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Abstract: Globally, biological invasions are considered as one of the major contributing factors for the 

loss of indigenous biological diversity. Hyperspectral remote sensing plays an important role in the de-

tection and mapping of invasive plant species. The main objective of this study was to discriminate inva-

sive plant species from adjacent native species using a ground-based hyperspectral sensor in two pro-

tected areas, Lehri Reserve Forest and Jindi Reserve Forest in Punjab, Pakistan. Field spectral measure-

ments were collected using an ASD FieldSpec handheld2TM spectroradiometer (325–1075 nm) and the 

discrimination between native and invasive plant species was evaluated statistically using hyperspectral 

indices as well as leaf wavelength spectra. Finally, spectral separability was calculated using Jeffries 

Matusita distance index, based on selected wavebands. The results reveal that there were statistically 

significant differences (p < 0.05) between the different spectral indices of most of the plant species in the 

forests. However, the red-edge parameters showed the highest potential (p < 0.001) to discriminate dif-

ferent plant species. With leaf spectral signatures, the mean reflectance between all plant species was 

significantly different (p < 0.05) at 562 (75%) wavelength bands. Among pairwise comparisons, invasive 

Leucaena leucocephala showed the best discriminating ability, with Dodonaea viscosa having 505 significant 

wavebands showing variations between them. Jeffries Matusita distance analysis revealed that band 

combinations of the red-edge region (725, 726 nm) showed the best spectral separability (85%) for all 

species. Our findings suggest that it is possible to identify and discriminate invasive species through field 

spectroscopy for their future monitoring and management. However, the upscaling of hyperspectral 

measurements to airborne and satellite sensors can provide a reliable estimation of invasion through 

mapping inside the protected areas and can help to conserve biodiversity and environmental ecosystems 

in the future. 
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1. Introduction 

Protected areas provide a refuge for native species and help to protect biodiversity 

by acting as natural filters, especially against biological invasions [1]. However, biological 

invasions are still the second-largest global threat to biodiversity after habitat loss [2,3]. 

Invasive plant species negatively affect the native species through direct competition for 

resources, changing ecosystem processes or through allelopathy [4]. The negative impacts 

of invasive species have been widely studied by scientists in recent years and a range of 
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management strategies have been suggested [5,6]. To help land managers, one of the ear-

liest steps in planning effective management is to collect accurate information on the spa-

tial distribution of invasive species [7]. Traditional methods of mapping the distribution 

of invasive species generally require intensive fieldwork that involves visual observation 

and identification of plant species along with their richness and diversity [8,9]. The limi-

tations of such field assessment methods include high cost, excessive time consumption, 

site accessibility constraints, reliance on highly subjective methods, and visual calculation 

errors that may yield inaccurate distribution assessment, ultimately leading to poor man-

agement strategies for invasive species [10]. Therefore, it is critical to use advanced and 

more reliable techniques to assess and monitor the invasions, and develop effective man-

agement programs [11].  

Remote sensing plays an important role in the early detection and quantification of 

alien invasive vegetation cover [12,13] and is now recognized as an important tool for 

ecologists, agriculturalists, and land managers for understanding and managing many 

environmental issues [14–16]. The remote sensing of vegetation involves the use of differ-

ent imaging and non-imaging sensors to obtain spectral measurements of plant species 

[17] by a range of airborne and space-borne sensors (multispectral or hyperspectral) with 

coarse to high spatial resolutions [18,19].  

The spectral diversity of plant species represents the variations existing in spectral 

patterns that are detected by optical remote sensing [20]. Studies have shown that each 

plant species, whether native or invasive, has unique spectral reflectance due to dissimilar 

physical and biochemical characteristics that ultimately help to facilitate species-level 

identification [21,22]. Therefore, it is often possible to differentiate plant species using 

their spectral diversity [23,24]. Thus, invasive plant species may be separated from native 

species due to their distinct reflectance, biochemical and structural properties [25,26].  

Multispectral imaging sensors are important in detecting the invasion of forest eco-

systems or larger areas [27–29]. However, hyperspectral non-imaging sensors (e.g., 

handheld spectroradiometers) are a more reliable source for discriminating small varia-

tions between species and other biochemical properties [7,30]. Narrow bands of hyper-

spectral sensors can enable the finer discrimination of plants’ physiological processes by 

measuring species level changes, leading to improved detection and mapping of invasive 

species [25,31]. Multispectral remote sensing is somewhat challenging in discriminating 

and mapping plant species due to its low spectral and spatial resolution as well as the 

spectral overlapping that may result in less accuracy [32]. The contiguous narrow bands 

of hyperspectral data have led to the successful spectral separation of native and invasive 

species, either by hyperspectral satellite images [13,29,33,34] or by field-based instruments 

[7,35]. However, the high cost of hyperspectral satellite data somehow limits its usage at 

a small academic level, especially in developing countries. 

The discrimination and detection of invasive species using multi or hyperspectral 

remote sensing is an important step to take before developing any management strategies. 

Several studies have shown the importance of hyperspectral field spectroscopy for early 

plant detection and discrimination using different separability approaches, statistical 

techniques and feature selection methods. Cochrane [36] studied the spectral differences 

between different plant species of tropical forests using hyperspectral ASD spectroradi-

ometer (350–1050 nm) under laboratory conditions. Similarly, tropical mangrove species 

were identified using statistical techniques of ANOVA as well as Jeffries Matusita (JM) 

separability index in VNIR (Visible and Near Infrared) and SWIR (Short Wavelength In-

frared) range (350–2500 nm) under a laboratory environment [37]. Ullah and colleagues  

[38] also revealed significant differences between tropical plant species in the Netherlands 

using mid-wave (2.5–6 μm) and thermal (8–14 μm) measurements of the leaf spectra. In 

addition to lab spectral measurements, ground-based hyperspectral remote sensing was 

also extensively used to distinguish different plant species in the field [39]. Schmidt and 

Skidmore [40] discriminated different vegetation types in the coastal saltmarsh of the 

Netherlands with the help of GER 3700 spectrometer (325–2509 nm) using ANOVA and 
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JM distance analysis. Cyperus papyrus L. was also successfully discriminated from its co-

existent wetland species using ANOVA, CART and JM distance analysis in St. Lucia Wet-

lands Park in South Africa [41]. Recently, Aneece and Epstein [42] identified six invasive 

plant species (Galium verum L., Ailanthus altissima (Mill.) Swingle, Celastrus orbiculatus 
Thunb., Rhamnus davurica Pall., Carduus acanthoides L., and Cirsium arvense (L.) Scop.) in 

crop fields in Northern Virginia using ANOVA and SVM analysis and revealed that the 

350–399, 500–549, 700–749, and 900–949 nm regions were the most significant regions for 

discriminating different species in the field. Taylor et al. [43] also used a spectroradiome-

ter (350–2500 nm) to successfully discriminate invasive rhododendron from other co-ex-

isting species using Kruskal–Wallis and logistic regression model. These studies are based 

on the variations between spectral signatures of different plant species. However, the po-

tential of hyperspectral indices, as well as red-edge parameters (REPs), has also previously 

been studied for discriminating between the spectral diversity of plant species [44–46] Cho 

et al. [47] evaluated the potential of spectral indices by using leaf and canopy spectra of 

six different species and found REP, NDVI, and PRI as good indices for the spectral iden-

tification of plant species. Similarly, invasive Acacia longifolia (Andrews) Willd. was able 

to be discriminated using field VNIR-SWIR spectra as well as narrowband hyperspectral 

indices in a Mediterranean dune ecosystem in Portugal [48]. All these studies highlight 

the potential role of field spectroscopy in discriminating invasive species. 

