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Abstract: The monitoring of Global Aquatic Land Cover (GALC) plays an essential role in protecting
and restoring water-related ecosystems. Although many GALC datasets have been created before,
a uniform and comprehensive GALC dataset is lacking to meet multiple user needs. This study
aims to assess the effectiveness of using existing global datasets to develop a comprehensive and
user-oriented GALC database and identify the gaps of current datasets in GALC mapping. Eight
global datasets were reframed to construct a three-level (i.e., from general to detailed) prototype
database for 2015, conforming with the United Nations Land Cover Classification System (LCCS)-
based GALC characterization framework. An independent validation was done, and the overall
results show some limitations of current datasets in comprehensive GALC mapping. The Level-1 map
had considerable commission errors in delineating the general GALC distribution. The Level-2 maps
were good at characterizing permanently flooded areas and natural aquatic types, while accuracies
were poor in the mapping of temporarily flooded and waterlogged areas as well as artificial aquatic
types; vegetated aquatic areas were also underestimated. The Level-3 maps were not sufficient in
characterizing the detailed life form types (e.g., trees, shrubs) for aquatic land cover. However, the
prototype GALC database is flexible to derive user-specific maps and has important values to aquatic
ecosystem management. With the evolving earth observation opportunities, limitations in the current
GALC characterization can be addressed in the future.

Keywords: global aquatic land cover; comprehensive mapping; integrated map; multi-level;
user-oriented

1. Introduction

Aquatic land cover (excluding open oceans) refers to land cover types that are signifi-
cantly influenced by the presence of water over extensive periods in a year [1], including
not only open water, but also wetlands in transitional zones of terrestrial upland and open
water systems [2]. Aquatic ecosystems play an important role in the global carbon cycle and
provide crucial ecosystem services to our social, economic, and environmental well-being.
However, the increased global water demand and global climate changes have exerted
pressure on aquatic ecosystems [3]. Knowledge about the global distribution of aquatic
land cover is critical to manage and protect aquatic ecosystems.

Remote sensing provides an efficient way to monitor the spatial distribution of aquatic
land. As there is a lack of uniform and comprehensive aquatic land cover classification
schemes, current Global Aquatic Land Cover (GALC) datasets have often been narrowed
down to specific classes [4], most of which focus on providing the information of water
bodies [5,6] while missing the vegetation and wet soils that are key components of aquatic
ecosystems [2]. Currently, the most comprehensive GALC product that describes a variety
of aquatic classes is the Global Lakes and Wetlands Database (GLWD) [7]. However,
sourcing from data in the 1980s, GLWD is out of date for present GALC monitoring. Aquatic
classes mapped in Global Land Cover (GLC) products have often been underrepresented
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and have suffered from low accuracies [8]. The inconsistent classification schemes adopted
by different datasets lead to discrepancies in the spatial distribution among different GALC
datasets [5], and further bring uncertainties for users when employing these datasets in
their research [9].

Depending on the application, GALC map users may require aquatic information at
different levels of detail. GALC datasets are most commonly applied to define the region
of interest using the general distribution of aquatic land cover [6]. In some other cases,
more detailed information on aquatic lands is needed. For instance, a global product dis-
tinguishing the vegetation type under different water persistence is helpful for estimating
methane emissions, because the production of methane in aquatic ecosystems is affected
by water duration [10] and vegetation type [11]. However, such detailed information is
rare in existing datasets. Moreover, it is difficult to obtain the user-required information
from only one dataset for various applications.

Considering the variety of user needs and the limitations of current global products,
a more comprehensive and user-oriented GALC dataset is necessary. As existing classi-
fication schemes are either too broad, which is beyond the capability of satellite sensors
(e.g., Ramsar wetland classification system [12]), or too centered on a national scale (e.g.,
Canadian wetland classification system [13]), a generally applicable GALC characterization
framework is required. The ISO-certified United Nations Land Cover Classification System
(LCCS) offers a good way to standardize the terminology of a land cover type by combining
a set of independent diagnostic attributes, i.e., classifiers [14]. Built upon the LCCS ap-
proach, a three-level GALC characterization framework was developed recently [6] which
identifies aquatic land cover from general to detailed levels. By organizing the information
on a level and classifier basis, this framework not only reflects the complexity of aquatic
ecosystems but also allows users to derive the information for their own applications.

Given that a comprehensive and state-of-the-art GALC dataset is not yet available,
to create an improved dataset, existing global maps are often integrated, benefitting from
the strengths of individual datasets. With map integration, existing thematic information
can be adapted to specific user needs by adjusting to the user-required legends [15]. This
is also helpful to identify the gaps between current datasets and user requirements [16].
Developments in new Earth Observation (EO) data and techniques have promoted the con-
tinuous and operational monitoring of global land cover [17]. Although a number of GALC
datasets have been created in recent years, these datasets have not been assessed towards
comprehensive GALC mapping. Given the lack of such research, a closer look at the status
of current datasets would provide useful insights for ongoing GALC mapping initiatives.

Here, we present a study on assessing the effectiveness of the integration of existing
datasets towards comprehensive and user-oriented GALC mapping. We first generated
a prototype GALC database using several representative global products. Then, the
limitations of existing datasets for GALC mapping were analyzed through independent
validation. Finally, we highlighted the evolving EO opportunities provided for improving
GALC characterization.

