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Abstract: Booming urbanization triggers a significant modification of surface landscape 
configuration and hence complex urban climates. Considerable concerns exist regarding impacts of 
impervious surface area (ISA) and/or urban green space (UGS) on land surface temperature (LST). 
However, a knowledge gap still exists concerning the influence of urban landscape components and 
related spatial configuration on LST. To date, case studies have usually focused on individual cities, 
while few reports have addressed the impacts of urban surface components and relevant spatial 
configurations on LST within cities of different sizes, at different latitudes, and with different 
climatic backgrounds. Considering case studies from different latitudes and various climatic 
backgrounds can assist in obtaining comprehensive viewpoints about impacts of urban surface 
features on LST in both space and time. In this paper we analyzed data from three urban 
agglomerations, Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD) and the Pearl River 
Delta (PRD), over the period 2000–2015. These three regions are densely populated with the most 
developed socio-economy across China, and are also dominated by booming urbanization. Based 
on Landsat remotely sensed data, we included the spatial pattern of surface components and related 
configuration into our analysis, quantifying impacts of spatial configuration of surface components 
on LST in both space and time. We found generally rising LST over all cities, which can be attributed 
to continuous urban expansion-induced decreased UGS. Generally, LST over ISA was 0.96–7.96 °C 
higher than that over UGS. We investigated the impacts of spatial pattern of land surface 
components on LST and found that the joint effect of the composition and spatial configuration of 
land surface components had the most significant impact on LST. Specifically, ISA and UGS had 
higher impact on LST than the impact of geometry of the ISA and UGS on LST. In the future, 
continuous expansion of ISA and continuous shrinking of UGS will drive the rising tendency of 
LST. Moreover, a larger rising tendency of LST will be observed in larger sized cities than smaller 
sized cities. 
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1. Introduction 
Recent decades have witnessed a continual movement of the global population to 

cities [1]. According to statistics, 54% of the global population live in cities, and the 
number of megacities increased from 10 in 1990 to 28 in 2014, with a population of 453 
million, accounting for 12% of the world’s total population [2]. Rapid urbanization results 
in the continual transformation of natural landscapes such as vegetation and water bodies, 
to impervious surface area and other artificial surfaces [3,4], which has modified the 
thermal exchange between the land surface and the atmosphere in urbanized areas and 
the thermodynamic properties of the urbanized underlying surface [5], resulting in higher 
air and land surface temperatures in the urban area, than in the surrounding rural areas. 
This phenomenon is also known as the urban heat island (UHI) effect [6,7]. UHI is usually 
divided into surface UHI (SUHI) measured by the LST, and atmospheric UHI measured 
by air surface temperature [7]. In this study, we mainly examine the relationship between 
land surface components and land surface temperature, therefore we focus on SUHI. With 
the development of satellite thermal infrared technology, remote sensing images such as 
Landsat, MODIS, etc., have been widely used to analyze the radiation energy from land 
surface components (LSC) such as vegetation, water bodies, unreclaimed wasteland and 
other natural surfaces, and roads, building roofs and other man-made surfaces [4]. 
Therefore, direct linkages between LST and the spatial pattern of land cover components 
exist [8]. Investigation of spatiotemporal connections between LST and LSC can improve 
understanding of the impacts of LSC or land surface properties on the UHI and can help 
to provide theoretical grounds for urban planning [9–11]. 

More and more research has appeared addressing the relationships between LST, 
impervious surface area (ISA) and urban green space (UGS) (e.g., [9,12–14]). The spatial 
pattern of ISA and UGS includes land surface compositions and related spatial 
configuration [15]. Previous studies have mainly focused on the relationship between 
specific LSC and related proportions and LST [12,13,16], such as positive relation between 
ISA, built-up areas and LST [17–19], and negative relation between LST and natural land 
surfaces such as forests, wetlands and other water bodies [13,20,21]. Landscape 
configuration can delineate the shape, size, location, and other spatial characteristics of a 
specific LSC, which is significant for quantifying the impacts of the spatial pattern of the 
LSC on LST [4]. 

However, we have limited knowledge about the coupled relation between LST and 
components, and related spatial configurations of the land surface properties [1,4]. 
Therefore, we cannot obtain a complete understanding of the spatial heterogeneity of the 
UHI and relevant impacts from LSC on LST. To fill this knowledge gap, our study 
combined the LSC of the ISA and UGS, and the spatial compositions and landscape 
configuration of the LSC, quantifying impacts of the spatial pattern of different LSC on 
the spatiotemporal heterogeneity of the LST over different urban sizes and levels. 

Furthermore, in the backdrop of fast urban expansion, prediction of future urban 
expansion and land cover changes will help to optimize the allocation of land resources 
and scientific urban planning of the city, boosting inter-regional coordination and 
socioeconomic sustainable development [22]. In addition, the LST simulation for the 
future period, based on the spatial configuration of the LSC components, is significant for 
further understanding of future changes of the UHI and for mitigation of the UHI [23], 
providing theoretical grounds for scientific urban planning. Previous studies mainly 
focused on the relationship between LSC and LST for past periods, or the influences of 
land surface components on UHI. Few studies are available addressing future evolution 
of LSC and LST changes, and the relation between these two variables. Techniques for 
modeling urban expansion and land use simulation include cellular automata (CA) model 
[24], CLUE-S series model [25], InVEST model [26], CA-Markov model [27], etc. However, 
the use of only one specific modeling method cannot comprehensively describe the 
changes and transformations of different LSC. Liu et al. [28] proposed that the FLUS 
(future land-use simulation) model can integrate cellular automata (CA), and the neural 
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network (ANN) algorithm model can effectively handle the conversion of different LSC, 
improving the accuracy of the modeling results. Regarding the prediction of the LST, the 
methods available are Markov chain, cellular automata (CA) and logistic regression [29]. 
Meanwhile, prediction of the LST can also be performed using a linear model developed 
by the LSC and the LST [30]. Due to the complexity of the land surface structure [31] and 
the seasonal variation of the LSC [13], the relationship between LSC and LST should be 
nonlinear. As such, we adopted the ANN algorithm in the simulation of future LST.  

From 2002 to 2011, China’s urbanization rate has grown at an average annual rate of 
1.35 percentage points, and the urban population has increased by an average of 20.96 
million people per year. The study period selected, 2000–2015, is a typical representative 
period of the development stage of urbanization. In addition, there were many cities 
involved in this study, increasing the difficulty of collecting remote sensing images that 
met the study conditions. The development of urban agglomerations is the most 
remarkable feature of urbanization in China [32]. The literature shows studies relating the 
urban heat island effect and the urban component on urban agglomeration in China. Liu 
et al. [33] focused on 1288 urban clusters across China to study the relationship between 
SUHI and urban size, and their results showed that SUHI could effectively be mitigated 
by moderately dispersed, polycentric, and decentralized urban size. Su et al. [34] 
examined the effect of urban form on LST across varies cities, and the results indicated 
that compactness and urban shape significantly impacted LST in small sized, medium 
sized cities, and megacities. Our article selects three major urban agglomerations as the 
study area (Figure 1), namely, Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta 
(YRD), and the Pearl River Delta (PRD), which, together, contribute 40% of China’s GDP, 
and 22.7% of China’s total population [35]. These three major urban agglomerations are 
densely populated, economically developed, and the UHI effect is prominent [4,36], 
having far-reaching impacts on the ecological environment in their vicinity. In the analysis 
of land surface temperature on specific cities, different authors used various indicators 
such as the land use land cover. He et al. [37] divided seven types of land use to study the 
impacts of environmental temperatures on the relationship between LST and land cover, 
and the results showed that the relation varied greatly with background temperature. 
Therefore, in a different climate background, understanding the impacts of the spatial 
pattern of the LSC of cities of different sizes and levels within these three major urban 
agglomerations on the temporal and spatial heterogeneity of the LST, can help provide 
scientific and theoretical grounds for mitigation of the UHI effect and for improvement of 
the urban ecological environment.  