The application of remote sensing in invasive species’ mapping and monitoring is 

currently not very advanced in Pakistan. In an attempt to classify the vegetation of met-

ropolitan city of Karachi, Pakistan, Shehzad et al. [49] classified invasive Prosopis juliflora 

on high-resolution Worldview-2 imagery using object-based classification in a relatively 

small area of northwest Karachi, Pakistan. Recently, Kazmi et al. [50] used GeoEye multi-

spectral and Hyperion EO-1 hyperspectral data to map P. juliflora with 93 and 99% accu-

racy in urban and semiurban areas of Karachi. However, to the best of our knowledge, no 

studies reported on the discrimination of invasive species from other co-existing native 

species of protected areas using ground-based hyperspectral data in Pakistan.  

Therefore, this is the first study of its kind with the aims: 

1. To explore the potential of hyperspectral data to discriminate invasive and native 

plant species using hyperspectral indices as well as wavelength spectra in the Lehri 

and Jindi Reserve forests  

2. To identify diagnostic wavelength regions for better identification and separability 

of plant species. 

3. To determine the best band combinations for spectral separability of plant species of 

different geographic origins using the Jeffries Matusita distance. 

2. Materials and Methods 

2.1. Site Description 

The study area covers two scrub forests of the district Jhelum of the Punjab province, 

Pakistan. The Lehri Reserve Forest (33.15° N, 73.59° E; 463 m asl) covers an area of 4843.3 

hectares while Jindi Reserve Forest (33.06° N, 73.47° E; 407 m asl) spans over 2163.1 hec-

tares (Figure 1). Collectively, both forests were named as Lehri Nature Park in 1987 for 

the protection and conservation of natural flora and fauna. Both forests have semiever-

green scrub vegetation with overall subhumid to dry climate. The temperature ranges 

from 8 °C to 42 °C, January being the coldest and June the hottest month of the year. Av-

erage annual rainfall is about 850 mm. The vegetation is mainly subtropical dry evergreen 

open scrub, dominated by Dodonaea viscosa (L.) Jacq., Acacia modesta Wall., Olea ferruginea 

Wall. ex Aitch., Ziziphus nummularia (Burm.f.) Wight and Arn., Prosopis juliflora L. and 

Heteropogon contortus (L.) P.Beauv. ex Roem. and Schult [51] (Figure 2). 
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Figure 1. Map of the study area located in the north of the district Jhelum in the Punjab Province, 

Pakistan. 

The Lehri Nature Park is located in the Potohar region in the east of the salt range 

with an elevation ranging from 250 m to 1025 m [52]. The northern region of Lehri RF has 

a water reservoir, Mangla, while its east and west regions share boundaries with the 

Mangla Cantonment area and Lehri Town, respectively. Both forests share a common 

boundary in the south of Lehri RF. However, the southern boundary of Jindi RF touches 

the Grand Trunk Road linking two provincial capital cities, Lahore and Peshawar. Topo-

graphically, the area consists of rugged and steep mountains having low height with 

dense vegetation cover, while mountain rocks are majorly comprised of sandstone and 

limestone (Figure 2). 

  
(a)         (b) 

Figure 2. Topography of the study area showing dry scrub forest vegetation with stands of A. mod-

esta and L. camara (a) and D. viscosa (b) in the district Jhelum, Punjab, Pakistan. 

2.2. Field Data Collection 

2.2.1. Site Selection and Target Species 

Field surveys were conducted at the end of the summer season in October 2018 and 

2019 to record the spectral signatures of plant species. Lehri–Jindi Reserve forests are 

scrub forests with dense vegetation, making it difficult to access the remote regions inside 
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the forests. Therefore, two accessible sites (one in each reserve forest) were selected for the 

collection of field data (Figure 1) and were considered as representative sites for the cur-

rent study.  

The current study aimed to discriminate invasive plant species from other co-occurring 

species in the field. Therefore, different plant species associated with major invasive species 

of the forests were selected through field observation techniques and based on the visual 

abundance assessment. Three main categories of plant species (native, invasive, and orna-

mental) were designated and prioritized for spectral sampling. Plants that were intro-

duced/cultivated but did not result in unpleasant consequences for the local ecosystems 

were identified as ornamental. Details of each species are given in Table 1. 

Table 1. Characteristics of plant species selected for the current study. 

Category Plant Species  Common Name Family Habit 

Native Justicia adhatoda L. Malabar nut Acanthaceae shrub 

 Acacia modesta Wall. Hook thorn tree Fabaceae tree 

 Dodonaea viscosa (L.) Jacq. Switch sorrel Sapindaceae shrub 

Invasive Parthenium hysterophorus L. Carrot grass Asteraceae herb 

 Prosopis juliflora (Sw.) DC. Mesquite Fabaceae tree 

 Leucaena leucocephala (Lam.) de Wit White lead tree Fabaceae tree 

 Lantana camara L. Red sage Verbenaceae shrub 

Ornamental Eucalyptus camaldulensis Dehnh. River red gum Myrtaceae tree 

 Pongamia pinnata (L.) Pierre Pogam oil tree Fabaceae tree 

 Tecoma stans (L.) Juss. ex Kunth Yellow trumpet bush Bignoniaceae shrub 

 Callistemon viminalis (Sol. ex Gaertn.) G.Don Bottle brush Myrtaceae tree 

2.2.2. Spectral Sampling 

Surface reflectance spectra of leaves were collected using a portable ASD FieldSpec 

Handheld 2™ Spectroradiometer. This spectroradiometer is a type of non-imaging sen-

sor that measures electromagnetic radiation in the range from 325 nm to 1075 nm at a 

nominal spectral resolution of less than 3 nm covering 751 spectral bands. A white refer-

ence panel (99% R value), made of spectralon material, was used to calibrate the spectro-

radiometer, before taking the actual readings (Figure 3a). The calibration was performed 

regularly (after every 20 readings) to maintain homogenous spectral readings as well as 

to offset any changes in solar illumination or weather [7,53].  

  
(a)         (b) 

Figure 3. Data collection using the field spectroradiometer. Calibration using white reference panel 

avoiding shade (a); and taking the spectral reflectance of Lantana camara in the field (b). 
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Multiple readings were taken by placing the spectroradiometer at 2 to 5 inches above 

the leaf adaxial surface (upper), depending upon the size of the leaf in different plant spe-

cies (Figure 3b). Each leaf spectrum was sampled 3 times to reduce handling errors. There-

fore, three leaf spectra per plant were taken from each plant species. The internal spectrum 

count was fixed at 10 scans per reading and the integration time of the spectrum was 8.5 

ms. All measurements were taken under sunny conditions between 9:00 A.M. and 3:00 

P.M. local time on 8 October 2018, and 30 October 2019. A handheld GPS device (model 

ETREX 20, GARMIN) was also used to record the coordinates and altitudes of all plant 

species, along with spectral sampling. The local weather conditions were also noted. 

2.3. Processing of Field Spectra 

The spectral data files (.asd format) acquired with the spectroradiometer were im-

ported using the software HH2 Sync. This software only helps to store data on hardware. 

However, another ASD software application, View Spec Pro, was installed for displaying 

the spectral reflectance curves and to visualize vegetation spectral properties of plants. 

ASD data files were then exported into Microsoft Excel to extract all reflectance values at 

each wavelength (751 hyperspectral bands from 325 nm to 1075 nm wavelength) acquired 

from the in-situ instrument. Descriptive statistics, i.e., mean, and standard error, were cal-

culated for whole spectral curves of each plant species (Table S1), and mean reflectance 

curves were converted to graphs for direct visualization and comparison. 

2.4. Calculation of Spectral Indices 

Different narrow-banded hyperspectral vegetation indices were derived from spec-

tral measurements to allow species-level identification of plants [45,54]. These indices 

were based on the variations in chlorophyll absorption, greenness, water absorption, and 

other pigments at different wavelengths in the electromagnetic spectrum. The equations 

and significance of indices are shown in Table 2. 

Table 2. Summary of different hyperspectral indices derived in the current study. 