2. Materials and Methods

According to the review of currently available GALC datasets by Xu et al. [6], users
prefer datasets with ≤100 m resolution, thus, the spatial resolution of the prototype GALC
database was set to 100 m. The nominal year of the static prototype database was chosen as
2015 because more global products describing GALC are available around 2015 compared
with other years [6]. General steps taken in this study are summarized in Figure 1.
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Figure 1. Flowchart of this study.

2.1. Global Aquatic Land Cover Characterization Framework

The prototype GALC database was built upon the LCCS-based GALC characterization
framework proposed by Xu et al. [6] (Figure 2). Level-1 identifies aquatic land cover as
a whole, representing the discrimination of aquatic and non-aquatic lands. Xu et al. [6]
proposed five classifiers at Level-2, while this study focused on three of them; the persis-
tence of water—the duration of water covering the surface; the presence of vegetation—the
existence or absence of vegetation; and the artificiality of cover—whether or not a land
cover is managed by humans. At Level-3, the vegetated and non-vegetated types are
specified into more detailed classes by the life form classifier. This unique design was
intended to enable users to generate maps according to their own needs.
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Figure 2. Global aquatic land cover characterization framework. This framework was proposed by Xu et al. [6], building
upon the UN LCCS framework.2.2. Global datasets.

2.1.1. Input Datasets

Input datasets were selected from the 33 GALC datasets reviewed by Xu et al. [6]. To
ensure the thematic representativeness and quality of the input datasets, four criteria were
used in the selection:

• Thematic detail: The dataset should include at least one classifier of information at
Level-2 or Level-3 of the reference GALC characterization framework.

• Temporal range: To minimize the influence of land changes, the dataset should
describe aquatic land cover within 2015 ± 3 years.

• Spatial resolution: Considering the limited availability of high-resolution (≤100 m)
datasets, the spatial resolution of the dataset should at least be ≤1 km.

• Accuracy: The dataset should at least have an overall accuracy > 70% or being exten-
sively evaluated (for those without quantitative assessment).

Finally, eight datasets (Table 1) meeting the above criteria were selected, of which five
have a single aquatic class and three are GLC products. It should be noted that the selected
datasets are considered the best to represent currently available datasets around 2015,
however they might still be inferior compared with recently developed ones. If needed,
users can include more advanced datasets to update the database.
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Table 1. Summary of the selected global datasets. MMUs = minimum mapping units.

Dataset Name Abbreviation Aquatic Land
Cover Class Year of Data Spatial Resolu-

tion/MMUs
Overall

Accuracy (%)
Producer’s

Accuracy (%)
User’s

Accuracy (%) Reference Data Access

Global Mangrove
Watch GMW Mangroves 2015 25 m 95 94 98 [18] https://data.unep-wcmc.org/datasets/45

(accessed on 14 June 2019)

Global Surface
Water GSW

Permanent water
(12 months),

seasonal water
(<12 months)

2015 30 m Null ≥95 ≥99 [19]
https://global-surface-water.appspot.

com/download (accessed on 15
December 2016)

Global Reservoir
and Dam database

Version 1.3
GRanD Reservoirs Updated to 2016 30 m to 0.5◦

GRanD captured more than 75% of the total global
storage capacity. Estimates of GRanD agreed well
with the total surface area recorded in the World

Register of Dams (ICOLD 1998–2009).

[20]
http://globaldamwatch.org/data/

#core_global (accessed on 26 February
2019)

Global map of
saltmarshes Global saltmarsh Saltmarshes 1973–2015

5 m to 2 km;
1:10,000 to
1:4,000,000

This dataset collated 350,985 individual occurrences
of saltmarshes and presented the most complete

description of saltmarsh occurrence and extent at the
global scale.

[21] https://data.unep-wcmc.org/datasets/43
(accessed on 1 June 2018)

Global peatland
map PEATMAP Peatlands 1990–2013

25 m to 1 km;
1:25000 to
1:6500000

PEATMAP refined the estimate of peatland extent
compared with previous global peatland databases. [22]

http://archive.researchdata.leeds.ac.
uk/251/ (accessed on 19 September

2017)

Climate Change
Initiative Land
Cover product

CCI-LC

Tree cover,
flooded, fresh or
brackish water

(160); tree cover,
flooded, saline

water (170); shrub
or herbaceous
cover, flooded,

fresh/saline/brackish
water (180); water

bodies

2015 300 m 72

Class 160: 86;
Class 170: 86;
Class 180: 24;

water bodies 90

Class 160: 26;
Class 170: 75;
Class 180: 53;
water bodies

92

[23]
http://maps.elie.ucl.ac.be/CCI/

viewer/download.php (accessed on 10
April 2017)

Copernicus Global
Land

Service—global
Land Cover

product at 100 m
(discrete map)

CGLS-LC100

Herbaceous
wetland;

permanent water
bodies

2015 100 m 80

Herbaceous
wetland 44;
permanent

water 87

Herbaceous
wetland 47;
permanent

water 95

[24]
https://zenodo.org/record/3939038#

.YV233tpBxPY (accessed on 8
September 2020)