The principle objectives of this study are: (1) clarify the main LSC that affect the 
changes in the LST over cities of different sizes and levels, from 2000 to 2015, and 
characterize the temporal variations of the LSC; (2) identify impacts of spatial 
configurations of the LSC on LST, and quantify to what degree the components and spatial 
configuration of the land surface features on LST with integrated consideration of the 
impacts of the LSC and related spatial pattern on LST, changes; and (3) characterize the 
future changes of LST and LSC over cities of different sizes and levels. The structure of 
this study is as follows. Section 2 presents further details of the study region and the data. 
Section 3 details the methods used in this study. Section 4 presents the results and 
discussion, and Section 5 displays the major findings and conclusions of this current 
study. 
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Figure 1. Locations of the study regions: (a) Beijing; (b) Tianjin; (c) Langfang; (d) Shanghai; (e) 
Ningbo; (f) Nanjing; (g) Guangzhou; (h) Dongguan; (i) Zhongshan. The land cover dataset and 
DEM dataset are both from Resource and Environment Science and Data Center: 
http://www.resdc.cn/, accessed on 09 January 2021. 

2. The Study Region and the Data 
2.1. The Study Region 

The three major urban agglomerations, BTH, YRD and PRD (Figure 1), are highly 
populated and highly socio-economically developed regions of China. They are located 
along the coastal regions, from north China to southeast China, with different climate 
types and different ecological environments. Specifically, BTH is dominated by the 
temperate monsoon climate; YRD is characterized by the subtropical monsoon climate; 
and PRD is featured by the maritime monsoon climate [38]. Due to the rapid development 
of these three urban agglomerations, there are few cities with a resident population of less 
than one million. Therefore, based on the 2019 resident population data and the national 
classification standard, the cities Beijing, Tianjin, and Langfang within the BTH urban 
agglomeration were chosen as the supercity (with a resident population of more than 10 
million), megacity (with a resident population of less than 10 million but over 5 million) 
and large city (with a resident population of more than one million but less than five 
million), respectively (Figure 1). The supercity, megacity and large city chosen within 
YRD are respectively Shanghai, Ningbo, and Nanjing (Figure 1). The supercity, megacity 
and large city chosen within PRD are respectively Guangzhou, Dongguan and Zhongshan 
(Figure 1). The above-mentioned cities are taken as case studies in this current study.  

2.2. The Data 
The remote sensing images used in this study included Landsat 5 TM and Landsat 8 

OLI/TIRS (Table A1). These images covered the study regions effectively 
(http://earthexplorer.usgs.gov/ accessed on 09 January 2021). The spatial resolution of 
these remote sensing images was 30 m × 30 m. Images for each city in this study were 
selected from the same season, mainly the summer season, for the comparison of the 

http://www.resdc.cn/
http://earthexplorer.usgs.gov/
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spatial pattern of LST over time. In addition, this allowed the analysis of the remote 
sensing data to be less influenced by cloud coverage and free of data quality problems 
due to seasonal differences in vegetation growth. The above-mentioned remote sensing 
image data were used to extract the land surface components of each city and the LST 
changes.  

3. Methods 
3.1. Land Surface Temperature (LST) Retrieval  

We used the radiative transfer equation method to retrieve LST during 2000–2015 for 
each city considered in this study, based on the thermal infrared band of Landsat 5 TM 
images (band 6, wavelength of 10.40–12.50 µm, with a resolution of 120 m) and Landsat 8 
OLI/TIRS images (band 10, wavelength of 10.60–11.19 µm; band 11, wavelength of 11.5–
12.51 µm, with a resolution of 100 m). Before we retrieved LST, we performed 
preprocessing of the Landsat remote sensing images, including radiometric calibration 
(both multispectral bands and thermal infrared bands), and FLAASH atmospheric 
correction based on ENVI software [39–41]. 

The retrieval procedure was as follows. First, we converted the DN value of the 
thermal infrared bands into top-of-atmospheric radiance. Then, based on the top-of-
atmospheric radiance, we calculated the surface-leaving radiance [12,23]. In the third step, 
assuming earth is a black body, we converted the surface-leaving radiance value to at-
satellite brightness temperature [4,41]. 

LT =
L𝜆𝜆 − L𝑢𝑢 − 𝜏𝜏(1 − ε)L𝑑𝑑

𝜏𝜏ε
 (1) 

where L𝜆𝜆 is the top-of-atmospheric radiance, Lu is the upwelling radiance values, Ld is the 
downwelling radiance values, τ is the atmospheric transmission. Among them, τ, Lu and 
Ld were assessed using the Atmospheric Correction Parameter Calculator online tool 
(http://atmcorr.gsfc.nasa.gov). The tool uses the National Centers for Environment 
Prediction (NCEP) to model the atmospheric global profile at the specific date, time, and 
location as the input data [42]. The method was easy to obtain synchronously and 
simplified the retrieval process of the algorithm. In addition, when using synchronous 
atmospheric parameter data, the accuracy RMSE of radiative transfer equation method 
was 0.6 K, which showed high accuracy [43]. Before this, we carried out atmospheric 
correction on the remote sensing images, which greatly eliminated the influence of 
atmospheric molecular factors such as water vapor, carbon dioxide, oxygen and aerosol 
scattering on the reflection of land surface objects in the atmosphere, and by obtaining 
land surface reflectance information accurately, improved the accuracy of land surface 
temperature retrieval. 

ε is the surface emissivity [44,45]. According to Qin et al. [46], from the perspective 
of the scale of satellite pixels, remote sensing images can be roughly regarded as 
composed of three types: water surface, building (including urban and rural, mainly 
consisting of roads and various buildings) and natural surface (mainly referring to natural 
land surface, woodland and farmland, etc.). Therefore, it was necessary to estimate the 
surface emissivity according to the proportion of main types of land surface, and the 
surface emissivity ε was divided into three categories: water, building and natural surface 
(Equation (2)). 

�
ε𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 0.995 (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≤ 0)

ε𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.9589 + 0.086 × PV − 0.0671 × PV2 (0 < 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 < 0.7)
ε𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 0.9625 + 0.0614 × PV − 0.0461 × PV2 (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≥ 0.7)

 (2) 

where εwater, εbuilding and εnatural denote the water emissivity, building emissivity and natural 
surface emissivity. PV denotes the vegetation coverage by Equation (4) [47]. 
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PV = (
NDVI − NDVImin

NDVImax − NDVImin
)2 (3) 

where NDVI is the Normalized Difference Vegetation Index. 

NDVI = �
NIR − Red
NIR + Red

� (4) 

TB =
K2

ln (K1
LT

+ 1)
 (5) 

where LT denotes the surface-leaving radiance; K1 and K2 are the calibration parameters of 
the thermal infrared band, respectively. For Landsat 5 TM, K1 = 607.76 Wm2 sr−1 µm−1, K2 
=1260.56 K; for Landsat 8 OLI/TIRS, K1 = 774.89 W m2 sr−1 µm−1, K2 = 1321.08 K. 

The final step was to calculate the surface temperature based on the brightness 
temperature of the thermal infrared band and the land surface emissivity [48]. Moreover, 
we converted the Kelvin unit of the LST to a Celsius unit. 