Narrowband Spectral  

Indices 
Equations  Significance Reference 

Narrow-banded NDVI = 

Normalised difference vege-

tation index 

(R830–R670)/ 

(R830 + R670) 

Canopy greenness, leaf area in-

dex, fraction of photosyntheti-

cally active radiation 

[55] 

GMI = Gitelson and 

Merzylak index 
(R750)/(R700) Chlorophyll content [56] 

PRI= Photochemical reflec-

tance index 

(R531− R570)/ 

(R531 + R570) 

 

Conversion of xanthophylls-cycle 

pigments, photosynthetic light 

use efficiency, LAI 

[57] 

GI = Greenness index R554/R677  

Indicator of prolonged vegetation 

stress due to changes in canopy 

structure 

[58] 

LCI = Leaf Chlorophyll In-

dex 

(R850−R710)/ 

(R850 + R680) 
Total chlorophyll content [59] 

SRPI = Simple Ratio Pig-

ment Index 
(R430)/(R680)  Carotenoid/chlorophyll-a content [57] 

WI = 

Water Index 
(R900)/(R970) Water status [57] 

PSRI = Plant Senescing Re-

flectance Index 

(R678–R500) 

/R750 
Leaf Senescence [60] 

mSR = modified Simple Ra-

tio 

(R800–R445)/ 

(R680–R445) 
Chlorophyll [61] 

VREI = Vogelmann Red-

Edge Index 

(R734-R747)/ 

(R715-R726) 

Chlorophyll concentration, can-

opy leaf area, and water content 
[62] 

REP = Red-Edge Position 700 + 40

(R670 + R780)
2

− R700

R740 − R700
 

Indicator of sharp change in leaf 

reflectance 
[63,64] 

(R is used for reflectance at a specific wavelength in nm). 
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2.5. Statistical Analysis 

2.5.1. Spectral Indices 

A two-step statistical analysis was used to evaluate the potential of the various indi-

ces to discriminate plant species, whether at least one of them was statistically different 

for each index or not [47,65]. For this, null hypothesis, H0: μ1 = μ2,…,μ11 versus the alter-

native hypothesis, H1: μ1 ≠ μ2,….,μ11 was tested where μi is the mean indices values of 

each species (i species=1,…,11). So, the hypothesis test was carried out firstly by using one 

way-AVOVA (p < 0.05, p < 0.01, and p < 0.001) with each spectral index individually using 

Origin 2021 software. Secondly, multiple comparisons using post hoc test were carried 

out with those spectral indices that rejected the null hypothesis. Holm–Bonferroni test was 

applied using pairwise comparison plot app in Origin 2021 to determine which pairs of 

plant species (either native, introduced, or ornamental) were statistically different. The 

number of possible pairs combinations was calculated as n[(n-1)/2], where n= number of 

species and equalled 55 [66]. The frequency of significant plant pairs was calculated in 

order to determine the most significant indices that showed the best discrimination be-

tween plant species.  

2.5.2. Wavelength Spectra 

One-way ANOVA was used to test for statistical differences between species at every 

spectral location between 325 nm and 1075 nm (a total of 751 spectral bands) with 95% 

confidence (p < 0.05) as it was important to identify the regions of the electromagnetic 

spectrum in which the species were significantly different from each other [38,41,67]. Prior 

to performing the ANOVA, normality and homoscedasticity (homogeneity of variances) 

of the reflectance values across each waveband were verified and bands with unequal 

variance were excluded. Rejection of the null hypothesis was followed by pairwise com-

parisons of plant species with post hoc Holm multiple tests using Jeffrey's Amazing Sta-

tistics Program (JASP) software version 14.1.0 (Netherlands) at each waveband. After that, 

the frequency of statistically significant pairs between 11 plant species (55 pairs) was 

counted per waveband, which allowed us to determine the most discriminating wave-

lengths. Histogram of significance frequencies per wavelength was made using Origin 

2021. Comparative analysis of native and invasive species showing significant regions of 

electromagnetic spectrum were also plotted for better visualization. 

2.6. Spectral Separability Analysis 

Spectral separability analysis was calculated using the Jeffries Matusita (JM) distance 

that measures the average distance between each pair (55) of plant species in the multidi-

mensional space defined by the wavelengths [37,68,69]. It was used to test the hypothesis 

that some spectral bands have more discriminatory power between species than others in 

an electromagnetic spectrum [70]. Being a parametric test, it was not possible to execute 

the JM distance calculation over the full spectrum of significant hyperspectral wavebands 

due to the singularity problem of matrix inversion [41]. Therefore, it was necessary to re-

duce the number of spectral features (wavebands) prior to the JM calculation. Thus, to 

reduce data dimensionality, bands with at least 17 significantly different plant pairs were 

chosen for separability analysis. The JM distance was computed for each plant pair (55) 

taking the fifteen selected wavelengths to determine the best combinations of bands for 

separating the classes. The JM distance value ranges between 0 and 2, with a larger JM 

distance value indicating higher separability between group pairs [71]. The equation of 

JM distance is: 

���� = 2(1 − ���) (1)
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where       B =
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�µ� − µ��
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�����
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�µ� − µ�� + 2ln �
�

�

�
��������

�|��|�����
� (2)

i and j = the two classes being compared, Ci = the covariance matrix of signature i, µi = the 

mean vector of signature i, ln = the natural logarithm function, |��| = the determinant of 

Ci (matrix algebra), T = transposition function. 

The R-statistical package [72] was used to measure JM distance using different bands 

to achieve the best band combinations that fully discriminate the native and invasive spe-

cies [67]. To summarise the results, the JM values were averaged for all pairs with different 

band combinations [73,74]. Figure 4 presents a flowchart of the main steps and framework 

of the whole process. 

 

Figure 4. Flowchart of the main methodology adopted. 

3. Results 

3.1. Spectral Indices 

Spectral curves of plant species showed sensitivity in different spectral regions ac-

cording to their biophysical and biochemical characteristics. The analysis of one-way 

ANOVA showed significant differences (p < 0.05) with nine calculated spectral indices viz. 

REP, VREI, NDVI, PRI, WI, SRPI, LCI, GI, and GMI (Table 3). This result showed that most 

of the spectral indices had the ability to spectrally discriminate at least one pair of the 

plant species, thus accepting the alternate hypothesis. GMI, GI and LCI also showed sig-

nificant differences among plant species at a 99% confidence level (p < 0.01). However, 

ANOVA showed the highest significant results for the red-edge indices, i.e., REP and 

VREI at 99.9% confidence level (p < 0.001). Only two spectral indices, mSR and PSRI, 

showed non-significant results (p > 0.05), hence supporting the null hypothesis (Table 3). 
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Table 3. Mean spectral indices (biophysical and biochemical parameters) of different plant species. 

Plant Category. Plant Species NDVI * GMI ** GI ** PRI * PSRI n.s LCI ** WI *** SRPI ** mSR n.s REP *** VREI *** 

Ornamental 

Eucalyptus camaldulensis (EC) 0.81 4.91 1.87 0 −0.02 0.626 1.013 1.043 20.73 721.73 0.78 

Pongamia pinnata (PP) 0.91 7.17 2.45 −0.04 0.01 0.713 1.029 0.738 78.66 723.03 0.854 

Tecoma stans (TS) 0.72 3.80 2.18 −0.07 0.15 0.462 1.024 0.555 53.28 719.26 0.563 

Callistemon viminalis (CV) 0.74 3.00 1.90 −0.05 0.03 0.455 1.042 0.663 23.02 717.54 0.503 

Invasive  

Parthenium hysterophorus (PH) 0.59 2.18 1.09 −0.06 0.10 0.387 1.012 0.443 6.67 718.14 0.638 

Prosopis juliflora (PJ) 0.74 3.78 1.53 −0.06 0.03 0.542 1.044 0.676 31.59 720.79 0.639 

Leaucena leucocephala (LL) 0.77 3.48 1.79 −0.03 0.02 0.516 0.918 0.546 18.29 719.1 0.540 

Lantana camara (LC) 0.79 3.97 1.74 −0.06 0.02 0.544 1.011 0.706 34.86 719.47 0.503 

Native  

Justicia adhatoda (JA) 0.89 5.52 2.80 −0.01 0.003 0.642 1.080 0.807 93.63 721.54 0.741 

Acacia modesta (AM) 0.80 3.92 2.34 −0.03 −0.001 0.524 1.001 0.833 123.13 718.27 0.478 

Dodonea viscosa (DV) 0.78 3.67 1.75 −0.06 0.038 0.528 1.001 0.504 16.65 719.23 0.565 

(ANOVA significance level: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, n.s = non-significant). 