Global Land
Cover by National

Mapping
Organizations

2013

GLCNMO2013 Mangrove; paddy
field; water bodies 2013 500 m 75

Mangrove 91;
paddy field 77;
water bodies 93

Mangrove 98;
paddy field 84;
water bodies

100

[25] https://globalmaps.github.io/glcnmo.html
(accessed on 20 February 2017)

https://data.unep-wcmc.org/datasets/45
https://global-surface-water.appspot.com/download
https://global-surface-water.appspot.com/download
http://globaldamwatch.org/data/#core_global
http://globaldamwatch.org/data/#core_global
https://data.unep-wcmc.org/datasets/43
http://archive.researchdata.leeds.ac.uk/251/
http://archive.researchdata.leeds.ac.uk/251/
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
https://zenodo.org/record/3939038#.YV233tpBxPY
https://zenodo.org/record/3939038#.YV233tpBxPY
https://globalmaps.github.io/glcnmo.html
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2.1.2. Validation Datasets

The Level-1 validation dataset used for accuracy assessment was collected as part
of the CGLS-LC100 project [26]. The data include 26,714 sample sites across the globe
(Figure 3), of which 2989 are aquatic and 23,725 are non-aquatic. Each sample site corre-
sponds to a 100 m × 100 m pixel, and it is then divided into 100 subpixels at 10 m × 10 m
resolution. The reference land cover was labelled at the subpixel level by a group of
experts that were trained on separating different land cover types. In this study, the
dominant type of the 100 subpixels was used to represent the land cover class of each
100 m × 100 m sample site. This dataset was generated following the stratified random
sampling, and the inclusion probabilities of different sampling stratums were considered
(see Tsendbazar et al. [27] for more details). The satellite imagery used for interpretation
was from the year 2015.

Figure 3. Spatial distribution of the Level-1 validation samples.

The validation of Level-2 and Level-3 maps requires information on water persistence,
vegetation presence, artificiality of cover, and life form types. Such detailed information
was not recorded in the CGLS validation dataset. Thus, we randomly selected (i.e., simple
random sampling) 800 aquatic sample sites (Figure 4) and visually interpreted the four
classifiers on the Geo-wiki platform (http://www.geo-wiki.org, accessed 1 July 2009) using
high-resolution Google Earth images, Bing maps, ESRI-WORLD imagery, and Sentinel-2
images from 2015. Time series of Sentinel-2 images (2015–2019) and the Normalized
Difference Vegetation Index based on MODIS, Landsat, and PROBA-V were also used to
characterize the information on the four classifiers.

http://www.geo-wiki.org
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2.2. Methods
2.2.1. Dataset Pre-Processing

The input datasets were reprojected onto the World Geodetic System (WGS) 1984
latitude/longitude and resampled into a spatial resolution of 0.00099◦ (approximately
100 m at the equator). Datasets in a vector format (i.e., GRanD, PEATMAP, global saltmarsh,
GMW) were rasterized into the same projection and spatial resolution.

Among the input datasets, there exist some repeated classes (e.g., water bodies,
mangroves) and overlapping areas, which may cause inconsistencies in the map integration
process. To deal with this issue, the priority of each input dataset was evaluated using a
ranking based on spatial resolution, temporal range, and accuracy. The general rule is that
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a dataset with a higher resolution, higher classification accuracy, and closer to the year
2015 was ranked higher. For datasets in a vector format, the larger range of the MMUs
(Table 1) was taken as the spatial resolution. Furthermore, to facilitate the comparison of
datasets with a differing spatial resolution, we divided the resolution into 6 groups, being
≤30 m, 30~100 m, 100~300 m, 300~500 m, 500~1000 m, and >1000 m. Datasets with a
spatial resolution ≤ 30 m were ranked on top. For those datasets with a long time span (e.g.,
1990–2013), the earlier starting year was used to rank that dataset. Regarding the accuracy
ranking, the F-score [28] was calculated based on Equation (1) whenever the producer’s
(PA) and user’s (UA) accuracies were available. For those without a quantitative accuracy
assessment, the F-score was set to 0.

F − score = 2 × UA × PA
UA + PA

, (1)

Based on the above rules, the three quality indicators of each dataset were given a
ranking score (Table 2). The priority of the input datasets was determined using the average
of the three rankings. Among the eight input datasets, GSW was ranked on top, followed by
the GMW dataset. According to the ranking, water bodies from the CGLS-LC100, CCI-LC,
and GLCNMO2013 dataset were excluded, and mangroves from GLCNMO2013 and the
“tree cover, flooded, saline water” from CCI-LC were not used.

Table 2. Quality ranking of the input datasets based on their spatial resolution, temporal range, and accuracy.

Dataset Name Ranking of Spatial
Resolution

Ranking of Year of
Data F-Score Ranking of

F-Score
Average Ranking

Score Priority

GSW 1 1 0.97 1 1.0 1
GMW 1 1 0.96 2 1.3 2

CGLS-LC100 2 1 0.68 4 2.3 3
CCI-LC 3 1 0.61 5 3.0 4

GLCNMO2013 4 3 0.9 3 3.3 5
GRanD 6 2 0 6 4.7 6

PEATMAP 5 4 0 6 5.0 7
Global

saltmarsh 6 5 0 6 5.7 8

Note: The F-scores of the CGLS-LC100, CCI-LC, and GLCNMO2013 dataset were calculated as an average of the F-score of all aquatic classes.

