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Abstract: As a precursor step for computer vision algorithms, object detection plays an important role
in various practical application scenarios. With the objects to be detected becoming more complex,
the problem of multi-scale object detection has attracted more and more attention, especially in
the field of remote sensing detection. Early convolutional neural network detection algorithms are
mostly based on artificially preset anchor-boxes to divide different regions in the image, and then
obtain the prior position of the target. However, the anchor box is difficult to set reasonably and
will cause a large amount of computational redundancy, which affects the generality of the detection
model obtained under fixed parameters. In the past two years, anchor-free detection algorithm
has achieved remarkable development in the field of detection on natural image. However, there
is no sufficient research on how to deal with multi-scale detection more effectively in anchor-free
framework and use these detectors on remote sensing images. In this paper, we propose a specific-
attention Feature Pyramid Network (FPN) module, which is able to generate a feature pyramid,
basing on the characteristics of objects with various sizes. In addition, this pyramid suits multi-
scale object detection better. Besides, a scale-aware detection head is proposed which contains a
multi-receptive feature fusion module and a size-based feature compensation module. The new
anchor-free detector can obtain a more effective multi-scale feature expression. Experiments on
challenging datasets show that our approach performs favorably against other methods in terms of
the multi-scale object detection performance.

Keywords: remote sensing imagery; anchor free; multi-scale detection; scale-aware feature

1. Introduction

In recent years, with the development of deep learning research, many convolutional
neural networks (CNN)-based detection frameworks were proposed and they improve the
detection performance in different aspects [1–8]. Although these methods have obtained
impressive achievements in various application scenarios, complex scale variations in many
real-world scenarios are still a fundamental challenge to achieve satisfied performance,
such as ship or plane detection in remote sensing images [9,10], diseased organ detection
in medical images, and traffic sign detection [11] of autonomous driving. As the increasing
complexity of application scenarios and the continuous improvement of image quality,
the scale variations in the image has become more and more obvious, especially in remote
sensing images. Therefore, how to effectively deal with the problem of multi-scale object
detection is of great significance for expanding the application range of detection models.

According to the approaches used to obtain candidate regions of objects in the image,
the CNN-based detection methods can be mainly divided into two types: anchor-based
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detection methods and anchor-free methods. The former, such as Faster-RCNN [12],
YOLO [13] and SSD [14], predefines anchors or default boxes with specific size and as-
pect ratios to find the location which is most likely to have an object. While the latter,
such as FCOS [15] and RepPoint [16], does not require pre-set anchors or default boxes
designed manually. To relieve the multi-scale detection issue, a variety of solutions are
proposed under the anchor-based detection framework. It is of critical importance to
design good features for multi-scale stimuli for object detection. Thus, when the network
solves multi-scale object detection problems, these methods extract better multi-scale fea-
tures through well-designed network structures, or pre-process input data to simplify the
learning of parameters.

Furthermore, the methods of getting better multi-scale detection performance on
anchor-based detectors can be roughly divided into the following categories:

1. Methods using data preprocessing, which can be represented by multi-scale train-
ing and testing methods and algorithms such as SNIP [17] and SNIPER [18]. These
methods leverage multi-scale image pyramids which have been proved useful in
both hand-crafted feature-based methods and current CNN-based detection frame-
work [19]. In the data preprocessing stage, these methods scale origin images to
different sizes and send them to the network. Input images of different sizes ensure
that objects of different sizes acquire sufficient training samples. SNIP and SNIPER
improve the training strategy and simplify multi-scale object detection problems.
They only detect objects in a specific scale range in input images with various sizes,
and solve multi-scale problems without changing the network structure. However,
these methods consume more computing and storage resources, and cannot be ap-
plied when resources are limited.

2. Methods based on feature layer design, including Feature Pyramid Network (FPN),
which is widely used to solve the problem of multi-scale object detection. Also,
the method based on feature layer design is widely used in the field of remote sensing
object detection. In [20], Zhang et al. indicate that the commonly used ResNet [21]
detection backbone structure reduces the spatial resolution of deep feature maps,
which makes the information inevitably weaker and affects the detection of small
objects. Therefore, they proposed a new DetNet-FPN to effectively enhance the feature
representation ability. To obtain better multi-scale feature representation, Fu et al.
propose a new feature fusion structure in [5] and use bottom-up or top-down paths
to combine different information into each level of feature maps.

3. Methods based on the design and selection of the candidate region, including face
detection algorithms such as S3FD [22] and DSFD [23], and some multi-class object
detection method used in remote sensing imagery [24,25]. In order to effectively
detect targets of different sizes in images, this type of methods promote targets of
different sizes to obtain more accurate anchors in the process of network training,
and this improves the algorithm’s multi-scale detection performance.