Following the ANOVA, multiple comparisons of plant species using Holm–Bonfer-

roni tests subsequently explained which pairs of plant species (total 55 pairs) showed 

spectral discrimination based on the calculated spectral indices. Among all indices, the 

red-edge indices, i.e., REP and VREI showed the highest potential to discriminate between 

pairs of plant species (Figure 5). For example, 32 pairs (58%) of plant species were able to 

be discriminated using REP (Figure 5a), out of which 14 species pairs showed a high sig-

nificance level for discrimination (p < 0.001). Similarly, 28 pairs (51%) of plant species were 

significantly different from each other when using VREI (Figure 5b). The simple ratio pig-

ment index (SRPI) was also able to distinguish 18 pairs (33%) of plant species (Figure 5c). 

However, NDVI showed the lowest potential to discriminate species and was able to dif-

ferentiate only 11 pairs (20%) of plant species (Figure 5d). 

The Water Index (WI) was also better than other spectral indices in showing spectral 

separability among 17 pairs (31%) of plant species (Figure 5e). LCI, GI, GMI and PRI 

showed successful discrimination of 17 (31%), 14 (26%), 13 (24%) and 13 (24%) pairs of 

plant species, respectively (Figure 5f–i). However, out of 55 pairs of plant species, PRI did 

not show any pairwise significance at the 99.9% confidence level, hence indicating less 

potential for discrimination than other indices (Figure 5f).  

Some plant species pairs showed significant differences with all spectral indices 

(p<0.05). For instance, P. hysterophorus (invasive) was able to be discriminated from J. 

adhatoda (native), E. camaldulensis (ornamental) and P. pinnata (ornamental) pairs with 78–

88% of all the indices (Figure 5). Similarly, T. stans (ornamental) also showed discrimina-

tion of 78% with all indices when compared with J. adhatoda (native). However, it was not 

possible to discriminate A. modesta (native) from L. camara (invasive) and C. viminalis (or-

namental) at any of the spectral indices (p>0.05) during pairwise comparisons. Similarly, 

L. camara (invasive) showed non-significant results with D. viscosa (native) and T. stans 

(ornamental) at a 95 % confidence level (Table A1). 

  
                   (a)                               (b)                                  (c) 
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                   (d)                                (e)                               (f)  

 
                    (g)                              (h)                                   (i) 

Figure 5. Pairwise comparison of significant spectral indices REP (a) VREI (b) SRPI (c) NDVI (d) WI 

(e) LCI (f) GI (g) GMI (h) and PRI (i). The lines above boxplots indicate only the significant pairs at 

0.05 (*), 0.01 (**) and 0.001 (***) significance level among different pairs of plant species. The abbre-

viations of plant species on the x axis are mentioned in Table 2. 

A unique trend was observed when the percentage discrimination was studied for 

individual plant species with reference to any specific vegetation index. Each plant species 

had a different level of sensitivity towards each vegetation index. For example, P. pinnata 

(PP) was significantly different from nine other plant species using the GMI index (Figure 

6). By using water index, L. leucocephala (LL) was successfully discriminated from all 10 

plant species. Similarly, J. adhatoda was discriminated from eight plant species using WI 

(Figure 6). However, P. hysterophorus (PH) was more sensitive towards NDVI than all 

other indices and discrimination from seven plant species (Figure 6). Likewise, E. camal-

dulensis was able to discriminate from eight plant species using SRPI index. Interestingly, 

A. modesta (AM) and L. leucocephala (LL) were not able to differentiate from any plant spe-

cies using PRI (Figure 6). 

 
                (a)     (b)     (c)     (d) 
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              (e)              (f)            (g)        (h)   

 
                          (i)                              (j)                            (k) 

Figure 6. Graphical representation of individual plant species (a–k) showing the potential of discrimination with significant pair of 

species using different spectral indices. 

3.2. Wavelength Spectra  

The spectral signatures of the 11 plant species were observed in plots of wavelength ver-

sus reflectance (Figure 7a). The visual pattern of the mean reflectance of all species look similar 

to a typical vegetation curve. However, detailed illustration (zoom regions) of plant species 

revealed different features and crossovers across wavelength regions in the visible, red-edge, 

and NIR regions (Figure 7b–d). The differences in the absorption strength were more pro-

nounced visually in the NIR regions, especially in the case of L. leucocephala (invasive) vs. D.vis-

cosa (native) and P.pinnata (ornamental) vs. P.hysterophorus (invasive). Generally, it was ob-

served that the tree species (L. leucocephala, P.pinnata, P. juliflora) showed higher reflectance 

values (0.56–0.78) in the leaf spectra than the reflectance (0.38–0.48) of small shrubs or herbs 

(L. camara, D.viscosa, P.hysterophorus) in full spectrum (Figure 7). 

 
                                                     (a)  



Remote Sens. 2021, 13, 4009 12 of 27 
 

 

 
              (b)                                 (c)                                    (d) 

Figure 7. Spectral signatures of all plant species showing mean reflectance (a), green (b), red-edge 

(c) and NIR region (d). 

The one-way ANOVA with individual wavebands showed that results were statisti-

cally significant (p < 0.05), supporting that at least one species was significantly different 

from one other species in terms of spectral reflectance at that wavelength. Hence, many 

individual wavebands supported alternate hypothesis (Table 4). Out of the 751 wave-

bands (325–1075 nm), significant differences were observed in 562 wavebands (75% fre-

quency). These significant wavelengths were located in three different regions of the elec-

tromagnetic spectrum (visible, red-edge and near-infrared). However, the NIR region con-

tributed most (96%, n = 313) to the spectral discrimination of all plant species (Table 4). 

The p-value (p < 0.05, p < 0.01, p < 0.001) plot has shown the wavelength regions that were 

spectrally separable (Figure 8). 

Table 4. Frequency of significant wavebands in different regions of electromagnetic spectrum based 

on ANOVA (p < 0.05). 

Wavelength  

Region 
Description 

Total No. of 

Bands 

Significant 

Bands (p < 0.05) 

Non 

Significant 

Bands 

Frequency 

325–680 nm Visible region 356 199 157 56% 

681–750 nm Red-edge region 70 50 20 71.4% 

751–1075 nm NIR region 325 313 12 96% 

325–1075 nm Whole spectrum 751 562 189 75% 
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Figure 8. Significance value plot of the ANOVA test. The P-value shows that the mean reflectance 

of all species at every spectral band (n = 562) is significantly different (p < 0.05). 

The graphical representation of the ANOVA outcomes showed that most of the re-

gions of leaf spectra were statistically different for all plant species (Figure 9). Most of the 

red-edge and NIR regions were able to show spectral differences among all plant species. 

The reflectance curves at blue wavelengths in the visible region also showed significant 

differences (p < 0.05). However, it was evident that 189 wavelength bands located in red 

and red-edge regions had statistically non-significant ANOVA (p>0.05) results (Figure 8), 

indicating that these regions (582–699 nm) were similar in reflectance among all plant spe-

cies (Figure 9). 

  

Figure 9. Graphical representation of discriminating wavebands (p < 0.05) among plant species 

through ANOVA in different regions of spectrum. 
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The Holm post hoc multiple tests resulted in 55 possible pair combinations for the 11 

plant species. Pairwise comparisons of all plant species showed that different species pairs 

were significantly different at several wavelength regions. Table 5 shows the frequency of 

the significant bands adapted into the three spectral domains. It was observed that LL vs. 