2.2.2. Legend Harmonization of Input Datasets

The legend harmonization was accommodating the legend of input datasets into
“classifiers” of the reference GALC characterization framework based on the original
class definition in the reference papers (Table 1). Take mangroves of the GMW dataset
as an example, they are defined as “forested wetlands that are uniquely adapted to the
intertidal zone” [18]. Accordingly, mangroves were translated as “aquatic” at Level-1,
“permanently flooded” (as water is regularly available with tides in the intertidal zone
throughout a year), “vegetated” (i.e., “forested wetland”), and “natural” (as the mangrove
ecosystem is naturally formed) at Level-2, and “trees” at Level-3. There are also ambiguities
or inconsistencies in class definitions identified in the harmonization process, and the
following explains how we dealt with these issues.

• Classes without information on the duration of water (e.g., herbaceous wetland of
CGLS-LC100) were assumed as “temporarily flooded”.

• Inconsistent class definition, i.e., the permanent water and seasonal water of the GSW
dataset (Table 1), was adjusted to conform with the reference framework.

• For classes including more than one cover type under the same classifier and making
no distinction between them, several types were put under the same classifier, e.g.,
the life form type of PEATMAP included both herbaceous cover and shrubs (Table 3),
as marshes and shrub swamps were both mapped by PEATMAP.
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Table 3. Harmonized legends of the input datasets based on the reference LCCS-based GALC characterization framework.

Dataset Name Aquatic Classes Level-1
Level-2 Level-3

Persistence of
Water

Presence of
Vegetation

Artificiality of
Cover Life Form

GSW

Permanent water
(present ≥ 9

months)
Aquatic Permanently

flooded Non-vegetated Artificial; natural Water body

Seasonal water
(present < 9

months)
Aquatic Temporarily

flooded Non-vegetated Artificial; natural Water body

GMW Mangroves Aquatic Permanently
flooded Vegetated Natural Trees

CGLS-LC100 Herbaceous
wetland Aquatic Temporarily

flooded Vegetated Natural Herbaceous cover

CCI-LC

Tree cover,
flooded, fresh or
brackish water

Aquatic

Permanently
flooded;

temporarily
flooded

Vegetated Natural Trees

Shrub or
herbaceous cover,

flooded,
fresh/saline/brackish

water

Aquatic

Permanently
flooded;

temporarily
flooded;

waterlogged

Vegetated Natural Shrubs;
herbaceous cover

GLCNMO2013 Paddy field Aquatic Temporarily
flooded Vegetated Artificial Herbaceous cover

GRanD

Reservoirs
(including

dam-regulated
natural lakes)

Aquatic Permanently
flooded Non-vegetated Artificial; natural Water body

PEATMAP Peatlands Aquatic Waterlogged Vegetated Natural Shrubs;
herbaceous cover

Global saltmarsh Saltmarshes Aquatic Temporarily
flooded Vegetated Natural Herbaceous cover

2.2.3. Generation of the Level-1, Level-2, and Level-3 Maps

Datasets were composited in the order of their priority rankings (Table 2) using the
Geospatial Data Abstraction Library (GDAL) [29]. Specific GDAL commands used in the
map generation were listed in Table S1 (Supplementary Materials). The integrated maps
were converted to the world cylindrical equal area projection [30] to calculate the area of
different classes.

Level-1: The Aquatic Land Cover Map

The Level-1 map (hereafter referred to as the “integrated Level-1 map”) was generated
by combining the eight input datasets into one map. To get an insight on how many aquatic
areas are on the land, the CGLS-LC100 land/sea mask [31] was applied to separate the
aquatic land cover in the land/sea transitional zones and that on the land. The land area
defined by the CGLS-LC100 land/sea mask is approximately 134.59 million km2 (excluding
Antarctica and the land/sea transitional area).

Level-2: The Persistence of Water, Presence of Vegetation, and Artificiality of Cover Map

The Level-2 maps were created by combining corresponding classes (Table 3) into
the three classifiers: persistence of water, presence of vegetation, and artificiality of cover.
Figure 5 shows the input datasets to each classifier.

Prior to creating the persistence of water map, some processing was made to the
input datasets. Firstly, the GSW water seasonality map was reclassified to generate the
permanent water (≥9 months) and seasonal water (<9 months). Secondly, as the CCI-LC
dataset mixed up the three water persistence types (Table 3), two masks were used to
remove the permanently flooded area and the waterlogged area to get the “temporarily
flooded trees, shrubs, and herbaceous cover”. The mask of permanently flooded areas
was formulated by the three permanently flooded classes including mangroves of the
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GMW dataset, reservoirs of the GRanD dataset, and the permanent water from GSW. The
PEATMAP was used to remove waterlogged areas from CCI-LC.

Figure 5. Input datasets for the generation of Level-2 and Level-3 maps.

The GRanD dataset and the GSW dataset were also processed before generating the
artificiality of cover map. The GRanD dataset contains natural lakes that are regulated
by dams, which is not consistent with the LCCS-based definition because these lakes are
naturally formed and do not require human maintenance over the long term. Therefore,
we used the “natural lakes with regulation structure” from an external dataset called
HydroLAKES [32] to separate natural lakes from reservoirs in the GRanD dataset. Likewise,
the natural water and artificial water of the GSW dataset were separated using a mask
formulated by the reservoirs (excluding dam-regulated natural lakes) from GRanD and the
paddy field from GLCNMO2013.