In the past two years, anchor-based detection methods that need to set fixed anchors
densely have poor migration in different application scenarios; it is difficult to effectively
match all objects with larger differences among their sizes. As a result, anchor-free detection
algorithms have been researched continuously. In an anchor-free detection framework,
we can get the position and size of the target in the image through feature learning at
the key points of the object or grouping the key points detected. As we can obtain the
final detection result through adaptive learning of the location and size of the candidate
region, we do not need to select appropriate hyperparameters for the data distribution in
the specific application scenario, which is inevitable for anchor-based methods. It not only
can solve the problem that the densely anchor boxes cannot effectively match all targets
with large differences in sizes and aspect ratios in complex scenarios, but also can avoid
a lot of redundant calculations. However, how to effectively deal with multi-scale object
detection problems and how to achieve better detection performance in remote sensing
images with anchor-free detection framework still need further study.
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In this paper, we use the common anchor-free detector RepPoints Detector (RPDet)
as our baseline, and study how to further improve the multi-scale detection performance
of the anchor-free detection framework. On the one hand, we analyze and select a more
suitable attention mechanism for feature map layers of different sizes, and we define it as
Specific-Attention FPN (SA-FPN). On the other hand, we analyze some problems in the
structure of original detection head: Under the original framework, the detection head
has 3 stacked 3 × 3 convolutions to process each position on the feature map of different
sizes, so as to process the distinguishing features of various-size objects. However, even
for objects of different sizes on the same feature map layer, the optimal receptive field
size is different. Furthermore, as shown in Figure 1, in anchor-free detection framework,
the feature expression of the target in the entire candidate region is represented based on
the features of key points, which will be insufficient when the detector is used to deal with
large-scale objects. For multi-scale detection task, especially large-scale objects, when the
key points are far away from the actual foreground, it is not a good choice to directly use
the features on key points to obtain the feature expression of targets. In order to solve the
above problems, we design two corresponding modules, a Multi-Receptive Feature Fusion
module (MRFF) and a Size-based Feature Compensation module (SBFC), to obtain better
multi-scale feature expression.

Figure 1. Visualization of reppoints and detection results, the first column is the result on the VOC
dataset, the second column and the third column are the results on the DOTA dataset. The second
column is the visualization result when using moment to obtain the pseudo box, and the third column
is the visualization result when using minmax.

In summary, the main contributions of this paper can be summarized as follows:

1. We analyze the suitable attention mechanisms on feature map layers of different sizes,
and combine actual experiment results to obtain a feature pyramid (SA-FPN) that is
more suitable for multi-scale object detection.

2. To obtain better multi-scale feature expression, we design the MRFF module to
replace the original stacked convolution structure in the detection head. With this
modification, the model can perform more refined multi-scale features for objects
corresponding to the same feature map layer. In addition, we propose a feature
compensation module SBFC, which can be weighted based on object size, to solve
the problem that the anchor-free algorithm is insufficient to express the objects in the
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corresponding area based on the features on their key points. Combining with the
differences in feature extraction of objects in different sizes, the model can express
objects in the candidate regions more effectively.

3. Experiments on three challenging datasets show that our approach performs favor-
ably against the baseline methods in terms of the popular evaluation metrics. In
addition, our Anchor-Free Enhance Multi-Scale (AF-EMS) detector can get better
multi-scale detection performance consistently when it is used on datasets of differ-
ent distributions without any modification, which verifies the generalization and
transferability of the proposed method.

The rest of this paper is arranged as follows. Section 2 briefly introduces some object
detection algorithms related to this article. Section 3 introduces in detail the specific-
attention FPN structure and the scale-aware detection head with two new modules we
designed. We analyze the experiments and results in Section 4. In Section 5, we discuss
some limitations of our model and some works that can be further studied in the future.
Finally, in Section 6, we make a corresponding summary of this paper.

2. Related Work

Compared with the anchor-based detection method, the anchor-free detectors do
not need to design the anchor box parameters, which typically need heuristic turning
and many tricks. Therefore, these anchor-free detectors can effectively prevent the final
detection performance from being affected by unreasonable hyperparameter settings and
thus have better generality. In the past two years, anchor-free detection methods have been
explored intensively. In the DetNet [26] network, the four corner points of the rectangular
candidate area are respectively predicted based on the key point prediction method, and the
initial proposals are obtained by enumerating all possible key point combinations. In the
CornerNet detection framework [27], the upper left corner and lower right corner of the
rectangular detection results are selected as key points for prediction, and the corner points
are grouped based on the learning of the embedding vector to form the initial candidate
area. Considering that the features at the upper left and lower right corners may not be
able to effectively model the features inside the object, in [28], Duan et al. propose to
introduce the features at the center point to construct better object features. In addition to
the above-mentioned methods which obtain the position and size of the candidate area
based on the corner detection, in the GA-RPN [29] algorithm, a method that can guide the
generation of the candidate boxes based on local features is proposed. Considering that
the size and aspect ratio of the object are related to the location of the object, a structure
is proposed for learning the possible size and aspect ratio of the candidate area based on
the predicted area where the object may exist. To reduce the inconsistency between the
acquired feature and the candidate region, an adaptive module is proposed to adjust the
corresponding feature map layer according to the predicted shape of the candidate region.
In FCOS detection framework [15], Tian et al. propose an anchor-free detection method
based on the fully convolutional networks (FCN). Based on this neat fully convolutional
per-pixel prediction framework, FCOS achieves state-of-the-art detection result among
all single-stage detectors. Yang et al. put forward the concept of representative points in
RPDet [16]. According to the distribution of representative points, the size and aspect ratio
of the object are obtained, and the features at the representative points are further used to
express the candidate region.