DV (invasive vs. native) was the most significant pair, with 505 wavelengths bands (67 %) 

that were statistically different and located all over the spectral regions (Table 5). The sig-

nificant wavelengths for the pair EC vs. PP (ornamental vs. ornamental) were located only 

in the visible portion (325–680 nm) of the electromagnetic spectrum (n =137). Similarly, 

the pair LC vs. PP (invasive vs. ornamental) was statistically different (n = 4) only in the 

near-infrared wavelength region (Table 5). However, some of the pairs of plant species 

showed non-significant results over the whole spectrum., i.e., LC vs. AM (invasive vs. 

native), LC vs. JA (invasive vs. native), PH vs. AM (invasive vs. native), AM vs. CV (native 

vs. ornamental). Overall, 46 plant pairs (84%) showed discrimination in the visible region, 

while 33 plant pairs (60%) were able to be discriminate from one another in the NIR region 

(Table 5).  

Table 5. Pairwise comparisons of all plant species (55 pairs) showing the frequency of significant 

wavelength bands in different regions of reflectance spectra. Values in parentheses represent per-

centage (%) of significant bands. 

Plant  

Category 
Plant Pairs 

Significant Bands (%) 

Visible  

325–680 nm 

Red-Edge  

681–750 nm  

Near Infrared 

751–1075 nm  

Full Spectrum 

325–1075 nm  

Invasive  

LC vs. AM 0 (0) 0 0 0 

LC vs. CV 2 (0.56) 0 6 (1.85) 8 (1.07) 

LC vs. DV 1 (0.28) 0 11(3.38) 12 (1.60) 

LC vs. EC 48 (13.48) 0 0 48 (6.39) 

LC vs. LL 84 (23.60) 46 (65.71) 284 (87.38) 414 (55.13) 

LC vs. PH 7 (1.97) 0 0 7 (0.93) 

LC vs. PJ 68 (19.10) 0 0 68 (9.05) 

LC vs. PP 0 0 4 (1.23) 4 (0.53) 

LC vs. TS 0 0 0 0 

LC vs. JA 0 0 0 0 

LL vs. JA 122 (34.27) 47 (67.14) 258 (79.38) 427 (56.86) 

LL vs. CV 25 (7.02) 35 (50.00) 277 (85.23) 337 (44.87) 

LL vs. DV 150 (42.13) 48 (68.57) 307 (94.46) 505 (67.24) 

LL vs. EC 36 (10.11) 47 (67.14) 257 (79.08) 340 (45.27) 

LL vs. PH 26 (7.30) 40 (57.14() 290 (89.23) 356 (47.40) 

LL vs. PJ 28 (7.87) 36 (51.43) 126 (38.77) 190 (25.30) 

LL vs. PP 160 (44.64) 50 (71.43) 262 (80.62) 472 (62.85) 

LL vs. TS 108 (30.34) 31 (44.29) 267 (82.15) 406 (54.06) 

LL vs. AM 27 (7.58) 42 (60.00) 278 (85.54) 347 (46.21) 

PH vs. AM 0 0 0 0 

PH vs. CV 1 (0.28) 0 1 (0.31) 2 (0.27) 

PH vs. DV 104 (29.21) 0 6 (1.85) 110 (14.65) 

PH vs. EC 26 (7.30) 0 10 (3.08) 36 (4.79) 

PH vs. PJ 0 2 (2.86) 62 (19.08) 64 (8.52) 

PH vs. PP 106 (29.78) 0 3 (0.92) 109 (14.51) 

PH vs. TS 75(21.07) 0 1 (0.31) 76 (10.12) 

PH vs. JA 84 (23.60) 0 0 84 (11.19) 

PJ vs. AM 1 (0.28) 0 0 1 (0.13) 

PJ vs. JA 95 (26.69) 0 0 95 (12.65) 

PJ vs. CV 1 (0.28) 0 0 1 (0.13) 

PJ vs. DV 116 (32.58) 38 (54.29) 284 (87.38) 438 (58.32) 

PJ vs. EC 6 (1.69) 0 1 (0.31) 6 (0.08) 

PJ vs. PP 117 (32.87) 18 (25.71) 1 (0.31) 136 (18.11) 

PJ vs. TS 84 (23.60)  0 0 84 (11.19) 

Native  

AM vs. PP 79 (22.19) 0 0 79 (10.52) 

AM vs. TS 0 0 0 0 

AM vs. JA 3 (0.84) 0 0 3 (0.40) 

AM vs. CV 0 0 0 0 
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AM vs. DV 24 (6.74) 22 (31.43) 79 (24.31) 125 (16.64) 

AM vs. EC 32 (8.99) 0 1 (0.31) 3 (0.40) 

JA vs. CV 40 (11.24) 0 0 40 (5.33) 

JA vs. TS 1 (0.28) 0 0 1 (0.13) 

JA vs. DV 1 (0.28) 26 (37.14) 270 (83.08) 297 (39.55) 

JA vs. EC 111 (31.18) 0 4 (1.23) 115 (15.31) 

JA vs. PP 0 0 0 0 

DV vs. CV 110 (30.90) 42 (60.00) 202 (62.15) 354 (47.14) 

DV vs. EC 132 (37.08) 12 (17.15) 294 (90.46) 438 (58.32) 

DV vs. PP 2 (0.56) 0 212 (65.23) 214 (28.50) 

DV vs. TS 7 (1.97) 44 (62.86) 261 (80.31) 312 (41.54) 

Ornamental  

CV vs. EC 8 (2.25) 0 0 8 (1.07) 

CV vs. PP 119 (33.43) 19 (27.14) 4 (1.23) 142 (18.91) 

CV vs. TS 61 (17.13) 0 0 61 (8.12) 

EC vs. PP 137 (38.48) 0 0 137 (18.24) 

EC vs. TS 89 (25.00) 6 (8.57) 2 (0.62) 97 (12.92) 

PP vs. TS 21 (5.90) 26 (37.14) 2 (0.62) 49 (6.52) 

For illustrative purposes, twelve pairs of plant species (invasive vs. native) were se-

lected for comparisons (Figure 10). Leucaena leucocephala was one of the invasive trees in 

Jindi Reserve Forest that showed significant variations for all three native species at dif-

ferent wavelengths, especially in 218 selected bands (709–927 nm) of the NIR region (Fig-

ure 10a). Prosopis juliflora (PJ) was able to be discriminated from D. viscosa (DV) at most of 

the red-edge and NIR wavelengths (Figure 10b). However, the pair PJ vs. AM was only 

significantly different at 341 nm (visible region). Lantana camara exhibited less discrimina-

tion ability with wavelength spectra than other invasive plant species and was able to be 

discriminated only from one of the native species, D. viscosa, at a few NIR wavelengths 

(Figure 10c). Interestingly, P. hysterophorus showed the most discriminating wavebands in 

the visible regions of spectrum but it was not possible to discriminate this herbaceous 

weed from A.modesta at any spectral band (Figure 10d). 

 
(a)              (b) 
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                         (c)                         (d) 

Figure 10. Graphical representation of pairwise comparisons of plant species. Each graph shows 

comparative analysis of native vs. invasive species spectra. Bars and arrow represent the significant 

discriminating wavebands with one of the invasive species, L. leucocephala (a) P. juliflora (b) L. camara 

(c) and P. hysterophorus (d) in each graph. 

The histogram (frequency analysis) represented the number of plant species pairs 

that were significantly different at each waveband. The maximum frequency of significant 

pairs was 27 (approx. 50%) at the 390 nm wavelength. However, the minimum count of 

statistically different pairs was 1 (approx. 2%) at a few spectral bands of 558–562 nm wave-

lengths (Figure 11). The 15 spectral bands of the most significant wavelengths were se-

lected for further separability analysis, and these bands were located in the visible, red-

edge and NIR regions (Table 6). 

Table 6. A few of the most significant wavelength bands selected from ANOVA, based on the max-

imum number of significant pairs (frequencies) at each wavelength. 