The presence of vegetation map was composited from the Level-3 life form types
(Figure 5) into the vegetated and non-vegetated categories.

Level-3: The Life Form Map

The Level-3 map was created by combining corresponding classes for the five life form
types (Figure 2). As none of the selected input datasets contain aquatic classes of “bare
land”, and additionally, shrubs and herbaceous cover cannot be separated in PEATMAP as
well as CCI-LC (Table 3), the Level-3 map integrated by the eight input datasets (hereafter
called the “integrated life form” map) comprised only three classes, including “water
body”, “trees”, and “shrubs and herbaceous cover” (Figure 5).

To acquire a more complete delineation of the five life form types, another map
(hereafter called the “CGLS life form”) was created using the Fractional Land Cover
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(FLC) maps of the CGLS-LC100 product [24]. This product comprises ten FLC maps, and
the value of each map indicates the proportion of a 100 m × 100 m pixel filled with a
specific land cover class. As several classes might coexist within the same pixel, we firstly
generated a global dominant cover map using the ten maps in Google Earth Engine (GEE).
Eight classes that correspond to our classification scheme, i.e., “bare/sparse vegetation”,
“permanent water”, “seasonal water”, “herbaceous grassland”, “cropland”, “moss/lichen”,
“shrubland”, and “tree” were then selected from the global dominant cover map and
exported from GEE. The resulting map was finally restrained to aquatic areas using the
integrated Level-1 map created in this study in GDAL.

2.2.4. Accuracy Assessment

The integrated Level-1 map was assessed using 26,714 samples from the Level-1
validation dataset (Figure 3). Accuracy estimates such as overall accuracies (OA), class
accuracies, and their confidence intervals (CI, at 95% confidence level) were calculated
using the same method described in Tsendbazar et al. [27] following the good practice
recommendations of stratified random sampling suggested by Olofsson et al. [33]. The
sample inclusion probabilities were used in the accuracy calculation to reduce bias arising
from the sampling design.

The three Level-2 maps and two Level-3 maps were assessed using the 800 sample
sites shown in Figure 4. As some locations of this validation dataset had no data on the
Level-2 or Level-3 maps, not all of the 800 samples were used in the confusion matrix
calculation. The method of calculating the accuracy for simple random sampling [33,34]
was implemented for the Level-2/3 maps. Accuracies were adjusted based on the sample-
counted confusion matrix and area proportions of the mapped land cover classes. To
compare the accuracy of the two Level-3 maps, herbaceous cover and shrubs on the CGLS
life form map were merged and the bare land was excluded in the validation.

3. Results
3.1. Level-1: Aquatic Land Cover

The integrated Level-1 map is presented in Figure 6. The total area of GALC is esti-
mated as 27.5 million km2, of which 15.3 million km2 is on the land (i.e., 11.4% of the global
land area). The confusion matrix correcting unequal inclusion probabilities is shown in
Table 4. The count-based confusion matrix is provided in Table S2 (Supplementary Materi-
als). Although the integrated Level-1 map achieved an overall accuracy of 93.0% ± 0.4%
(at 95% CI, Table 4), it had considerable commission errors (100%—UA) in mapping aquatic
land cover. It was observed that the area-weighted UA of aquatic lands (32.7%, Table 4)
was much lower compared with that of the count-based confusion matrix (58.7%, Table S2).
This could be explained by the fact that non-aquatic sample sites represent a much larger
proportion of the Earth’s surface, therefore they carry larger weights when accounting for
the unequal inclusion probabilities than aquatic sample sites. Still, even when the area
weights of the classes were not considered, a lower UA of the aquatic class was notable.

Table 4. Confusion matrix of the integrated Level-1 map, corrected for unequal sample inclusion probabilities.

Level-1
Reference

Sample Count Total User’s Accuracy (%) Confidence Interval ±
Aquatic Non-Aquatic

Map Aquatic 0.03 0.07 4493 0.10 32.7 1.9
Non-Aquatic 0.01 0.90 22,221 0.91 99.4 0.1

Sample count 2989 23,725 26,714
Total 0.04 0.97

Producer’s accuracy (%) 86.1 93.2 93.0 0.4
Confidence interval ± 2.9 0.4
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Figure 6. Level-1 map of the prototype GALC database. The aquatic land cover on the land and that of the land/sea
transitional areas were separated using the CGLS land/sea mask.

3.2. Level-2: Persistence of Water, Presence of Vegetation, and Artificiality of Cover

The Level-2 maps are presented in Figure 7. The area-weighted and count-based
confusion matrices of the three maps are provided in Tables 5–7 and Tables S3–S5 (Sup-
plementary Materials), respectively. According to the area statistics, the majority of global
aquatic lands are permanently flooded (58%, Figure 7a), non-vegetated (61%, Figure 7b),
and natural (91%, Figure 7c).
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Table 5. The area-weighted confusion matrix of the persistence of water map.