Objects with variant scales are indeed common in many real-world scenarios, it is
very important to obtain better multi-scale feature representations for objects of different
sizes. In the field of object detection, how to obtain better multi-scale features has been
studied for a long time. Earlier detection method is based on artificially designed local
descriptors. For instance, the SIFT [30] local descriptor constructs a feature expression
with scale-invariant characteristics designed for the detection of multi-scale objects. For de-
tection method based on the convolutional neural network, the multi-layer stacking of
convolution and pooling operations can naturally obtain feature map layers containing
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features of different scales. However, the multi-scale feature obtained by simple module
stacking is insufficient. In order to further improve the efficiency of the detection frame-
work, a large number of algorithms have been proposed to optimize the backbone of the
network or the multi-scale information acquisition to get better feature representations.
In terms of the backbone of the framework, with the proposal of the residual connection,
the problem of gradient disappearance during the training process has been solved. Based
on the structure of AlexNet [31] and VGGNet [1], ResNet [21] and DenseNet [32] use
skip connections to increase the depth of the network significantly, and to increase the
size of the receptive field of the feature map. In addition, GoogLeNet [33] and Inception
network structure [34,35] set multiple filters of different sizes on the same layer in parallel
to process the input feature, which can increase the complexity of the receptive field and
enhance the multi-scale representation capability in the width dimension of the model.
The TridentNet network [36] proposes that objects in different size ranges should be pro-
cessed with branches with different receptive field sizes. Thus, a parallel multi-branch
architecture is constructed, and a scale-aware training strategy is used to specialize each
branch by sampling object instances of proper scales for training. Inspired by the above
jobs, Gao et al. propose the Res2Net [37] module, which uses a hierarchical residual con-
nection structure on a single residual module to construct a multi-scale feature expression
at a finer-grained level. In terms of multi-scale information acquisition, FPN network
is the most commonly used method to solve the multi-scale object detection problem.
Through the effective fusion of feature layers, a feature map pyramid containing certain
semantic information is constructed. Based on the FPN structure, the M2Det [38] network
further proposes a multi-level feature pyramid network to improve the size diversity of the
features contained in the final output feature map layers. For two-stage detectors, Libra
RCNN [39], PANet [40] and FAS-Net [41] all propose to obtain the feature representations
of the candidate regions from all layers of the feature map pyramid, which can obtain
better multi-scale detection performance.

By analyzing the above methods, in this paper, we propose an anchor-free detector
called AF-EMS to deal with multi-scale object detection problem. Inspired by the applica-
tion of the attention mechanism on the feature pyramid in FAS-Net, we propose a specific
attention FPN module, and different attentions are constructed on feature map layers of
different sizes. To obtain a better multi-scale representation, we propose a new scale-aware
detection head. First, we propose a multi-receptive field feature fusion module, which can
get more fine-grained multi-scale features for objects of different sizes on the same feature
map layer. Furthermore, we propose a method to compensate the feature representation
based on the size of the object, which can solve the feature deficiencies caused by getting
the entire object representation from features of the limited key points of the object.

3. Method

More effective feature representations can be obtained based on features from more
key points. In addition, as shown in Figure 1, compared with natural images, the targets in
remote sensing images are all presented from downward perspectives, so the key points
corresponding to targets in the remote sensing image are more fixed. Thus, we chose
the RPDet as our baseline and made further improvements to it to get better multi-scale
detection performance. We design our structure following the principles below: (1) To
design corresponding attention mechanisms for feature maps of different sizes to promote
the detectors to extract more effective multi-scale features. (2) To design a new module in
detection head which can get more flexible features for objects with small size difference.
(3) The feature extraction of objects should be scale-aware to make objects of different scales
get more effective feature representations. As shown in Figure 2, AF-EMS mainly consists
of three parts: First we extract image features based on the backbone network and use the
specific-attention FPN (SA-FPN) structure to build a feature pyramid structure which is
more suitable for object detection of different sizes. Then we obtain the initial position
and size of the object based on RPDet structure. Finally, we use a new detection head
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structure including MRFF and SBFC modules to get better multi-scale features to classify
and fine-tune the locations of different candidate regions. More details about these core
modules we designed and network configurations of AF-EMS detectors are introduced
as follows.

Figure 2. Overview of the AF-EMS detector. We only draw the detection head of one scale of
FPN feature maps for clear illustration. In addition, all scales of FPN feature maps share the same
afterwards network architecture (There are slight differences in SBFC module which we will explain
in detail later) and the same model weights.

3.1. SA-FPN

Considering the important role that the attention mechanism plays in the human
perception, how to construct and use attention in computer vision tasks has been studied
extensively in previous research [41–44]. To be able to learn ‘what’ and ‘where’ in the
channel dimension and the spatial dimension of the features to attend to, existing methods
exploit spatial or channel-wise attention based on different efficient architecture to help
decide which information to emphasize or suppress. Besides, in [41], Yan et al. propose that
in addition to constructing and using attention in the backbone network, reconstructing
the global context on the feature maps of different sizes in the feature pyramid to obtain
specific attention is also helpful for dealing with multi-scale object detection problems.
However, they all use the same module to obtain corresponding attention at different
locations of the network, and to rescale or enhance the features.