Spectrum Region (325–1075 nm) Wavelengths Selected (nm)  
No. of Most Significant 

Wavelengths 

Visible region (325–680 nm) 390, 432, 433, 451 4 

Red-edge region (681–750 nm) 721, 724, 725 3 

Near-infrared region (751–1075 nm) 963, 982, 993, 996, 1013, 1014, 1037, 1075 8 
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Figure 11. Histogram of reflectance spectra per wavelength showing significant frequencies with pairs of plant species. 

Some highest frequencies in Visible, red-edge and NIR regions are indicated with arrows. 

3.3. Jeffries–Matusita Distance Analysis 

The JM distance values for most of the plant species pairs were greater than 1.9 with 

different band combinations. Table 7 shows the JM analysis averaged for all combined 

pairs of plant species. The results also revealed that use of more bands improved the sep-

arability of the different species., i.e., the two band combinations of 390 and 451nm had 

an average JM value of 1.094 while the combination of four bands (390, 432, 433 and 450 

nm) showed a higher JM value of 1.345 (Table 7). Similarly, the band combination of 1014 

and 1037 nm (NIR region) had an average JM value of 1.478, while the combination of 

three bands (1013, 1014 and 1037 nm) showed a higher JM value of 1.515. However, a 

trend of a decrease in the average JM value was observed when the band combinations 

from three different spectral regions (visible, red-edge and NIR) were used together for 

calculating spectral separability (Table 7). 

Table 8 shows the JM distance values for each individual plant species (55 pairs) with 

one of the best band combinations (724 nm and 725 nm). It produced best separability 

value of 2 (100%) with 28 pairs of plant species and almost 44 plant pairs showing accepta-

ble JM value of more than 1.90., i.e., L. camara vs. A. modesta (invasive vs. native) had a JM 

distance of 1.98. Similarly, the pair P. hysterophorus and J. adhatoda (invasive vs. native) 

reached a total separability of 2 (100%). However, some other plant pairs (P. juliflora vs. C. 

viminalis and P.juliflora vs. J. adhatoda) did not achieve total separability even by using the 

same two bands (Table 8). 
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Table 7. The averages of JM distance analysis for all pairs of plant species (55). The symbol (X) 

indicates the selection of optimal bands in each band combination. 

Band Combinations 
Visible Region 

(nm) 

Red-Edge Region 

(nm) 

NIR Region 

(nm) 

Average  

JM Value 
%  

 390 432 433 451 721 724 725 963 982 993 996 1013 1014 1037 1075   

2 bands (V) ×   ×            1.094 54.7 

2 bands (R)      × ×         1.714 85.45 

2 bands (NIR)             × ×  1.478 73.9 

3 bands (V) × ×  ×            1.255 62.75 

3 bands (R)     × × ×         1.387 69.35 

3 bands (NIR)            × × ×  1.516 75.8 

3 bands (VRN) ×      ×       ×  0.056 2.8 

4 bands (V) × × × ×            1.345 67.25 

4 bands (RN)       × ×     ×  × 0.401 20.05 

4 bands (NIR)            × × × × 1.323 66.15 

4 bands (VRN) ×   ×   ×       ×  0.048 2.4 

5 bands (VRN) × ×  ×   × ×        0.043 2.15 

6 bands (VRN) ×   ×  × ×      × ×  0.072 3.6 

7 bands (VR) × × × × × × ×         0.061 3.05 

8 bands (NIR)        × × × × × × × × 1.265 63.25 

9 bands (RN)       × × × × × × × × × 0.584 29.2 

9 bands (VRN) ×  × × × × × ×    ×  ×  0.058 2.9 

10 bands (VRN) ×  × × × × × ×   ×  × ×  0.067 3.35 

11 bands (RN)     × × × × × × × × × × × 0.061 3.05 

12 bands (VN) × × × ×    × × × × × × × × 0.071 3.55 

15 bands (VRN) × × × × × × × × × × × × × × × 0.0067 0.335 

(V = visible, R = red-edge, NIR = near infrared, VN = visible and near-infrared, VR = visible and 

red-edge, RN = Red-edge and near infrared, VRN = visible, red-edge and near-infrared). 

Table 8. The JM distance between 11 plant species using two bands (724 and 725 nm). The species 

pairs having a separability level below the threshold (JM index of 1.90) are highlighted. 

  EC PP TS CV PH PJ LL LC JA AM DV 

EC 0 1.952 2 1.999 0.230 1.999 2 0.257 1.999 1.974 1.958 

PP   0 2 2 1.997 2 2 1.998 2 2 0.275 

TS     0 1.570 2 0.702 2 2 0.278 1.997 2 

CV       0 2 0.299 2 1.999 0.881 1.682 2 

PH         0 2 2 0.359 2 1.999 1.999 

PJ           0 2 1.999 0.1801 1.751 2 

LL             0 2 2 2 2 

LC               0 2 1.984 1.999 

JA                 0 1.959 2 

AM                   0 2 

DV                     0 
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4. Discussion 

Early detection of invasive alien plants and the ability to discriminate them from na-

tive vegetation in protected areas is critical for land managers to devise timely manage-

ment interventions. Hyperspectral remote sensing is an effective tool to monitor and dis-

criminate plant invasions at species level across a range of habitats, based on spectral 

properties [75,76]. Several studies have used field-based instruments as well as hyper-

spectral satellite images to distinguish and map alien species from other co-existing native 

species [39,42]. Field spectroscopy is mainly used for the evaluation of biophysical and 

biochemical properties to discriminate species independently, without any attempt to in-

tegrate the analytical techniques for species mapping [7,77]. The aim of this research was 

to evaluate the potential of field spectroscopy to discriminate native and invasive plant 

species in Lehri and Jindi Reserve forests. Different narrow-banded hyperspectral indices 

and diagnostic wavelength regions were identified using reflectance data, having the po-

tential to differentiate plant species as well as the distance among each pair of plant spe-

cies to find out the spectral separability between them. 

Most of the spectral vegetation indices were able to discriminate between the native 

and invasive plant species at leaf level (Figure 5). This was possible due to the variations 

existing in the leaf pigments, intercellular spaces, water content, cell wall thickness, cell 

size, and other structural and biochemical properties of different plant species [42,78]. 

Among spectral indices, both red-edge parameters (REP and VREI) showed the highest 

potential for identifying pairs of plant species (Figure 5a, b). The red-edge region is the 

transition zone connecting the red and near infrared regions (680–750 nm) which acts as 

an indicator of sharp leaf reflectance change and is sensitive to chlorophyll concentration 

[64,79]. Cho et al. [47] demonstrated that REP has the potential to spectrally discriminate 

different plant species and it is not sensitive to atmospheric conditions [80]. Recent studies 

have shown better discrimination of vegetation species using red-edge algorithms [65,81]. 

The NDVI showed the lowest potential to identify plant species, with only 20% of results 

being significant, and was able to differentiate only 11 pairs of plant species (Figure 5d). NDVI 

is the indicator of photosynthetic capacity and linked with the health of vegetation [82,83]. The 

possible reason might be the season of spectral data collection, which for this study was the 

start of autumn. Bratsch et al. [84] reported that NDVI is more useful for separating plant com-

munities at the peak growing season, and it may be problematic during the early or late grow-

ing season, due to similar spectral responses of vegetation. Two indices, mSR and PSRI, were 

not able to differentiate any native or invasive plant species (Table 3). mSR is the spectral index 

related to prolonged chlorophyll stress in the canopy structure [85] and PSRI is the indicator 

of leaf senescence stage and is sensitive to the carotenoid/chlorophyll ratio [86]. It seems that 

reflectance values at the wavelengths 445, 500, 678 and 800 nm, used to measure both indices, 

did not show much variability and thus could not support species level identification. Previ-

ous studies used different hyperspectral indices to check the potential of identification of in-

vasive species or other vegetation species [48,87], therefore it is difficult to relate each finding 

with the literature due to high variability in the growth and habit of plant species. 