LST =
TB

1 + �λ × TB
ρ � lnε

 (6) 

where TB is the brightness temperature in the thermal infrared band, λ is the center 
wavelength of the thermal infrared band, and the center wavelength of the Landsat 5 TM 
thermal infrared band (band 6) is 11.5µm. The Landsat 8 OLI/TIRS thermal infrared band 
(band 10) has a center wavelength of 10.9µm, ρ=h × c/σ (1.438 × 10−2 mK). 

3.2. Extraction of the Land Surface Components (LSC) 
This study classified the LSC of each city based on the spectral index of the remote 

sensing images, and four types were identified, namely, impervious surface area, urban 
green space, water body, and others. First, we calculated the Modified Normalized 
Difference Water Index (MNDWI) (Equation (7)) [49]. Based on the Google Earth images, 
we determined the segmentation threshold and extracted and masked the water body. 

MNDWI =
Green − SWIR1
Green + SWIR1

 (7) 

where Green, SWIR1 denote the second and the fifth band of the Landsat 5 TM and the 
third and the sixth band of the Landsat 8 OLI/TIRS. The biophysical composition index 
(BCI) was used to extract the ISA of each city [50]. This method was based on the concept 
of the V–I–S (Vegetation–Impervious–Soil) triangle model proposed by Ridd [51], which 
assumed that the urban land surface included three parts, i.e., vegetation, ISA, and soil. It 
is an environmental index that can distinguish urban features [7]. Before calculation of the 
BCI index, the tasseled cap transformation (TC transformation) was performed. The 
above-mentioned image after the water body mask analysis was used. The specific 
calculation is as follows: 

BCI =
H + L

2 − V
H + L

2 + V
 (8) 

where H is the normalized brightness component (TC1) with high reflectivity, L is the 
normalized humidity component (TC3) with low reflectivity, and V is the normalized 
greenness component (TC2) of the vegetation. H, L, and V can be calculated as: 
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H =
TC1 − TC1min

TC1max − TC1min
 (9) 

V =
TC2 − TC2min

TC2max − TC2min
 (10) 

L =
TC3 − TC3min

TC3max − TC3min
 (11) 

where TC1, TC2, and TC3 are the first three TC components obtained after the TC 
transformation of the remote sensing data. TCmin and TCmax are the minimum and 
maximum values of each TC component respectively. 

In the BCI, the ISA value is positive and relatively high, the value of the bare soil is 
close to 0, and the value of the vegetation is low or negative, which can effectively be 
distinguished from other land cover types [50]. The BCI can effectively reflect the 
biophysical composition of the urbanized environment. Compared with the NDBI 
(normalized difference built-up index), the BCI can better distinguish between soil and 
ISA with high albedo [7]. The BCI has advantage over other indices in the analysis of ISA. 
After calculation of the BCI of each city based on Equations (8)–(11), the segmentation 
threshold was determined, and the ISA was extracted. 

The final step was to extract the green space of each city from the remote sensing 
images based on the NDVI. In this step, we masked the water bodies and ISA from the 
remote sensing images, and the segmentation threshold was determined by comparing 
the original remote sensing image and the Google Earth images. The green vegetation area 
was identified as a green space. The remaining parts that were not classified as ISA, green 
spaces and water bodies, were classified as others. 

 In summary, four surface components were extracted for each city: ISA, green 
spaces, water bodies, and others. Comparison was performed between the classification 
results of the components of the urbanized land surface from 2000 to 2015, and historical 
images of the same period in Google Earth. To test the accuracy of the extraction results, 
we selected 200 random sample points for each city, and the overall classification accuracy 
of each city reached as high as 80%. 

3.3. Spatial Pattern of the Land Surface Components 
In order to compare impacts of the composition of various land surface components 

and relevant spatial pattern on LST, we characterized the spatial modes of the LSC using 
kernel density estimation [19] and landscape metrics [52]. Kernel density estimation is 
mainly used to calculate the density of point elements or line elements and their 
neighboring points. This method takes the characteristics of the spatial proximity of the 
feature elements into account, and can calculate the contribution of the surrounding 
points to match the proximity effect of the LST caused by the surrounding pixels [19,53]. 
The kernel density estimation can be written as follows: 

D(x0) =
1
n
� K(

x0 − x(i)
r

)
n

i=1
 (12) 

where K() is the kernel density function; r is the search radius which quantifies the 
distance from the estimated point element to the sample point xo;  x(i)represents the 
neighbor within the circular neighbor areas; n is the number of the point elements within 
the search radius. The kernel density estimation results are constrained within the range 
of 0–100% through standardization (Equation (13)), and the results of the spatial density 
of the LSC can be computed as: 



Remote Sens. 2021, 13, 4008 8 of 40 
 

ISAD(UGSD) =
D(x) − min (D(x))

max�D(x)� − min (D(x))
× 100% (13) 

The ISAD and UGSD show the spatial density of the ISA and UGS pixels neighboring 
to the ISA and UGS within a certain search radius. In this current study, based on three 
principles, i.e., being important in practice and theory [21,54], being easy to calculate and 
explain [1,21], and being minimum in redundancy [21,55–56], we adopted six landscape 
configuration metrics that reflected the spatial area, size, shape, and aggregation degree 
of the ISA and the UGS, i.e., the mean patch shape index (SHAPE_MN), the mean patch 
size (AREA_MN), the area-weighted fractal dimension index (FRAC_AM), the largest 
patch index (LPI), the landscape division index (LDI), and the aggregation index (AI). The 
above-mentioned landscape metrics are described in Table 1 and calculated using 
Fragstats 4.2 software [57].  

Table 1. The landscape metrics used to delineate the shape configuration of the land surface 
components (LSC) analyzed in this study. 

Landscape Metrics 
(Abbreviation) 

Description 
Unit 

(Value Range) 
Mean patch shape index 

(SHAPE_MN) 
The value of a given patch type divided by 

the total number of patches 
None 

Mean patch size  
(AREA_MN) 

The average area of a given patch type 
within the study unit 

Hectare 

Area-weighted fractal 
dimension index 

(FRAC_AM) 

The measure of the spatial shape 
complexity of a certain type of patch 

None 

Largest patch index  
(LPI) 

The proportion of the largest patch of a 
given patch type divided by the total 

landscape area   

Percent 
(0 < LPI ≤ 100) 

Landscape division index 
(LDI) 

The difference between the maximum 
value of the diversity index and the 

calculated value 
None 

Aggregation index  
(AI) 

The number of similar adjacencies of the 
corresponding type divided by the 
maximum value when the type is 

maximally clustered into one patch 

Percent 
(0 ≤ AI ≤ 100) 

3.4. Pearson Correlation Analysis 
The Pearson correlation coefficient is a measure of the linear correlation between two 

different variables [58]. This study used the Pearson correlation coefficient to quantify the 
relationship between the distribution density of the LSC of each city and the landscape 
metrics and the LST from 2000 to 2015. 