In this paper, we propose the SA-FPN, in which we use different attention mechanisms
for feature maps of different sizes to promote the detectors to extract more effective multi-
scale features. We use existing context building blocks to model different types of attention.
We choose the Simplified None-Local (SNL) module proposed in GCNet [43] to generate
the channel-wise attention. The structure of SNL is shown in Figure 3a. Based on a large
number of comparative experiments in GCNet, it is proved that the construction method
of the global context and the integration method of the attention feature map and the input
feature map have impact on the final performance. Therefore, we choose to use attention
pooling to model the long-range dependency, and use the addition method instead of
rescale method for feature aggregation. The SNL module can model global context as a
weighted average of the features at all locations in feature map with a 1 × 1 convolution
layer and a soft-max operator, and then recalibrate the importance of channels with another
1 × 1 convolution layer. This part is consistent with the global attention-based feature
selection module (GAFSM) in FAS-Net. The output of the feature pyramid network at each
level is represented as P2–P7. In our detection structure, attention module on the P2 layer
is excluded and only used on the P3, P4, and P5 feature map layers. P6 and P7 are obtained
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through down-sampling of P5 and P6 respectively, so there is no need to rebuild attention
on them. However, we find that adding spatial-level attention to some of these feature
map layers can achieve better detection performance which is ignored by FAS-Net detector.
More importantly, considering that multi-scale object detection is performed in complex
scenarios, it is difficult for small objects to be effectively focused when constructing spatial
attention. When the spatial attention module is used improperly, the enhancement of the
features of large objects in the image will bring difficulties to the detection of small objects
which is verified in subsequent experiments. Therefore, we only construct spatial-level
attention after constructing channel-level attention at the high-level feature map layer
(P5). For the spatial-level attention, we use the spatial attention module of CBAM directly.
The structure of this spatial attention module is be shown in Figure 3b.

Figure 3. The structure of SA-FPN, (a) shows the structure of the SNL, which we use to build channel-
level attention, and (b) shows the structure of the spatial-level attention building module. Note that
on the low-level feature map, we only used part (a) of this module to obtain the refined features.

3.2. Scale-Aware Detection Head

The baseline anchor-free detector RPDet has a detection head similar to the Reti-
naNet [45] detection framework. In the original detection head, the classification branch
and the regression branch are parallel that have similar small FCN structure, use sepa-
rate parameters. On each branch, 3 stacked 3 × 3 vanilla convolution layers are used to
further abstract the features on each feature map. On the regression branch, a regular
3 × 3 convolution is additionally used to obtain the initial bias value of reppoint at each
position of the feature map. Then the classification branch and the regression branch use a
deformable convolution to obtain the feature expression on the reppoints corresponding
to the target at each position of the feature map and fuse them respectively. Finally, two
branches use a 1 × 1 convolution respectively to classify the candidate regions and further
fine-tune the position of key points. However, the fixed receptive field in the detection head
structure is not conducive to extracting features which are more suitable for multi-scale
object detection, especially for targets with smaller size difference on the same feature layer.
In addition, expressing the candidate region using only the features on the limited key
points may be insufficient in scenarios where there is occlusion or large target size. We
propose a multi-receptive field feature fusion (MRFF) module and a size-based feature
compensation (SBFC) module to solve the above-mentioned problems.

3.2.1. MRFF

The effect of receptive fields on the detection of different scale objects have been
investigated by Li et al. in [36]. The baseline network uses feature maps with different
receptive field sizes in the feature pyramid to detect objects within a specified size range.
However, the range of the receptive field on the same feature map is fixed. When the
receptive field of the output feature in the detection head structure is also fixed, multi-scale
features extracted from the objects with small size difference are suboptimal, especially for
objects on the same feature layer. On the other hand, the feature points on the high-level
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feature map already have a large receptive fields. The stacked convolutional layers in the
detection head structure to integrate features in a larger range may introduce unnecessary
noise, which may bring difficulties to the extraction of effective features of the object.

Inspired by Res2Net proposed by Gao et al. in [37], we design a new feature extract
module for detection head, which can get more fine-grained multi-scale features for objects
with small size difference while getting the detection head with more suitable receptive
field size for objects on different feature map layers. Res2Net constructs hierarchical
residual-like connections on each residual block, which can get multi-scale features at a
granular level and increase the range of receptive fields for each output features. As shown
in Figure 4a, the Res2Net module sends the input to a 1 × 1 convolution, and evenly splits
the output feature maps into s subsets along the channel dimension. Then each subset xi
is fed into a corresponding 3 × 3 convolution, denoted by Ki. The input xi and output yi
corresponding to each 3 × 3 convolutional layer are shown in the following formula.

yi =


xi, i = 0
Ki(xi), i = 1
Ki(xi + yi−1), others

(1)

Finally, all outputs are concatenated and a 1 × 1 convolution is used to better integrate
the effective information on different scale features.