Persistence of Water
Reference

Sample
Count Total

User’s
Accuracy (%) Confidence Interval ±Permanently

Flooded
Temporarily

Flooded Waterlogged

Map

Permanently
flooded 0.37 0.12 0.09 223 0.58 63.7 5.1

Temporarily
flooded 0.09 0.09 0.03 299 0.21 41.1 8.6

Waterlogged 0.05 0.11 0.05 76 0.21 25.0 7.5
Sample count 288 208 102 598

Total 0.51 0.32 0.17
Producer’s accuracy (%) 71.9 27.7 30.3 50.7 3.8
Confidence interval ± 4.3 4.8 7.5

Table 6. The area-weighted confusion matrix of the presence of vegetation map.

Presence of Vegetation
Reference

Sample Count Total User’s Accuracy (%) Confidence Interval ±
Non-Vegetated Vegetated

Map Non-Vegetated 0.31 0.30 294 0.61 50.3 5.1
Vegetated 0.06 0.33 304 0.39 83.9 4.7

Sample count 197 401 598
Total 0.37 0.63

Producer’s accuracy (%) 82.8 52.2 63.5 3.6
Confidence interval ± 4.5 2.2

Table 7. The area-weighted confusion matrix of the artificiality of cover map.

Artificiality of Cover
Reference

Sample Count Total User’s Accuracy (%) Confidence Interval ±
Artificial Natural

Map Artificial 0.03 0.07 56 0.10 26.8 11.3
Natural 0.04 0.86 542 0.90 95.0 1.8

Sample count 42 556 598
Total 0.07 0.93

Producer’s accuracy (%) 37.1 92.2 88.3 2.0
Confidence interval ± 11.8 2.1

The overall accuracy of the persistence of water map was 50.7 ± 3.8% (at 95% CI,
Table 5). This map achieved a higher UA and PA in permanently flooded areas than
that of the temporarily flooded and waterlogged areas. The map overrepresented the
waterlogged class at the cost of the temporarily flooded class. Almost 72% (100%—PA)
of the reference temporarily flooded samples were misclassified as the waterlogged and
permanently flooded types.

The presence of vegetation map achieved an overall accuracy of 63.5 ± 3.6% (at 95%
CI, Table 6). Generally, the PA of the non-vegetated class was much higher than its UA,
and a contrary situation occurred for the vegetated class, meaning that this map tended to
overestimate the non-vegetated class while underestimating the vegetated class.

The natural aquatic class on the artificiality of cover map was highly accurate in terms
of PA and UA (i.e., both exceeded 90%, Table 7). However, even though the overall accuracy
(88.3 ± 2.0%) was high, artificial aquatic areas were poorly characterized by this map, with
the UA and PA being only 26.8 and 37.1%, respectively.

3.3. Level-3: Life Form

The integrated life form map and the CGLS life form map are shown in Figure 8.
Their area-weighted and count-based confusion matrices are provided in Tables 8 and S6
(Supplementary Materials), respectively. The two Level-3 maps had a similar spatial
distribution and areal percentage of water bodies, while they differed a lot in other life
form types (pie charts in Figure 8). The overall accuracies of both maps were relatively low
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(Table 8). The integrated life form map obtained a higher OA (56.9 ± 4.3%) than the CGLS
life form map (50.0 ± 4.1%).
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Table 8. The area-weighted confusion matrix of the Level-3 maps. The two confusion matrixes were built upon 483
validation sample sites that were present on both maps.

Level-3

Reference
Sample
Count Total

User’s
Accuracy (%)

Confidence
Interval ±Water Body

Shrubs and
Herbaceous

Cover
Trees

Map

Integrated Life Form
Water body 0.15 0.11 0.03 208 0.29 51.9 8.2

Shrubs and herbaceous cover 0.09 0.41 0.15 216 0.65 63.0 5.4
Trees 0.01 0.05 0.01 59 0.07 18.6 13.8

Sample count 142 258 83 483
Total 0.25 0.57 0.19

Producer’s accuracy (%) 62.3 72.1 6.1 56.9 4.3
Confidence interval ± 6.9 4.5 4.0

CGLS Life Form
Water body 0.16 0.08 0.02 164 0.26 61.0 8.5

Shrubs and herbaceous cover 0.05 0.24 0.07 249 0.36 66.7 7.0
Trees 0.05 0.21 0.10 70 0.36 27.1 6.6

Sample count 142 258 83 483
Total 0.26 0.53 0.19

Producer’s accuracy (%) 61.7 45.1 51.0 50.0 4.1
Confidence interval ± 6.9 3.9 8.9

The integrated life form map was better at characterizing shrubs/herbaceous cover
than the CGLS life form map (Table 8), while at the same time it underestimated trees with
around 79% (calculated from Table 8) of the reference tree samples being omitted from
shrubs/herbaceous cover. The CGLS life form map was better at characterizing trees than
the integrated life form map, while it had a tendency of overestimating trees at the cost of
shrubs/herbaceous cover.

4. Discussion

With the increasing demand for water resources, the characterization of aquatic land
cover has attracted more and more attention. By reframing current datasets consistently,
this research created a three-level prototype GALC database (Figure 9) and evaluated its
performance rigorously. In this section, the limitations of existing datasets and possible
reasons behind those limitations are discussed. The evolving EO opportunities to improve
the GALC characterization are also highlighted. Although the prototype GALC database
was developed and evaluated in a systematic way, findings in this study might be subject
to some limitations because of the limited number of “waterlogged”, “artificial”, and
“shrub” sample sites for a global assessment. These classes should be investigated further if
sufficient validation data are available. Nevertheless, obtaining high-quality global aquatic
reference datasets with detailed information on classifiers requires considerable time and
expertise given the heterogeneous and dynamic characteristics of aquatic land cover.
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Figure 9. Limitations of the prototype GALC database and opportunities to improve the characterization of GALC.