3.5. Spatial Regression Model  
The ordinary least squares (OLS) multiple linear regression model and spatial 

regression model were used to study the influence of the distribution patterns of the LSC 
(such as ISA and UGS) on LST changes [21,59]. The OLS multiple linear regression model 
assumed that the error terms are independent. The Moran I test was used to evaluate 
whether there was spatial autocorrelation between the error terms of the OLS model. The 
Moran index (Moran’s I) of the Moran I test ranges from −1 to 1. When Moran’s I is greater 
than 0, it means that the data have a positive spatial correlation. The larger the value, the 
more obvious the spatial correlation is; when Moran’s I is less than 0, it indicates that the 
data present a negative spatial correlation, and the smaller the value, the greater the 
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spatial difference is; when Moran’s I is 0, the spatial pattern is random. If there was a 
spatial autocorrelation between the error terms of the OLS multiple linear regression 
model (P<0.01), the spatial regression model fused with the spatial autocorrelation and 
the OLS multiple linear regression model would be introduced to jointly analyze impacts 
of the spatial distribution pattern of the LSC on the LST [21,60]. The spatial regression 
model includes the Spatial Lag Model (SLM) whose response variable y is spatial 
autocorrelation and the Spatial Error Model (SEM) whose error term is spatial 
autocorrelation. The spatial lag model is presented as: 

y = ρ𝑊𝑊1y + βx + ϵ (14) 

where y is the response variable; x is the explanatory variable; W1 is the spatial weight 
matrix reflecting the spatial trend of the response variable y; β represents the spatial 
regression coefficient of the explanatory variable x; ϵ is the error distribution; ρ is the 
spatial lag coefficient and its value ranges between 0 and 1. The closer  ρ is to 1, the more 
similar the value of the response variable y is to its neighboring areas. The spatial error 
model assumes that a spatial effect cannot be fully explained by the explanatory variable 
x in the error term. The spatial error model is as follows: 

y = λW2μ + βx + ϵ (15) 

where y is the response variable; x is the explanatory variable; W2 is the spatial weight 
matrix reflecting the spatial trend of the residuals; μ represents the error term of the spatial 
change; β represents the spatial regression coefficient of the explanatory variable x; ϵ is the 
error distribution, and λ is the spatial error coefficient whose value ranges between 0 and 
1. The closer that the value λ is to 1, the more similar the value of the response variable y 
is in adjacent areas. 

The determination of the appropriate spatial regression model for use in this study 
was by application of the following criteria [61]: whether or not the residuals were 
independent, whether the Lagrange Multiplier (LM) and the Robust Lagrange Multiplier 
(R-LM) were statistically significant, R2 values, and AIC (the Akaike’s Information 
Criterion). Based on above-mentioned criteria, the spatial error model was found to be the 
right model for this current study. In particular, the spatial error model with the 
maximum likelihood method was selected for this research. The above-mentioned 
regression analysis was performed using Geoda software and R Spdep package. 

3.6. Variance Partitioning  
Variance partitioning is used to quantify the contribution rate of the spatial pattern 

of the LSC to the LST changes. The variance of the response variable is decomposed into 
independent or joint explanatory variables (or variable groups) to explain different parts 
of the impacts of LSC on LST changes [62–64]. In this study, based on the spatial regression 
model, variance partitioning was used to quantify the relative importance of the impact 
of the compositions and spatial distribution of the ISA and UGS of each city on the LST 
changes [21,58]. The fractional contribution of the ISA and UGS to the LST was subdivided 
into four parts: (1) the unique effect of ISAD (or UGSD); (2) the unique effect of ISA (or 
UGSD) spatial configuration metrics; (3) the joint effects of ISAD (or UGSD) and ISA (or 
UGS) spatial configuration metrics; (4) unexplainable parts. The above-mentioned 
variance partitioning analysis was performed using Geoda software and R Spdep 
package. 

3.7. Modeling of Future Changes in the LSC 
In this study, we used the FLUS model to simulate changes in the LSC of each city 

considered in this study, and predicted the future LSC changes of each city using the 
Markov chain model [28]. First, the multi-layer feedforward artificial neural network 
algorithm (BP-ANN) was used to obtain the suitability probability (the probability that 
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one region is suitable for urbanization) based on land use changes and other various 
driving factors such as terrain, traffic, location, and policies. Meanwhile, based on 
historical surface composition data, the Markov chain model was used to quantify the 
magnitude of LSC change during a specific year [61,65]. This model quantified the amount 
of change in LSC by comparing LSC of two cities during two specific periods. In this 
analysis, a transition probability matrix was obtained to quantify the probability that one 
land surface component category transformed to other land surface component 
categories. Then, the LSC data of each city in 2007 was taken as input (initial year), and 
the LSC data in 2015 was taken as the variable to verify the modeling accuracy of the FLUS 
model. The changes of the LSC in 2023 was predicted. The above-mentioned entire 
analysis was performed using GeoSOS-FLUS software 
(http://www.geosimulation.cn/flus.html) accessed on 09 January 2021. 

3.8. Prediction of the LST 
In this study, the multi-layer feed forward back propagation neural network 

(MFPNN) method of BP algorithm (BP neural network) was used to model and predict 
the future LST based on the historical LST records [66]. The BP neural network consists of 
an input layer, an output layer and one or more hidden layers. According to the 
complexity of the modeling object, we chose an appropriate network structure to realize 
the mapping of any nonlinear function from the input layer to the output layer. When 
using the BP neural network to predict the future LST based on the historical LST records, 
the LST data from 2000 to 2007 were used as input, and the LST data in 2015 were used as 
output. By setting the initial weight, learning rate, decay rate, maximum number of 
iterations and other parameters, we constructed the training network and tested the 
network until the network performance analysis and prediction accuracy met the 
requirements. Then we used the trained network to predict the LST of each city in 2023. 
The above calculation process was carried out by Matlab software. The analysis procedure 
is shown as Figure 2. 

http://www.geosimulation.cn/flus.html


Remote Sens. 2021, 13, 4008 11 of 40 
 

 
Figure 2. The analysis procedure of this study. 

4. Results and Discussion 
4.1. Spatial Pattern of the LST and LSC 
4.1.1. Changes in LST during 2000–2015 

The spatiotemporal changes in the LST from 2000 to 2015 based on Landsat 5 TM and 
Landsat 8 OLI/TIRS remote sensing images were demonstrated in Figure 3. In general, the 
LST over the cities considered in this study was increasing. In the BTH urban 
agglomeration, from 2000 to 2015, the LST of supercity Beijing was generally higher than 
that of megacity Tianjin, and large city Langfang. When compared with the LST during 
2000–2007, the maximum and average LST over Beijing increased significantly in 2015, 
being 56.7 °C and 32.5 °C, respectively. The maximum LST was 6.5 °C and 14.6 °C higher 
than in 2000 and 2007, respectively. The average LST was 7.2 °C higher than in 2000, and 
8.8 °C higher than in 2007. The spatial patterns of the LST over Beijing during the past 
three years were similar, i.e., the high-temperature area was observed mainly in the main 
urban area of southeast Beijing and the LST decreased radially toward the surrounding 
suburbs. The maximum LST experienced no significant change in Tianjin from 2000 to 
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2015, being around 42 °C. The average LST showed an increasing trend year by year, being 
respectively 27.3 °C, 28.1 °C and 29.5 °C. In addition, the high-temperature area of Tianjin 
expanded year by year from the central city to the surrounding suburbs. The LST of 
Langfang was concentrated in some small regions in the central and southern parts of 
Langfang. The LST in 2015 over Langfang was higher than during 2000–2007, and the 
maximum LST in 2015 was 5.7 °C and 7 °C higher, respectively, than during 2000–2007. 
The average LST in 2015 was 29.2 °C, which was 2.6 °C and 5.4 °C higher than in 2000 and 
2007, respectively. In the YRD urban agglomeration, from 2000 to 2007, the LST in 
Shanghai (the supercity) was generally higher than Ningbo (the megacity) and Nanjing 
(the large city). The high LST was found mainly in central Shanghai and gradually spread 
to the surrounding areas. The LST of Ningbo showed an increasing trend from 2000 to 
2015 with the highest LST of 36.7 ℃, 44.8 ℃ and 49.7 °C, and the average LST of 24.6 °C, 
30.4 °C and 32.2 °C. The high LST was found in the eastern parts of Ningbo, and the 
regions with high LST continued to expand outward. The highest LST in Nanjing was 
observed in 2015 with a maximum LST of 42.1 °C, which was 0.3 °C and 0.5 °C higher than 
in 2000 and 2007, respectively. The areas with highest LST in Nanjing were concentrated 
along the north and south banks of the Yangtze River. In the PRD urban agglomeration, 
the LST over Guangzhou was generally higher than that in Dongguan and Zhongshan. 
From 2000 to 2015, the LST in Guangzhou increased year by year. The highest LST regimes 
were 36.1 °C, 40.2 °C and 44.1 °C, and the average LSTs were 20.8 °C, 22.9 °C and 26.4 °C. 
The regional difference between high and low temperatures was remarkable. The highest 
LST in Dongguan was observed in 2015, with the highest LST of 40.7 °C and the average 
LST of 28.3°C. From 2000 to 2015, the highest LST in the Zhongshan area was generally 
around 34–35 °C. The regions with high LST were concentrated in the northwest and 
central Zhongshan, and gradually extended to the periphery.  