Figure 4. The structure diagram of the Res2Net module (a) and the MRFF module (b), the number
on the right side of the feature map indicates the number of channels.

In contrast, considering that the output channel number of each feature map layer
in the feature pyramid is limited, the split operator used in Res2Net may cause invalid
aggregation of different types of features. Thus, we remove the split operation on the input
feature map in our MRFF module, and use each feature map layer in the feature pyramid
as input and send it to each feature extraction convolutional layer in the detection head
structure sequentially. Different from the original structure, we retain the results obtained
at each level and concatenate them. Finally, we use a 1 × 1 convolutional layer to select
and integrate effective information from this feature map with different receptive field
sizes. As shown in Figure 4b, we combine the selected and fused multi-scale receptive field
features with the original feature output in the way of residual summation to ensure that
the module will not bring adverse effects.
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3.2.2. SBFC

In the baseline detection framework, the discriminant feature of the candidate region
is integrated by the features of the key points predicted at each position. However, this
approach has some problems when the targets in the application scene have large size
differences or occlusions. For large objects, in order to predict the accurate candidate region
size, the key points are more distributed at the edge of the objects, and some key points are
even on the background area. For small objects, only a small number of pixels may be used
for expression in the feature map, and a fixed number of key points may cause repeated
overlap of some regional features, which in turn makes the extracted feature expressions
have a certain offset. Finally, for partially occluded objects, the key points predicted at the
same location may not be located on the same category of objects. Therefore, directly fusing
the features on all key points indiscriminately may cause difficulties for network learning.

To solve the above problems, we first add an amplitude modulation mechanism
to the deformable convolution of the original detection head structure. On the basis
of the original structure, the feature amplitude at each sampling position is learned by
DCNv2 [8]. With this modulation mechanism, we can remove the influence of the noisy
information from key points irrelevant to the current foreground object. Then we propose
a compensation module based on the predicted feature at the center point of the final
candidate region. As shown in Figure 2, since the initial key point position is not accurate,
we obtain the corresponding candidate region at each position according to the fine-tuned
key points. Then the feature at the center of the prediction box is used to enhance the
feature expression of the candidate region. Since the predicted center coordinates are
not integer numbers, we adopt the bilinear interpolation method to obtain the features
at the center point through the features at the four integer coordinate points around the
center point. In addition, not all objects require feature compensation. For some objects,
only a limited number of pixels are occupied on the feature map, it is sufficient to use
features on repoints to learn feature expression. The additional feature compensation for
the above objects will affect the learning of these key points. Therefore, we propose a
method to weight the compensation features based on the size of the candidate region.
The center point feature is weighted by calculating the ratio of the candidate region to
the corresponding feature maps, so that the final feature can obtain different degrees of
feature compensation according to the size difference. The feature compensation weight is
formulated as follows:

w = 2 × σ(βx)− 1 (2)

σ(x) =
1

1 + e−x (3)

where x indicates the proportion of the candidate region at the current position to
the feature map size. w represents the weight of features at the center point. σ(.) is a
sigmoid function and β is a hyper-parameter used to control the change speed of the
weight with regard to the current size proportion. As shown in Figure 5, when we set
β to different values, the w changes differently as x increases. It can be seen that the
larger the β is, the more severe the weight value changes when x is in the range of [0, 1],
which also means the features of the center point have a greater influence on relatively
small objects. In addition to the low-level detection feature map P3, on each feature map,
the minimum number of pixels occupied by the target is 4 × 4 and the maximum is 8 × 8.
Therefore, x can be calculated according to the corresponding stride of different feature
maps. The calculation method is shown as follows:

x = (pred_w/(s × 8))× (pred_h/(s × 8))− 0.25 (4)

x =


0, x <= 0.25
x, 0.25 < x < 0.75
0.75, others

(5)
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x = x/0.75 (6)

where pred_w and pred_h is the width and height of the predicted box on each position and
s is the stride of the corresponding feature map. In addition, in order to solve the problem
that the feature at the center point of the target is not the most expressive feature in some
scenarios, we use 1 × 3 and 3 × 1 convolutional layer to process the feature maps before
obtaining the compensated center point feature at the high-level layers (P6, P7).

Figure 5. The influence of hyperparameter β on the change speed of the weight w with regard to the
current size proportion x.

4. Experiment and Results

All experiments are implemented by using Pytorch and mmdetection on a server
with GeForce RTX 2080 GPU and 11G memory. We conduct experiments on both aerial
images and common objects images to verify the effectiveness and generalization of our
proposed method. All hyper-parameters follow the default settings in mmdetection if
not specifically noted. We conduct experiments with ResNet50-FPN backbones which
is pre-trained on ImageNet. Furthermore, the batch size is 1 and we only use one GPU
for all ablation experiments. Except for the simple horizontal flip, no additional data
augmentation strategies are used in the data preprocessing stage.