Among plant species (either native, invasive, or ornamental), the level of spectral 

sensitivity towards each spectral index varied individually., i.e., L. leucocephala was able 

to be discriminated from all other plant species using the Water index (Figure 6). The rea-

son may be the unique reflectance of L. leucocephala at 900 and 970 nm wavelengths that 

resulted in the 100% spectral separability. Another reason could be the water stress vari-

ations within all species of the forest due to the ground water availability in the autumn 

season that may successfully discriminate taxa at species level [88]. However, the same 

species, L. leucocephala, was unable to be differentiated from all other co-existing species 

using the PRI index (Figure 6). Lantana camara also showed higher differentiation with 

other co-existing species using VREI index. Similarly, P. hysterophorus was best discrimi-

nated from all other native and introduced plant species using NDVI (670 and 830 nm 

wavelengths), even though the overall potential of NDVI to differentiate plant species was 

considered low (Figure 5d). Kganyago et al. [89] also showed better discrimination of P. 
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hysterophorus using red-edge and NIR spectral bands in South Africa. All these highly var-

iable findings with different species suggest that it is not feasible to use one spectral index 

universally for the discrimination of all plant species.  

The analysis of wavelengths spectra through ANOVA confirmed the successful spec-

tral separation of native and invasive plant species in the visible, red-edge and NIR regions 

through field measurements. A number of significant wavebands (562) eventually support 

the fact that significant variations exist between the plant species studied in Lehri and Jindi 

Reserve forests. However, wavebands in NIR region (751–1075 nm) contributed the most 

(n=313) in the discrimination in current study (Figure 9). These results agree with previous 

studies where leaf spectra have shown the greatest variation in the near-infrared and red-

edge regions [37,90,91]. Significant wavelengths in the red-edge region (680–750 nm) may 

be due to the variations in chlorophyll concentration, nitrogen concentration, and water con-

tent between different species [92,93]. However, few wavelength regions at 582–699 nm 

(Figure 9) showed non-significant results (p>0.05), which depicts the underlying similarities 

in physiological and biochemical characteristics among different plant species [89]. Another 

reason may be the greater intraspecific variability than interspecific variability in these re-

gions. Similar results were obtained when identifying invasive species of Virginia state, 

USA through field spectroscopy where the 550–599 and 650–699 nm regions were not able 

to support plant identification [42]. Previous studies also indicated that not all bands can be 

important in species identification [41]. Therefore, it is feasible to use ANOVA for analysing 

the entire spectral profile rather than selecting only few narrow bands (indices) in order to 

achieve better detection of plant chemical composition [94]. It also showed the capability of 

the technique to reduce dimensionality by filtering the redundant bands and retaining only 

the informative bands after screening [38]. 

Pairwise comparison of plant species showed discrimination at several wavelength 

regions depending upon variability in individual plant species (Figure 10; Table 5). This 

was expected because the ability to identify spectra depends on spectral variability within 

and across the individual species [95]. Each species, either native or invasive, has a unique 

spectral signature, different from the other species and that is the core idea of the current 

study. Although ANOVA showed the NIR region has contributed the most to the identi-

fication of plant species (n=313), the post hoc tests based on pairwise comparisons (55 

pairs) discriminated more plant species pairs within visible regions (84%) than the NIR 

regions (60%; Table 5). These results indicate the importance of visible region (325–680 

nm) in terms of spectral identification of plant species. Ferreira et al. [66] also showed 

similar findings and screened visible region hyperspectral bands as the most significant 

wavelengths for discriminating the tropical tree species. Visible reflectance at the leaf level 

is mostly a function of the pigment content [96]. Previous studies indicate that blue and 

red regions can be linked to variations in light absorption by plants. Thenkabail et al. [97] 

also screened six visible bands (490, 520, 550, 575, 660, 675 nm) for the identification of the 

plant species that were best at discrimination. The histogram of wavelength spectra also 

showed the highest frequency of significant pairs (50%) at 390 nm waveband (visible re-

gion). These results are in accordance with Schmidt and Skidmore [40] who found that 

the 404 nm waveband was useful for the spectral discrimination of plant species in the 

Netherlands. 

Fifteen wavebands (390, 432, 433, 451, 721, 724, 725, 963, 982, 993, 996, 1013, 1014, 

1037, 1075) were selected in this study for JM distance analysis, based on the highest fre-

quency of significant pairs (Table 6). Previous studies also revealed that similar wave-

length regions that are used for the discrimination among plant species in arid regions. 

Lewis [98] demonstrated that 720 nm wavebands and above were helpful in identifying 

some Australian arid region species. Similarly, Smith and Blackshaw [99] selected the 720–

730 nm region as the most significant band in species differentiation. This may be because 

reflectance in this region is influenced by nitrogen, phosphorus, and potassium concen-

trations [100]. In the case of NIR wavebands, a similar waveband 986 nm was found to be 
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useful for identifying species in a tropical dry forest [40]. This is perhaps due to the vari-

ations in the moisture content among different plant species that help in better discrimi-

nation [87]. 

The JM distance analysis revealed the spectral separability between pairs of plant 

species. Regions of red-edge and NIR with 2 and 3 band combinations, respectively (Table 

7) were proven to be the best bands for separating the pairs of plant species. According to 

the literature, the separability between a pair is considered good when the JM distance is 

>1.9 and a pair is considered to be poorly separated if JM distance is <1.0 [101]. Almost 

80% of plant species pairs, including native vs. invasive species pairs, were separable at 

>1.90 JM value with a two-band combination of 724 and 725 nm (Table 8). Previous studies 

also supported the findings of the JM separability index that some combinations of wave-

bands are more discriminating than others [35,40,41,74]. It was noted that the JM value 

decreased by using the band combinations from different regions of the spectrum (Table 

7). The most valid reason may be the parametric nature of JM distance analysis that as-

sumes the normal distribution of data [102]. The reflectance of each plant species varies 

greatly across visible, red-edge and NIR regions, ultimately resulting in poor JM separa-

bility if such wavebands from different regions are combined. However, the most inter-

esting aspect was that some of the plant species pairs were not able to be separated with 

any spectral indices (Figure 5) as well as individual wavebands (Table 5), but the JM dis-

tance showed 99% spectral separability with the same pairs (Table 8)., i.e., L. camara (in-

vasive) vs. A. modesta (native) was not possible to discriminate using spectral indices and 

wavelength spectra, but the JM distance between them was 1.98. The same observations 

were recorded for P. hysterophorus vs. A. modesta. These findings emphasize the im-

portance of using band combinations in JM analysis that successfully discriminated all the 

species [103–105]. All previous discussion and current findings support the fact that it is 

possible to identify and ultimately map the distribution of invasive species through hy-

perspectral measurements. 

5. Conclusions 

This study aimed to investigate the potential of field spectroradiometer data for dis-

criminating invasive species from other co-existing native species in the two protected 

scrub forests of Punjab, Pakistan. Our findings are promising, indicating the potential of 

applying statistical techniques to hyperspectral data in identifying invasive alien species 

of forests. It was observed that all plant species have characteristic spectral signatures that 

are distinguishable in many regions of the spectrum. Both leaf spectra and spectral indices 

suggest that wavelengths in the red-edge and near-infrared regions have a maximum po-

tential to detect variations among all plant species, thus, a better understanding has been 

gained about those parts of the electromagnetic spectrum which offer the greatest infor-

mation about discriminating between species pairs or groups. It concludes that not all of 

the indices contribute equally in the spectral discrimination of plant species. The red edge 

indices, i.e., REP and VREI have the highest potential to discriminate between pairs of 

plant species. Similarly, JM distance analysis indicated that the red-edge band combina-

tions had the highest spectral separability at 724 and 745 nm wavelengths. Based on these 

findings, it is important to use and upscale this hyperspectral data to spaceborne or air-

borne high-resolution satellite images to map the distribution of invasive species in the 