According to the distribution of LST in different scales of the cities, our study found 
there is a certain relationship between city scale and LST. This result is consistent with the 
research of Su et al. [67]. In addition to driving LST change, internal factors such as natural 
elements (climatic zone, vegetation and waterbodies) and urban morphological factors 
such as city scale, are the external driving forces affecting LST. The scale of the city not 
only directly affects the urban thermal environment by changing the physical properties 
of the underlying surface, but also indirectly affects the LST through changes in urban 
ventilation, traffic demand, energy consumption, and contact with surrounding areas. The 
expansion of cities of different scales and levels has transformed a large number of natural 
surfaces into impervious surfaces. This leads to a decrease in latent heat flux and an 
increase in sensible heat flux, which in turn causes an increase in LST [68]. 
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Figure 3. Spatiotemporal changes of the LST during 2000–2015 across cities. Code scheme 1, 2, and 
3 denotes 2000, 2007 and 2015 respectively, e.g., e1 denotes LST changes across Ningbo during 2000. 

4.1.2. Changes in Spatial Pattern of the LSC during 2000–2015 
The LSC from 2000 to 2015 were extracted for each city considered in this study, 

including ISA, UGS, water body and others. Classification of the LSC of cities of different 
sizes and levels across the BTH, YRD and PRD urban agglomerations was performed. The 
conversion of the LSC was analyzed using the land use transition matrix. The proportions 
of the LSC and the average LST for each LSC are shown in Figures 4–6. From 2000 to 2015, 
the percentage of ISA in Beijing increased from 10.9% to 24.7%, and expanded ISA 
occurred mainly in central Beijing and continued to expand from central Beijing to the 
surrounding areas. Due to the expansion and encroachment of ISA, the percentage of UGS 
decreased annually from 80.3% to 69.4%. The highest LST was observed mainly over the 
ISA. From 2000 to 2015, the average LST across the ISA in Beijing was 31.6 °C, 26.9 °C and 
37.6 °C, respectively. The average LST across the UGS was 24 °C, 22.8 °C and 30.7 °C, 
respectively. The difference in LST over ISA and UGS was about 4–8 °C, indicating that 
UGS could effectively alleviate the UHI effect. The ISA over Tianjin gradually expanded 
from the central city to the periphery. In 2015, the percentage of the ISA accounted for 
28%. The percentage of UGS decreased, accounting for 40.1%. The average LST was 25.5 
°C. This conversion process of the land surface components or modification of the land 
surface features caused significantly rising LST. Meanwhile, from 2000 to 2015, the ISA in 
Langfang also showed an increase from 12.2% to 18.7%, and a decrease in the proportion 
of the UGS from 87.6% to 57.8%. The average LST over the water bodies and UGS was 
generally lower than that over the ISA-dominated regions, showing a significant 
mitigation effect by the natural land surface, such as water bodies and vegetation, on the 
UHI effect. 



Remote Sens. 2021, 13, 4008 14 of 40 
 

 
Figure 4. Changes of LSC within Beijing, Tianjin and Langfang from 2000 to 2015, percentage of 
different LSC and the LST related to each LSC. 
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Figure 5. Changes of LSC within Shanghai, Ningbo and Nanjing from 2000 to 2015, percentage of 
different LSC and the LST related to each LSC. 
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Figure 6. Changes of LSC within Guangzhou, Dongguan and Zhongshan from 2000 to 2015, 
percentage of different LSC and the LST related to each LSC. 

Shanghai, the supercity located in the YRD, experienced a significant encroachment 
of ISA from 2000 to 2015 with increased percentage of ISA from 22.7% to 39.8% and 
decreased UGS from 66.6% to 39.8%. The difference in LST between ISA and UGS from 
2000 to 2015 was 2.4 °C, 2.5 °C and 1.6 °C, respectively. From 2000 to 2015, the ISA of 
Ningbo was observed mainly in the northern and eastern parts of Ningbo, gradually 
expanding to the periphery. The percentage of ISA increased from 8.4% to 18.5%, and the 
percentage of UGS decreased from 87.3% to 62%. The average LST from 2000 to 2015 over 
the ISA was 27.2 °C, 33.8 °C, and 35.1 °C, showing an increasing trend year by year. Spatial 
distribution of ISA change was highly similar to that of the high LST. The ISA of Nanjing 
expanded along the north and south banks of the Yangtze River. By 2015, the ISA of 
Nanjing had increased to 25.1%, and the UGS accounted for 56.2%. 

The ISA of Guangzhou, the supercity located in the PRD, continued to expand from 
the central parts to the north and southeast parts of Guangzhou from 2000 to 2015, and 
the percentage of ISA increased to 21.2%. The percentage of UGS decreased from 80% to 
65.8%. The difference of the average LST between ISA and UGS showed an amplifying 
trend, being respectively 2.1 °C, 2.6 °C and 3.3 °C. The spatial pattern of ISA in Dongguan 
changed significantly from 2000 to 2015. Taking the main urban area as the center, the ISA 
encroached along the main traffic lines. The ISA increased from 28.3% in 2000 to 44.9% in 
2015. The UGS in 2015 reduced to 29.7%. In addition, the difference in the average LST 
between ISA and UGS increased annually from 2000 to 2015, being, respectively, 1.6 °C, 3 
°C and 3.7 °C. The ISA of the northern and central-southern areas of Zhongshan continued 
to expand to the periphery. From 2000 to 2015, ISA accounted for 16.3%, 23.3%, and 31%, 
respectively, and UGS accounted for 50.6%, 43%, and 35.1%, respectively. The LST over 
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the ISA was 1.78 °C, 2.15 °C and 1.75 °C higher, than over the UGS. Additionally, the 
average LST corresponding to the UGS was similar to the LST of the water body. 

In summary, from 2000 to 2015, the proportion of ISA in cities of different scales and 
levels expanded, and the proportion of UGS decreased. The LST corresponding to ISA 
was generally higher than that of UGS. The average LST corresponding to water bodies 
and UGS was generally lower than the average LST corresponding to ISA, which fully 
demonstrated the mitigation effect of natural surfaces such as water bodies and vegetation 
on the SUHI. 