4.1. Datasets and Evaluation

Most of our experiments are performed on DOTA [46], an aerial image object detection
dataset. This dataset contains a total of 15 categories and 188,282 labeled instances in 2806
aerial images, whose size ranging from 800 × 800 to 4000 × 4000. The object categories
include plane, baseball diamond (BD), bridge, ground field track (GTF), small vehicle (SV),
large vehicle (LV), ship, tennis court (TC), basketball court (BC), storage tank (SC), soccer
ball field (SBF), roundabout (RA), swimming pool (SP), helicopter (HC), and harbor. Each
object is labeled with an arbitrary quadrilateral with a fixed starting point instead of the
commonly used axis-aligned method. Therefore, the detection tasks on the dataset are also
divided into horizontal bounding boxes (HBB) detection and oriented bounding boxes
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(OBB) detection. Whether or not we get an OBB detection result is not related to the method
described in our paper, so we only get HBB detection results in this paper. In order to
facilitate the training and testing of the network, we use a 1024 × 1024 sliding window
on the original image with an interval of 512 pixels to get image patches. Images with a
size less than 1024 will be filled and scaled to a size of 1024 × 1024 before being sent to the
network. Through the above method, we finally obtain all images for training. In addition,
in order to further verify the generalization of the proposed method, we also conduct
related experiments on the two most commonly used datasets in the object detection field,
the PASCAL VOC dataset [47] and the COCO2017 dataset [48]. More details about these
two common datasets can be seen in the review paper [4].

To quantitatively evaluate the performance of the proposed detector, we adopt the
average-precision (AP), which is a standard metric for object detection. The AP can be
obtained by calculating the approximate integral value of the corresponding precision
when the recall value of the detection result changes from 0 to 1. Recall and precision can
be derived from the number of true positive(TP), false positive(FP) and false negative(FN)
results, which be formulated as:

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

As AP is calculated in a category specific manner, the mean AP (mAP) averaged over
all object categories is adopted as the final measure of performance. In order to compare
the multi-scale object detection performance better, we also adopt the APS, APM and APL
to evaluate the performance of detection results with different sizes separately. Consistent
with the definition used in the MS COCO object detection challenges, APS is the mAP for
small objects with an area smaller than 322, APM is the mAP for objects with area between
322 and 962, and APL is the mAP for large objects with an area bigger than 962. In addition,
we also compare the amount of model parameters and detection speed of the detector,
which have great significance to the practicality of the detector.

4.2. Ablation Experiments

To show the effectiveness of the modules proposed in this paper, we perform several
ablation studies. The ablation experiments are performed on the DOTA train clip subset
and evaluate on the DOTA val clip subset unless otherwise stated. The learning rate is
initialized as 0.001 and changes on 8 and 11 epochs with a factor set as 0.1.

4.2.1. Specific Attention FPN Module

To use more suitable attention information in feature map layers of different sizes,
we first try to construct and use channel-level attention and spatial-level attention on all
FPN layers. As shown in rows 2, 3, and 4 of Table 1, we first apply the SNL module used
in FAS-Net or the attention module in the CBAM algorithm to each layer of the feature
pyramid directly. Rebuilding the global context on each feature map layer of the feature
pyramid can improve the detection performance of the model, but the mAP improvement
is extremely limited or even negligible. Considering that better context can be modeled by
attention pooling and addition for feature aggregation, which is proved in GCNet, we try
to replace the channel attention module in the CBAM with SNL module. The performance
of the modified module CBAMv2 can be seen in row 5 of Table 1. In addition, through
the comparative analysis of the detection performance on objects in different sizes, it
can be found that combining the two types of attention information can achieve better
detection performance on medium and large objects, while the detection performance on
small objects will decrease. Considering that the spatial attention module on the low-level
feature map is easier to enhance the local features of large objects instead of the feature
of small objects, we further remove the use of spatial attention on the low-level feature
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maps (P3 and P4). Finally, the SA-FPN module can achieve the best multi-scale detection
performance compared to other attention mechanisms.

Table 1. The impact of different attention on FPN.

Neck Structure APS APM APL mAP

FPN 44.99 72.14 72.01 68.02

FPN+SNL 45.54 72.11 73.21 68.17

FPN+CBAM 44.57 72.15 73.36 68.23

FPN+CBAMv2 45.10 72.34 73.98 68.65

SA-FPN 47.36 72.48 73.63 68.77

4.2.2. Scale-Aware Detection Head

As shown in Table 2, the scale-aware detection head structure actually adds three parts:
by using the MRFF module, compared to the baseline network, the detection performance
of the model in most categories can be improved. Especially in BD, GTF, BC, and SBF, a large
number of objects have similar sizes, and detection performances show a most obvious
improvement. As shown in the row 4 of Table 2, the introduction of deformable convolution
with modulation mechanism can improve the detection performance of categories where
key points are easily located incorrectly, such as Bridge, GTF, and RA. Considering that the
scale-aware feature compensation module mainly affects the features of large objects, we
use SBFC module in combination with DCNv2 in the DOTA dataset, which mainly consists
of medium-sized objects and small objects. The further analysis and structure design
comparative experiments of this module are completed on the VOC dataset. Compared
with the detection performance of the baseline network, although the difference in the final
detection performance is small when each sub-module is added, the performance growth
between these sub-modules is complementary. All sub-modules can be combined to form
our scale-aware detection head, which can get a 1.8% improvement. Considering that the
structure only introduces a small number of parameters (only 0.4 M additional parameters
are introduced, which are about 1% of the original total parameters), the performance
improvement is satisfactory and significant.