4.1. Limitations of Current Global Datasets in GALC Mapping
4.1.1. General Classification of Global Aquatic Land Cover

The global aquatic area on the land estimated by the integrated Level-1 map is
15.3 million km2, with a tendency of overestimating the total extent of GALC (Table 4). The
overestimation could have originated from the input datasets. For instance, the CGLS-
LC100 product is prone to misclassify the herbaceous wetland with terrestrial grasslands
in the land cover classification [26].

The most recent research on the mapping of the overall distribution of GALC made
by Hu et al. [35] and Tootchi et al. [36] reported an estimate of 29.8 million km2 and
29 million km2 of aquatic area on the land, respectively. According to the result of our ac-
curacy assessment, the two estimates could also be considerably overestimated, indicating
a global product that can accurately separate the aquatic from the non-aquatic land is still
needed. Considering the key components of aquatic ecosystems, it is more difficult to map
aquatic vegetation and wet soils remotely than water bodies [37]. However, integrating
multi-source data such as optical, Synthetic Aperture Radar (SAR), soil, and topographic
features has been demonstrated useful in improving the general-level classification of
aquatic lands [38].

4.1.2. Classification of Persistence of Water, Presence of Vegetation, and Artificiality
of Cover

The validation of the persistence of water map highlights that current datasets have
limitations of characterizing the waterlogged and temporally dynamic types (Table 5).
One of the reasons is that the classification of waterlogged areas without evident surface
flooding is more difficult than detecting open surface water because the contrast between
wet soils and their surroundings is less pronounced [39]. In addition, the input datasets
used to generate the temporarily flooded class represent mainly vegetated aquatic types
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(Figure 5), while characterizing water bodies under vegetation has always been challeng-
ing [4]. Furthermore, the information on water persistence is still lacking among existing
datasets. Except for the GSW dataset that characterizes the water seasonality, other input
datasets were all static maps missing the information on water duration.

The presence of vegetation map tends to underestimate vegetated aquatic lands
(Table 6). The main cause lies in that identifying vegetated aquatic land cover globally
remains challenging based on remote sensing classification [27]. Unlike open surface water,
vegetated aquatic lands are complicated by their distribution throughout tropical to boreal
environments that encompass a wide variety of vegetation types, hydrological regimes,
and land-use impacts [37]. Another possible cause could be the inconsistent definition
of the input datasets with our reference classification framework. For example, the GSW
dataset, which was used as an input of the “non-vegetated” class in this study, considers
vegetated areas that represent short-duration flooding events as seasonal water bodies [19].

The artificiality of cover map performs well in characterizing natural aquatic lands
(Table 7), while defects of the two source datasets (i.e., GLCNMO2013 and GRanD) lead to
low accuracies of the artificial class. Firstly, as a main source providing the information on
aquatic croplands, GLC products often confuse croplands with other natural herbaceous
types [25]. Secondly, the GRanD dataset delineated reservoirs with a storage capacity of
>0.1 km3 while excluding smaller reservoirs, which might cause the omission of artificial
water bodies, such as fishponds.

4.1.3. Classification of Aquatic Life Forms

As an extension of the Level-2 presence of vegetation map, the lower overall accuracy
of the Level-3 life form map (Table 8) demonstrates prominent gaps existing in the charac-
terization of the vegetation presence and detailed vegetation types in aquatic areas. The
significant underestimation of trees on the integrated life form map indicates that the two
source input datasets, i.e., GMW and CCI-LC, also omitted considerable trees under an
aquatic environment globally. Both the integrated life form map and the CGLS life form
map have the issue of misclassifying trees, shrubs, and herbaceous cover. In fact, these
types are indeed challenging to be separated solely by optical sensors as they have similar
spectral signals [26]. Moreover, shrubs always grow with herbaceous vegetation or trees,
making it difficult to be mapped independently.

The CGLS-LC100 FLC maps, offering the proportional estimates for basic land cover
types, allow users to tailor the maps to their own applications. However, the life form
map derived from these maps does not perform well in aquatic areas (Table 8), even
though it has been reported with higher accuracies in the global validation [26]. The poor
prediction could have resulted from the seasonal or even daily water dynamics which
make it challenging to estimate the exact fraction of different land cover types [37].