This paper mainly studied the relationship between ISA, UGS in the LSC and LST, 
therefore, the BCI index and NDVI index were mainly used to extract ISA and UGS. This 
classification method is consistent with Estoque et al. [45]. Overall, the LST of ISA in all 
cities was generally more than 1°C higher than UGS. Other scholars have also studied the 
LST difference between ISA and UGS. Estoque et al. found the mean LST of impervious 
surface was about 3°C higher than that of green space in Bangkok, Jakarta and Manila. 
Bokaie et al. [69] found the difference between the mean LST of ISA was more than 6°C 
above UGS. Among the LSC, ISA and UGS are important factors that affect urban LST and 
thermal environment. Increasing urban greening can help alleviate the urban heat island 
effect. 

4.2. Impacts of Spatial Pattern of LSC on LST 
4.2.1. Relation between LSC and LST 

The relationship between ISA density and UGS density and LST across three major 
urban agglomerations with different urban sizes and levels is shown in Figures 7–9, 
respectively. We found significantly positive relation between LST and ISA density and 
significantly negative relation between UGS density and LST (P<0.001). These findings 
corresponded closely with previous research results [12,70–71] and indicated that ISA 
could enhance UHI effects, and UGS could help to alleviate UHI effects. Rational 
vegetation planning in urban planning can effectively alleviate the urban thermal 
environment [70]. It can be seen from Figure 7 that ISA had the strongest impacts on LST 
change in Beijing with slope values of 0.135 and 0.116 in 2000, and 2015, respectively, 
which were higher than those in Tianjin and Langfang. Similarly, the impacts of UGS on 
LST in Beijing were also the strongest, with slope values of −0.105, −0.105, and −0.103, 
respectively, from 2000 to 2015, being stronger than those of Tianjin and Langfang. These 
observations indicated that Beijing, a city with larger urban sizes and levels than Tianjin 
and Langfang, was subject to stronger UHI effects than Tianjin and Langfang. By 
comparison, the slope values of relation between UGS and LST were generally smaller 
than between ISA and LST, implying higher impacts of ISA on LST, than of UGS on LST 
[45]. Figure 8 depicts the relationship between ISA density, UGS density and LST in 
Shanghai, Ningbo and Nanjing. The Pearson correlation coefficients (R) and slope values 
of the regressive relation between ISA density and LST were generally higher than that of 
UGS and LST. These results also indicated more fractional contribution of the 
impermeable land surface to LST changes than other driving factors. The impact of 
impervious land surfaces and UGS on LST changes varied in cities of different sizes and 
levels in different years. The impact of ISA on LST in Ningbo was generally stronger (the 
slope values were 0.059, 0.079, and 0.087, from 2000 to 2015) than Shanghai and Nanjing. 
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Figure 7. The relationship between the ISAD, UGSD and the LST across Beijing, Tianjin and 
Langfang from 2000 to 2015. Different colors and the size of bubbles denote the magnitude of the 
ISAD and UGSD. 

 
Figure 8. The relationship between the ISAD, UGSD and the LST across Shanghai, Ningbo and 
Nanjing from 2000 to 2015. Different colors and the size of bubbles denote the magnitude of the 
ISAD and UGSD. 
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Figure 9. The relationship between the ISAD, UGSD and the LST across Guangzhou, Dongguan and 
Zhongshan from 2000 to 2015. Different colors and the size of bubbles denote the magnitude of the 
ISAD and UGSD. 

The relationships between ISA density, UGS density and LST in Guangzhou, 
Dongguan and Zhongshan from 2000 to 2015 is shown in Figure 9. Stronger impacts of 
the ISA on LST changes were observed in Guangzhou than in Dongguan and Zhongshan. 
The slope values of relation between ISA and LST in Guangzhou were, respectively, 0.048, 
0.059 and 0.072 during 2000–2015, and were followed by Dongguan and Zhongshan, 
respectively. Meanwhile, the impact of the UGS on LST change in Guangzhou was 
generally stronger than in Dongguan and Zhongshan. The slope values of the relation 
between UGS and LST were respectively −0.031, −0.047 and −0.055, from 2000 to 2015, 
respectively. The correlation coefficients and slope values of the relation between ISA and 
LST were higher than those between UGS and LST. 

In summary, the slope of UGS and LST under the three major urban agglomerations 
was generally lower than the slope of ISA and LST. Compared with UGS, ISA had a 
greater impact on LST. The results of this influence were consistent between 2000 and 
2015. By comparing all cities, we found that in cities with larger urban sizes and levels, 
the impacts of ISA and UGS on LST were usually higher than smaller cities in size and 
scale. 

4.2.2. Relation between Spatial Configuration of LSC and LST 
In this study, six landscape metrics were adopted, i.e., SHAPE_MN, AERA_MN, 

FRAC_AM, LPI, LDI, and AI. These landscape metrics represented the shape, size, fractal 
dimension, proportion of the largest patch area, dominance, and aggregation of the LSC. 
They were selected to fully depict impacts of spatial configuration of LSC on LST changes. 
Tables 2 and 3 display the average values of the urban ISA and UGS landscape 
configuration metrics respectively for each city. Figure 10 shows the correlation between 
the urban ISA and UGS landscape configuration metrics and the LST in cities with 
different sizes from 2000 to 2015. Generally speaking, the LST and patch shape 
configuration index of the ISA were subject to significant positive correlation [1]. LDI 
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reflects the degree of patch separation. Except for LDI, the LST and all other landscape 
metrics were subject to significant negative correlation [45,60]. 

Specifically, the three cities in the BTH urban agglomeration witnessed increased ISA 
from 2000 to 2015, and the patches tended to be complex and clustered. The landscape 
configuration metrics of the ISA in Beijing were generally higher than Tianjin and 
Langfang, indicating that the ISA patch area in Beijing was larger, more complex, and 
more concentrated when compared with Tianjing and Langfang. This was also the reason 
why the LST over the ISA in Beijing was generally higher than that of Tianjin and 
Langfang. From 2000 to 2015, contrary to the ISA, the UGS landscape configuration 
metrics decreased year by year, the area gradually decreased, and the degree of 
aggregation decreased. Beijing was dominated by a relatively higher degree of spatial 
concentration, dominance, and shape complexity of the UGS. It can be seen from Figure 
10 that the highest correlation can be observed between LST, LPI and AREA_MN, 
indicating a stronger UHI given the larger ISA patch area, a more concentrated ISA and 
higher patch of the ISA [45]. Among the six UGS landscape configuration metrics, a higher 
correlation stood between LST and LPI, AREA_MN and AI. The larger and uninterrupted 
UGS patches had a more obvious cooling effect on the LST and hence a more obvious cold 
island effect [60,72]. In addition, the correlation between the LST and the ISA landscape 
configuration metrics in each year was generally higher than that between LST and the 
UGS landscape configuration metrics, indicating that the ISA had a higher impact on the 
LST. 

Table 2. Analysis results of the landscape configuration metrics of the ISA within different urban 
sizes and levels considered in this study. Meanings of these abbreviations of the variables can be 
referred to in Table 1. 