Lehri and Jindi Reserve Forests. Although the results suggest a great potential for map-

ping invasive species through imaging remote sensing, further investigations are needed 

on the phenology of the plant species in different seasons that offer great variability and 

can influence the spectral separability of species. It is expected that multi-seasonal studies 

can explore the best timeframe for species-level mapping more precisely. Similarly, the 

spectral discrimination of invasive species can be improved by using first and second de-

rivatives of spectra, hence further research is needed in this area to best distinguish dif-

ferent plant species. It is also worth noting that the spectral signatures of plant species in 

the current study are representative of this specific habitat and may not provide sufficient 
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information for plant discrimination across the whole of Pakistan due to its high climactic 

variability. Moreover, the collection of more field spectral signatures within different 

zones of forests is also recommended to find more spectral diversity within individual 

species as more accurate baseline data. This would be the first step towards the ultimate 

goal of using hyperspectral remote sensing to discriminate and map the distribution of 

invasive species in protected areas that will aid in the management perspectives. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/rs13194009/s1, Table S1: Mean reflectance of spectral curves of all plant species in Lehri 

and Jindi Reserve Forests (325–1075 nm) 

Author Contributions: Conceptualization, H.B. and I.M.I.; methodology, H.B. and I.M.I.; software, 

I.M.I.; writing—original draft preparation, I.M.I.; writing—review and editing, A.S., H.B. and F.-e-

B.; visualization, H.B. and I.M.I.; field survey support, A.S. and F.-e-B.; supervision, A.S., H.B. and 

F.-e-B.; project administration, H.B.; funding acquisition, H.B. All authors have read and agreed to 

the published version of the manuscript.  

Funding: This research work was funded by the Higher Education Commission (HEC) Pakistan 

through IRSIP programme. H.B. was supported by the National Centre for Earth Observation, 

funded by the Natural Environment Research Council. The APC was funded by the Open Access 

Fund (OARCdtb963) at the University of Leicester with funds from the Natural Environment Re-

search Council. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data will be available on request. 

Acknowledgments: We are extremely grateful to the Higher Education Commission (HEC) Paki-

stan for providing funding to undertake research work with Leicester University. Thanks are due 

to University of Engineering and Technology Pakistan for providing the field spectroradiometer. 

Appreciation goes to Worldwide fund WWF-Pakistan for providing funds. Appreciation also goes 

to Mary Barkworth for providing funds to purchase license of Origin2021 for statistical analysis. We 

are also thankful to Sadi Ahmed and Mubarak Ali for technical support in the field. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Table A1. Results of Holm–Bonferroni post hoc tests of all pairs of plant species using pair compar-

ison plot app (significance level: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, n.s = non-significant). 

 Plant Pairs GMI REP PRI GI LCI SRPI WI NDVI VREI 

Frequency of 

Different 

Indices (%) 

1 AM  JA n.s. *** n.s. n.s. n.s. n.s. ** n.s. *** 3 33 

2 AM  CV n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0 0 

3 AM  EC n.s. *** n.s. n.s. n.s. n.s. n.s. n.s. *** 2 22 

4 AM  LC n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0 0 

5 AM  LL n.s. n.s. n.s. n.s. n.s. * ** n.s. n.s. 3 33 

6 AM  PH n.s. n.s. n.s. ** n.s. ** n.s. * * 5 56 

7 AM  PJ n.s. ** n.s. * n.s. n.s. n.s. n.s. * 3 33 

8 AM  PP ** *** n.s. n.s. ** n.s. n.s. n.s. *** 4 44 

9 AM  TS n.s. n.s. n.s. n.s. n.s. * n.s. n.s. n.s. 1 11 

10 JA  CV * *** * * ** n.s. n.s. n.s. *** 6 67 

11 JA  EC n.s. n.s. n.s. * n.s. n.s. * n.s. n.s. 2 22 

12 JA  LC n.s. * * ** n.s. n.s. ** n.s. *** 5 56 

13 JA  LL * ** n.s. ** n.s. * *** n.s. ** 6 67 

14 JA  PH ** *** * *** *** ** * ** n.s. 8 89 

15 JA  PJ n.s. n.s. * ** n.s. n.s. n.s. n.s. n.s. 2 22 

16 JA  PP n.s. n.s. n.s. n.s. n.s. n.s. * n.s. n.s. 1 11 

17 JA  TS n.s. ** ** n.s. * * * * ** 7 78 

18 CV  EC n.s. *** * n.s. * ** n.s. n.s. *** 5 56 



Remote Sens. 2021, 13, 4009 23 of 27 
 

 

19 CV  PP *** *** n.s. n.s. *** n.s. n.s. * *** 5 56 

20 CV  TS n.s. * n.s. n.s. n.s. n.s. n.s. n.s. n.s. 1 11 

21 DV AM n.s. n.s. n.s. n.s. n.s. ** n.s. n.s. n.s. 2 22 

22 DV  JA n.s. ** * ** n.s. * ** n.s. ** 6 67 

23 DV  CV n.s. * n.s. n.s. n.s. n.s. n.s. n.s. n.s. 1 11 

24 DV  EC n.s. ** ** n.s. n.s. *** n.s. n.s. ** 4 44 

25 DV  LC n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0 0 

26 DV  LL n.s. n.s. n.s. n.s. n.s. n.s. ** n.s. n.s. 1 11 

27 DV  PH n.s. n.s. n.s. n.s. * n.s. n.s. * n.s. 2 22 

28 DV  PJ n.s. * n.s. n.s. n.s. n.s. n.s. n.s. n.s. 1 11 

29 DV  PP ** *** n.s. n.s. * n.s. n.s. n.s. *** 4 44 

30 DV  TS n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0 0 

31 LC  CV n.s. * n.s. n.s. n.s. n.s. n.s. n.s. n.s. 1 11 

32 LC  EC n.s. ** * n.s. n.s. ** n.s. n.s. *** 4 44 

33 LC  LL n.s. n.s. n.s. n.s. n.s. n.s. *** n.s. n.s. 1 11 

34 LC  PH n.s. n.s. n.s. n.s. * * n.s. * * 4 44 

35 LC  PJ n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. * 1 11 

36 LC  PP ** *** n.s. n.s. * n.s. n.s. n.s. *** 4 44 

37 LC  TS n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0 0 

38 LL  CV n.s. * n.s. n.s. n.s. n.s. *** n.s. n.s. 2 22 

39 LL  EC n.s. ** n.s. n.s. n.s. *** *** n.s. *** 4 44 

40 LL  PH n.s. n.s. n.s. n.s. n.s. n.s. *** * n.s. 2 22 

41 LL  PJ n.s. * n.s. n.s. n.s. n.s. *** n.s. n.s. 2 22 

42 LL  PP *** *** n.s. n.s. ** n.s. *** n.s. *** 5 56 

43 LL  TS n.s. n.s. n.s. n.s. n.s. n.s. *** n.s. n.s. 1 11 

44 PH  CV n.s. n.s. n.s. * n.s. n.s. n.s. n.s. * 2 22 

45 PH  EC ** *** ** * ** *** n.s. ** * 8 89 

46 PH  PP *** *** n.s. *** *** * n.s. *** ** 7 78 

47 PH  TS n.s. n.s. n.s. ** n.s. n.s. n.s. n.s. n.s. 1 11 

48 PJ  CV n.s. *** n.s. n.s. n.s. n.s. n.s. n.s. * 2 22 

49 PJ  EC n.s. n.s. ** n.s. n.s. ** n.s. n.s. * 3 33 

50 PJ  PH n.s. ** n.s. n.s. * n.s. n.s. n.s. n.s. 2 22 

51 PJ  PP ** ** n.s. * * n.s. n.s. * ** 6 67 

52 PJ  TS n.s. * n.s. n.s. n.s. n.s. n.s. n.s. n.s. 1 11 

53 PP  EC * n.s. * n.s. n.s. * n.s. n.s. n.s. 3 33 

54 TS  EC n.s. ** ** n.s. * *** n.s. n.s. ** 5 56 

55 TS  PP ** *** n.s. n.s. ** n.s. n.s. * *** 5 56 
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