Table 2. The impact of different part in scale-aware detection head.

Method Plane BD Bridge GTF SV LV Ship TC

baseline 92.29 71.00 48.70 64.16 48.22 74.71 91.29 91.56
baseline+MRFF 91.98 73.74 48.75 66.07 50.32 74.76 91.56 91.31

baseline+DCNv2 90.97 68.69 52.61 68.05 48.98 74.31 90.43 91.07
baseline+DCNv2+SBFC 92.46 73.65 49.33 63.39 50.22 74.59 90.54 92.12

baseline+scale-aware detection head 93.11 73.70 48.95 63.03 50.85 75.65 91.54 92.57

Method BC ST SBF RA harbor SP HC mAP

baseline 50.74 71.64 46.78 65.85 79.97 67.27 56.18 68.02
baseline+MRFF 53.86 72.44 49.29 66.24 80.97 68.48 51.38 68.74

baseline+DCNv2 54.60 70.14 47.32 69.46 79.81 68.64 51.16 68.42
baseline+DCNv2+SBFC 53.98 73.12 47.34 66.20 80.23 66.90 60.30 68.96

baseline+scale-aware detection head 59.29 73.17 49.87 69.00 81.79 66.99 58.33 69.86

4.2.3. Size-Based Feature Compensation

As shown in Table 3, we conduct comparative experiments of the SBFC module
on the PASCAL VOC dataset, which focuses on large targets, to obtain a better feature
compensation strategy. First, we use the center point feature of the initial candidate region
in the Reppoint network to enhance the feature expression of all targets, and denote it as
SBFCV1. It can be seen that the feature compensation at the center point has a positive
effect on the detection performance of medium objects and large objects. Then, we try to
weight the introduction of features at the center point to reduce the impact of features at
the center point on small objects, and denote it as SBFCV2. It can be seen that the features
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on small objects remain stable while the detection performance on other objects can be
further improved. In addition, we also try to replace the center point of the initial candidate
region with the coordinates of the center point of the refined detection results on the basis
of SBFCV2, and denote it as SBFCV3. It can be seen that using the features at the center
point after fine-tuning can obtain relatively better multi-scale target detection performance.
Finally, we try to introduce 1 × 3 and 3 × 1 convolutional layers on the high-level feature
map to solve the problem that the features at the center of some large objects are not the
most expressive feature regions, and to further optimize the detection performance on
objects with large sizes.

Table 3. The impact of different structure of SBFC.

SBFC APS APM APL mAP

None 45.55 64.77 85.92 81.16

V1 42.89 65.23 86.40 81.71

V2 45.37 66.12 87.07 82.17

V3 45.45 68.09 86.45 82.19

V4 49.53 66.27 86.76 82.36

β introduced in SBFC is a hyperparameter which allows us to control the change
speed of the weight with regard to the current size proportion. We conduct experiments
with the basic RPDet extended by our SBFCV4 for a range of different β values. As shown
in Table 4, we find that setting β = 1 can achieve better detection performance on PASCAL
VOC dataset. The center feature compensation weight changing too fast or too slow will
cause a decrease in detection performance. Considering that the DOTA dataset contains
more medium targets and small targets, we set β = 35 for all experiments reported in this
work if not specifically noted.

Table 4. The impact of different β values in SBFC. We perform evaluation on the test dataset of
PASCAL VOC.

β APS APM APL mAP

0.5 42.76 65.75 87.03 82.41

1 49.67 65.53 87.24 82.46

20 49.44 64.82 86.92 82.16

35 49.53 66.27 86.76 82.36

50 50.28 65.34 86.53 82.13

100 44.55 65.32 86.41 81.85

4.2.4. Parameters and the Detection Speed

We compare the number of parameters and the detection speed on DOTA dataset with
the Res50-FPN backbone structure. The number of parameters is calculated when the input
image is resized to 1024 × 1024. As shown in Table 5, it can be seen that compared with the
use of a deeper backbone network, our method achieves better detection performance with
negligible increase in the amount of parameters.
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Table 5. Comparison of model size and detection speed.

Detector Parameters (M) Detection Speed (FPS) mAP

Faster-RCNN 41.20 8.60 68.62

RPDet 36.61 14.80 68.02

RPDet+Res101backbone 55.60 9.30 68.57

AF-EMS 37.61 12.50 70.32

4.3. Comparison with State-of-the-Art Methods

We get a AF-EMS detector using ResNet101-FPN backbone and compare it with the
state-of-the-art detector on the DOTA dataset. Furthermore, the multi-scale object detection
performance of our method and the basic RPDet detector are compared on the VOC data set
and COCO data set as shown in Tables 6 and 7. Both of them are trained with a ResNet50-
FPN backbone for simplicity. Some detection results on the DOTA dataset are shown in
Figure 6. It can be observed that our anchor-free detection model can achieve satisfactory
detection performance in remote sensing images without any specific modification (In
contrast, the anchor-based detection method needs to add more initial anchor boxes with
more aspect ratio, such as [41]). The AF-EMS detector can obtain more accurate detection
results especially on the bridge, ship and those objects with larger aspect ratio. In addition
to the baseline detector, we compare with some algorithms on the HBB detection task of
the DOTA dataset as shown in Table 8. The experimental results show the effectiveness
and robustness of our method. It is worth noting that our detector has significantly faster
detection speed than Yan et al.’s method [41]. Their method takes 0.95 s to process a
single 800 × 800 image, while our method takes 0.08 s to process a single 1024 × 1024
image. In addition, we also compare our detector with the baseline network on the VOC
dataset and the COCO dataset to prove its effectiveness and generalization in solving the
multi-scale object detection problem.