City Year SHAPE_MN AERA_MN FRAC_AM LPI LDI AI 
Beijing 2000 1.27 2.96 1.29 36.02 0.87 78.69 

 2007 1.26 4.34 1.33 51.12 0.74 83.49 
 2015 1.23 5.40 1.39 69.56 0.52 84.64 

Tianjin 2000 1.27 3.37 1.31 43.58 0.81 80.81 
 2007 1.27 2.63 1.31 42.46 0.82 78.43 
 2015 1.23 5.25 1.37 63.08 0.60 86.71 

Langfang 2000 1.24 2.67 1.22 6.27 0.99 79.43 
 2007 1.24 2.39 1.22 7.49 0.99 78.31 
 2015 1.25 2.81 1.24 7.74 0.99 78.60 

Shanghai 2000 1.23 2.46 1.35 59.89 0.64 77.81 
 2007 1.19 3.13 1.36 46.93 0.76 82.02 
 2015 1.25 4.32 1.39 46.45 0.74 81.32 

Ningbo 2000 1.23 1.98 1.26 14.30 0.96 77.28 
 2007 1.25 2.59 1.29 18.80 0.94 78.26 
 2015 1.27 2.90 1.33 25.34 0.93 75.69 

Nanjing 2000 1.18 0.86 1.25 27.92 0.91 66.37 
 2007 1.29 1.77 1.30 33.04 0.88 71.61 
 2015 1.27 2.04 1.33 26.16 0.91 70.85 

Guangzhou 2000 1.24 1.63 1.29 29.91 0.91 71.69 
 2007 1.27 2.28 1.33 46.59 0.78 74.90 
 2015 1.25 2.72 1.37 58.83 0.65 76.68 

Dongguan 2000 1.24 3.40 1.35 23.35 0.89 78.39 
 2007 1.24 4.73 1.40 50.63 0.70 80.70 
 2015 1.21 6.63 1.44 90.06 0.19 84.91 

Zhongshan 2000 1.23 1.25 1.28 20.75 0.94 68.61 
 2007 1.25 1.78 1.29 21.16 0.93 72.34 
 2015 1.26 2.61 1.35 51.14 0.73 76.26 
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Table 3. The analysis results of the landscape configuration metrics of the urban green space for 
different urban sizes and levels considered in this study. 

City Year SHAPE_MN AERA_MN FRAC_AM LPI LDI AI 
Beijing 2000 1.19 40.04 1.40 96.12 0.08 96.25 

 2007 1.21 33.91 1.39 91.88 0.16 95.81 
 2015 1.26 19.89 1.37 80.30 0.35 94.19 

Tianjin 2000 1.32 13.34 1.30 9.10 0.97 89.85 
 2007 1.24 19.77 1.37 39.95 0.80 92.49 
 2015 1.28 12.12 1.28 8.46 0.97 91.01 

Langfang 2000 1.19 32.41 1.39 31.79 0.80 92.53 
 2007 1.14 46.92 1.40 81.51 0.31 95.25 
 2015 1.27 11.32 1.33 11.73 0.96 88.67 

Shanghai 2000 1.25 18.92 1.35 17.68 0.92 91.48 
 2007 1.29 8.76 1.33 20.45 0.94 86.30 
 2015 1.28 4.65 1.29 7.99 0.98 82.68 

Ningbo 2000 1.18 89.40 1.35 79.43 0.33 97.41 
 2007 1.22 42.97 1.37 76.76 0.38 95.90 
 2015 1.26 13.13 1.34 59.64 0.61 93.26 

Nanjing 2000 1.30 14.59 1.39 20.68 0.89 87.07 
 2007 1.28 30.23 1.36 37.57 0.80 93.23 
 2015 1.28 11.24 1.37 17.47 0.90 87.56 

Guangzhou 2000 1.30 13.53 1.36 62.50 0.60 91.30 
 2007 1.27 24.60 1.37 78.37 0.38 93.93 
 2015 1.29 14.34 1.35 69.68 0.51 92.66 

Dongguan 2000 1.28 6.87 1.25 17.41 0.85 88.14 
 2007 1.30 5.10 1.22 13.71 0.96 86.37 
 2015 1.27 3.64 1.22 16.01 0.95 85.08 

Zhongshan 2000 1.27 8.68 1.28 40.66 0.82 89.89 
 2007 1.32 5.16 1.27 38.74 0.84 85.50 
 2015 1.28 3.91 1.24 36.7 0.86 85.22 
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Figure 10. Pearson correlation coefficients between LST and ISA (and UGS) landscape configuration 
metrics within cities considered in this study, from 2000 to 2015. (*denotes p < 0.05; ** denotes p < 0.01; 
and *** denotes p < 0.001) 

In YRD, the period from 2000 to 2007 witnessed increased ISA landscape 
configuration metrics over the cities within the PRD with increased ISA patch area and 
increased complexity and concentration of ISA. However, the UGS landscape 
configuration metrics showed a downward trend in 2015, indicating that the area of UGS 
decreased, and the degree of concentration and complexity of UGS also decreased. By 
comparison, the concentration and complexity of the ISA in Shanghai was higher than in 
Ningbo, and the concentration and complexity of the ISA in Nanjing was the lowest. 
However, Ningbo had the largest UGS patch area, and the highest complexity and 
concentration degree of UGS, followed by Shanghai and Nanjing. The spatial 
configuration of the ISA and the UGS significantly affected the LST. Among all the 
indicators that reflected the landscape configuration, the LST was generally highly 
correlated with the LPI, AERA_MN, and AI of the ISA and the UGS. The increase in the 
complexity and concentration of the ISA shape meant it could absorb more solar radiation, 
leading to an increase in the LST. At the same time, the more complex the shape of the 
ISA and the greater the difference in ISA shape, the greater the benefit in terms of energy 
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exchange between the interior of the city and the vegetation, resulting in cooling effects 
[73]. This phenomenon clearly indicates the complex thermal environment characteristics 
of the urbanized regions [1]. 

In the PRD urban agglomeration, the period from 2000 to 2015 witnessed a 
continually enhanced level of the ISA landscapes in Guangzhou, Dongguan, and 
Zhongshan, and this process was accompanied by increased ISA patch area, a higher 
degree of ISA shape complexity and an incremented aggregation of ISA. Specifically, we 
observed the highest ISA landscape configuration metrics in Dongguan, followed by 
Guangzhou and Zhongshan. We observed a decreased shape complexity of the UGS 
patches and a continually lower aggregation degree of the UGS patches. Meanwhile, 
Guangzhou had the highest green space landscape configuration metrics, followed by 
Dongguan and Zhongshan. Furthermore, we identified a higher correlation between LST 
and LPI, AREA_MN, AI of the ISA and the UGS, indicating that the larger and more 
complex patches of the LSC usually had stronger impacts on LST. In addition, the 
marginal characteristics of the LSC patches also had a certain degree of influence on the 
LST changes. For example, the increased edge of the LSC patches could strengthen the 
energy flow in the UGS and its surroundings, resulting in a decrease in the LST [60]. 

In summary, the LST and the ISA landscape configuration metrics were in 
significantly positive correlation. The LST and the UGS landscape configuration metrics 
were in significantly negative correlation [74,75]. Meanwhile, correlation between LST 
and ISA landscape configuration metrics was stronger than between LST and the UGS 
landscape configuration metrics, indicating that the ISA had a stronger impact on the LST 
changes when compared with UGS landscape configuration metrics. With the increase in 
the ISA landscape configuration metrics and the decrease in the UGS landscape 
configuration metrics, the warming effects of the ISA and the cooling effects of the UGS 
were affected by many factors such as city size, vegetation type and climatic conditions 
[76]. In this study, the larger the size of the city, the higher the average value of the ISA 
landscape configuration metrics, and hence the higher the LST. This conclusion that the 
shape configuration of LSC in different urban scales is related to LST is more consistent 
with the existing research, such as Zhou et al. [77]. This may be due to the greater 
complexity of the forms of megacities and supercities, leading to a more significant impact 
on the LST [68]. 

It may also be attributed to the higher degree of intensification of urban land 
development, which leads to an increase in anthropogenic heat emissions and an increase 
in LST in cities with high levels of scales [78]. In addition, we observed a high correlation 
between LST and LPI, AREA_MN, AI of ISA and UGS, implying that a concentrated larger 
LSC patch area can drive higher LST. In this sense, scientific urban planning considering 
optimal design and planning of UGS and ISA will greatly alleviate UHI, and it is 
particularly important for large size cities such as Beijing, Shanghai and Guangzhou in 
this study. In general, in addition to controlling urban expansion, proper dispersion of 
LSC and multi-center distribution can effectively alleviate SUHI. 

