of the as-is indoor is possible using the indoor PCD without
trajectory. For future study, 3D reconstruction algorithms for the indoors of buildings will
be developed to segment the physically connected components regardless of condition of
indoor environment.



Remote Sens. 2021, 13, 161 18 of 20

Author Contributions: S.O. designed and devised the algorithm of this study and conducted the
case study and analyzed the result; M.K. collected the data; S.O., M.K., and D.L. wrote the paper;
H.C. and T.K. offered advice on this study; H.C. edited the paper. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2018R1A4A1026027).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thomson, C.P.H. From Point Cloud to Building Information Model: Capturing and Processing Survey Data Towards Automation

for High Quality 3D Models to Aid a BIM Process. Ph.D. Thesis, University College London, London, UK, 2016.
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