4.2. Evolving EO Opportunities to Improve the GALC Characterization

Recent developments of cloud-based computational platforms, such as Google Earth
Engine [40], offer a unique opportunity for global aquatic land cover mapping with its free
access to tremendous volumes of EO data [41]. The Sentinel satellite imagery provided
by the European Space Agency’s Copernicus programme can be easily accessed on the
GEE platform. Data acquired from the Sentinel-1 and Sentinel-2 satellites have a spatial
resolution up to 10 m and temporal resolution reaching six days and five days, respectively.
The improved spatial and temporal resolutions allow capturing the variations of water
occurrence [42] and small water bodies [43]. The three red-edge bands and two shortwave
infrared (SWIR) bands of Sentinel-2 imagery are valuable in discriminating spectrally
similar vegetation types [44]. The SWIR bands sensitive to both soil and vegetation
moisture could contribute to characterizing waterlogged areas [45]. The Sentinel-1 C-
band SAR data has been successfully used to identify water under temporarily flooded
vegetation [46].
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Integrating multi-sensor (e.g., Landsat and Sentinel-2) and multi-source data (e.g.,
optical, radar, topographic, and soil data) has a better capacity to capture the inundation
extent, vegetation structure, and hydroperiod variations [38] and thus is more suitable to
discriminate between the aquatic and terrestrial uplands as well as the temporally dynamic
and complex aquatic types (e.g., Level-3 classes). Some new datasets also have potential in
improving the GALC characterization. For example, incorporating the height information,
such as the recent global forest canopy height dataset [47], could reduce confusions of trees
and shrubs.

SAR data at longer wavelengths can penetrate tree canopies, and specifically the
P-band SAR from the upcoming BIOMASS mission [48] has higher chances to reach the
surface underneath [49]. Such a design would enable characterizing the water under dense
vegetation canopies and improving the mapping of vegetation in aquatic environments
and water persistence in densely vegetated areas. Many innovative methods for aquatic
land mapping have also been proposed that are suited to multi-temporal images, such
as the Water Wetness Presence Index [39] and the Water Change Tracking algorithm [50].
Evaluating these methods is beyond the scope of the current paper.

4.3. Potential of the Prototype GALC Database in Addressing Multiple User Needs

Regardless of the accuracy of integrated maps, the developed prototype database
showed what a comprehensive and user-oriented GALC product could comprise. With
sufficient flexibility, the prototype database allows users to obtain their required informa-
tion by combining maps at various levels and classifiers. As mentioned before, climate
modelers may require a map showing the vegetation type under different water persistence
for accurate estimation of methane emissions. Such a map (Figure 10) could be generated
by combining the Level-2 persistence of water map with the vegetation types from the
Level-3 CGLS life form map.

Figure 10. A user-specific map showing shrubs, trees, and herbaceous cover under different water persistence. This map
was created by integrating the Level-2 persistence of water map with the vegetation types from the Level-3 CGLS life
form map.
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The prototype database also has important implications for aquatic ecosystem man-
agement. Firstly, the GALC maps could serve as basic inputs to hydrological and hydrody-
namic models [51]. Secondly, these maps are helpful for the determination of appropriate
input parameters for hydrological modeling. For example, in flood risk management,
roughness estimation is an important step to simulate flood flows using hydrological
models [52]. The roughness is strongly influenced by the physical properties of surface
materials, such as the vegetation density, which differ among vegetation types. In this
sense, accurate characterization of the Level-2 (i.e., presence of vegetation, the artificial-
ity of cover) and Level-3 maps hold considerable potential in improving the accuracy of
roughness estimation, which can be beneficial for mitigating flood risks and conserving
aquatic ecosystems.

Maps in the GALC database can also be integrated with external datasets. One of
the important applications is for global land change monitoring. For instance, integrating
the Level-1 map with land/vegetation change datasets (e.g., the Global Forest Watch
datasets [53]) or combining the Level-2 and Level-3 maps with water change products
(e.g., [54]) allows for monitoring changes in aquatic areas. Such information is valuable for
evaluating land disturbance and vegetation regeneration dynamics in aquatic ecosystems.

The evolving EO opportunities provided for more accurate and continuous GALC
mapping enables updating and enriching the database routinely (e.g., annually). The
Sustainable Development Goal 6 [55] has put an emphasis on protecting and restoring
water-related ecosystems. A comprehensive and continuous GALC database would con-
tribute to the implementation of this goal.

5. Conclusions

With the aim of assessing the integration of current global datasets for comprehensive
and user-oriented GALC mapping, this study has created a prototype database for 2015
which includes six maps at three levels with 100 m resolution. The combination of existing
datasets tends to overestimate the general extent of aquatic land cover. At Level-2, the
persistence of water map is good at characterizing permanently flooded areas, while weak
in waterlogged areas without evident surface flooding and temporarily flooded areas
with greater water variations—the presence of vegetation map tends to underestimate the
vegetated aquatic land cover while overestimating the non-vegetated ones; natural aquatic
types are sufficiently mapped while artificial aquatic lands (i.e., reservoirs and paddy
fields) are poorly represented. Current datasets cannot accurately characterize the detailed
life form types (Level-3) such as trees and shrubs for aquatic land cover. Although the
integrated maps have relatively low accuracies, the prototype GALC database is flexible for
deriving multiple user-required maps and has important implications for aquatic ecosystem
management and land change monitoring in aquatic areas. The availability and easier
access of high spatial and temporal resolution data and the development of new satellite
missions and aquatic land cover classification methods provide opportunities to address
the limitations in current GALC characterization. This work provides insights for the
next-generation GALC mapping and helps future map users as well as producers to avoid
some of the limitations of current global datasets.
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.3390/rs13194012/s1, Table S1: GDAL commands used in the map generation, Table S2: Count-based
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Level-2 persistence of water map, Table S4: Count-based confusion matrix for the Level-2 presence of
vegetation map, Table S5: Count-based confusion matrix for the Level-2 artificiality of cover map,
Table S6: Count-based confusion matrix for the Level-3 maps.
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