Table 6. Detection result on VOC dataset.

APS APM APL AP0.5

baseline 45.55 64.77 85.92 81.16
AF-EMS 50.19 70.10 89.13 84.83

Table 7. Detection result on COCO dataset.

APS APM APL mAP AP0.5 AP0.75

baseline 21.31 40.2 49.02 36.86 56.62 39.55
AF-EMS 22.29 41.3 49.46 37.62 58.35 40.49

Table 8. Quantitative comparison of the baseline and our method on the HBB task in test set of DOTA dataset.

Method YOLOv2 SSD Faster R-CNN RFCN Azimi et al. [49] Yan et al. [25] RPDet AF-EMS

Plane 76.53 57.85 79.36 81.63 90.00 88.62 88.53 89.89
BD 34.26 32.78 79.32 78.69 77.71 80.22 73.94 77.45

Bridge 25.35 16.39 39.32 36.85 53.38 53.18 54.40 54.61
GTF 34.58 19.35 68.42 72.48 73.26 66.97 70.36 65.11
SV 36.58 7.36 62.14 59.60 73.46 76.30 54.35 66.05
LV 32.24 37.35 58.32 53.66 65.02 72.59 76.83 80.12

Ship 53.24 25.63 57.10 56.36 78.22 84.07 85.25 87.00
TC 61.65 81.14 89.36 92.70 90.79 90.66 90.87 90.88
BC 48.52 28.47 69.65 80.10 79.05 80.95 75.06 82.87
ST 35.54 48.35 59.12 67.58 84.81 86.50 80.74 85.92

SBF 28.94 15.36 59.23 67.32 57.20 57.12 56.87 60.89
RA 36.14 36.25 54.53 63.74 62.11 66.65 41.55 44.47

harbor 37.25 14.35 57.32 65.81 73.45 74.08 76.75 77.62
SP 38.21 9.36 56.23 63.29 70.22 66.36 65.63 75.20
HC 10.37 9.87 49.52 59.36 58.08 56.85 52.95 71.53

mAP 39.29 29.32 62.60 66.60 72.45 72.72 69.61 73.97
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Figure 6. The detection result on DOTA test dataset.

5. Discussion

As shown in Section 4, our new detector, based on the characteristics of the anchor-free
detection framework, can effectively improve the multi-scale object detection performance.
On remote sensing detection task, the performance degradation on GTF is due to the fact
that the centers of some GTF targets are also the centers of SBF targets. Our SBFC module
can make the feature expression of GTF targets indistinguishable from the features of SBF
targets, and we will try to solve this problem in our future research. We also find that
using minmax instead of moment function to obtain pseudo-box from reppoints can obtain
more reasonable key point positions and feature expressions of candidate regions in remote
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sensing image, which is inconsistent with conclusions in natural image detection tasks.
The key points obtained by the two methods can be seen in column 2 and 3 of Figure 1.
As the anchor-free detectors do not need to design the corresponding anchors according to
the actual application scenarios, which is inevitable using the anchor-based detector, the
AF-EMS can be directly and effectively applied to different application scenarios without
parameter adjustment. In order to obtain more effective feature expression in the high-level
feature layer of the SFAC module, we add 1 × 3 and 3 × 1 convolutional layers before we
get the center compensation feature. This structure can be replaced with the center pooling
strategy which is proposed in CenterNet [28]. A similar function can be achieved while
reducing the number of additional parameters. On the other hand, the size-aware weight
calculation formula proposed in this paper is designed in a very simple way. We will
conduct further research on how to design a more reasonable weight calculation method.

6. Conclusions

In this paper, a novel detection framework, which is defined as Anchor-Free Enhance
Multi-Scale detector (AF-EMS) is proposed to solve the multi-scale object detection problem
on remote sensing images. AF-EMS consists of the following improvements: First, we
design the Specific-Attention FPN structure, which can get suitable attention for feature
maps with different sizes to get better multi-scale feature layers. Then we modify the
detection head to get a better local feature expression with the scale information of the
candidate regions. In this scale-aware detection head, the Multi-Receptive Feature Fusion
module can construct multi-scale features for objects with small size difference and the
Size-based Feature Compensation module can enhance the feature representation and
make features controlled by size information. Compared to the original model, our detector
achieves consistent and significant boosts with negligible additional parameter overheads.
Adequate experiments on three datasets demonstrate the effectiveness and the generality
of the proposed detector. We hope that there will be more research conducted to improve
the multi-scale detection performance of anchor-free detectors in remote sensing images.
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