4.2.3. The Contribution of the Composition and Configuration of the LSC to LST 
This study also considers the combined effects of the composition and configuration 

of the LSC to explore the influence of the distribution pattern of the LSC on LST. The OLS 
multiple linear regression model and the spatial error model were both used to establish 
the relation between LST and the composition and configuration of ISA (or UGS). The 
results are shown in Appendix A Tables A2–A5. In general, the ISAD and UGSD in each 
city were the main predictors of LST changes (Appendix A Tables A2 and A3), which were 
positively and negatively correlated with LST, respectively. In terms of standard 
coefficients, the composition of ISA and UGS had more significant impact on LST than 
variables representing landscape configuration. Among the various ISA landscape 
configuration metrics, the positive correlation between the AREA_MN, which measures 
the complexity of the ISA, and the LDI, which measures the degree of ISA landscape 
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separation, and LST, was relatively obvious, but the composition of the ISA had a stronger 
influence on LST than the landscape morphology. Among the various UGS landscape 
configuration metrics, the AREA_MN showed a more significant negative correlation 
with LST. The contribution of the UGS composition to the change of LST was generally 
higher than the UGS spatial form, while in some cities, the spatial form of UGS had a 
slightly significant impact on LST. However, it can be seen from Appendix A Tables A2 
and A3 that the Moran’I of each city from 2000 to 2015 was significant, which means that 
there was spatial autocorrelation in the error term of the OLS model. Therefore, this study 
also used SLM and SEM to continue to explore the influence of the distribution pattern of 
the LSC on LST. The residual error, Lagrange multiplier, robust Lagrange multiplier, R2 
values, and AIC criterion, were used to compare the two models, and finally select the 
SEM for this research. 

Appendix A Tables A4 and A5 show the SEM results of the impact of ISA and UGS 
spatial composition and configuration on LST, respectively. Overall, the results of the 
SEM were similar to the OLS. However, the R2 values of the SEM were generally higher, 
and the AIC was significantly lower than the OLS. Moreover, the standard coefficients of 
the ISAD and UGSD prediction factors were relatively high, and the standard coefficients 
of each landscape configuration metrics were relatively low, which also illustrated the 
necessity of such studies to consider the effects of spatial autoregression and the 
superiority of the SEM compared with the OLS [21]. 

Variance partitioning was used to quantify the contribution rate of the LSC to LST, 
and the results are shown in Figures 11 and 12. In general, the joint effect of the 
composition and configuration of the LSC had the highest contribution rate to the LST. 
However, in different cities and different years, the unique effects of the LSC composition 
and the unique effects of the LSC configuration had different impacts on LST. 

In the BTH urban agglomeration, the unique effect of ISA composition in the 
supercity of Beijing gradually increased and had stronger impact on LST than the ISA 
landscape configuration, being 1.1%, 1.5% and 1.6% higher than ISA landscape 
configuration during 2000–2015. In 2000–2007, the impact of UGS landscape configuration 
on LST was slightly stronger than that of UGS composition. In the spatial error model, a 
lower standard coefficient of the UGS density reflected higher AREA_MN, FRAC_AM 
which reflected the complexity of the UGS shape, and higher LPI metrics of the 
concentration of UGS patches, indicating enhanced impacts of landscape configuration on 
LST given the increasingly concentrated and complicated shape of the UGS [69]. In Tianjin 
and Langfang, the composition of the ISA had a higher impact on the LST than the shape 
configuration of ISA. Meanwhile, the composition of the UGS had a higher impact on the 
LST than the shape configuration of the UGS. However, different from Beijing, the period 
of 2000 to 2015 witnessed weakening effects of the spatial pattern and landscape 
configuration of the ISA and UGS on LST over time. In addition, in the BTH urban 
agglomeration, the composition and shape configuration of the ISA and the UGS on the 
LST in Langfang were generally higher than that of Tianjin and Beijing, being 1–2% higher 
than Tianjing and 3–4% higher than Beijing. 

In the YRD urban agglomeration, during the study period from 2000 to 2015, the ISA 
composition made a 2.49%, 3.27% and 3.4% higher contribution rate to the LST changes 
than the configuration of ISA in Shanghai. Additionally, the composition and 
configuration of the ISA had increasing impacts on LST change. Similarly, from 2000 to 
2015, the composition of Shanghai’s UGS had 1.8%, 2.3%, and 2.1% higher impact on the 
LST than UGS configuration. Furthermore, during the period of 2000 to 2015, the 
composition of the ISA in Ningbo had 1.6%, 3.2% and 2.7% higher impact on the LST than 
the shape of the ISA. During 2000 to 2015, the impact of UGS composition on LST showed 
an upward trend, especially in 2007, and the impact of the UGS composition was the 
strongest. During 2000 to 2015, the impact of the ISA composition on the LST in Nanjing 
showed a decreasing trend. The impact of the ISA composition on the LST during 2000 
and 2007 was 3.4% and 1.4% higher than that of the ISA configuration, respectively. 
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However, in 2015, the impact of the ISA configuration was slightly higher than that of the 
ISA composition. The standard coefficient of the ISA density was lower than that of the 
ISA landscape configuration. Similarly, the impact of UGS composition on the LST also 
showed a decreasing trend during the period from 2000 to 2015. 

The joint effects of the LSC and landscape configuration of Guangzhou, the supercity 
in the PRD urban agglomeration, on LST changes were remarkable. The composition of 
ISA and UGS had a slightly higher impact on LST than the shape configuration of the ISA 
and UGS. From 2000 to 2015, the effect of the ISA composition on the LST of Dongguan 
was stronger than that of the ISA configuration. The effect of the ISA composition 
increased over time. The effect of the UGS composition on the LST from 2000 to 2015 was 
also stronger than the shape configuration of the UGS. The effect of the UGS composition 
on the LST increased, particularly during 2007. The impact of ISA composition on the LST 
from 2000 to 2015 in Zhongshan was stronger than that of ISA configuration on LST. 
However, the contribution rate of ISA to LST showed a decreasing trend with time, 
indicating that with the expansion of the impervious surface area, the patches became 
more complex and concentrated, and the influence of ISA configuration on the LST 
increased to a certain extent. From 2000 to 2015, the contribution rate of the UGS 
composition to the LST was slightly higher than that of the UGS shape configuration, the 
influence of the UGS composition on the LST increased annually, and the impact of the 
UGS shape configuration on the LST decreased annually. All these results indicated that 
the decreased proportion of the UGS resulted in sporadic and fragmented distribution of 
the UGS, and the cooling effect of the UGS on the LST was significantly weakened. 

The aforementioned results indicated that the joint effects of the composition and 
shape configuration of the LSC were the strongest on the LST. There was a difference in 
magnitude of the effects of the shape configuration of the LSC on LST [21]. When 
compared with the unique effect of the composition and the unique effect of configuration 
of the LSC on the LST, the unique effect of the LSC of each city was generally higher than 
the unique effect of the shape configuration of the LSC on LST [69]. The composition and 
configuration of the ISA had the potential to drive the increase in the LST, and the 
composition and configuration of the UGS had a cooling effect on the LST. However, in 
some specific cities during some specific periods, the configuration of the LSC was slightly 
higher than that of the LSC, which may be affected by the climate background. In different 
climatic conditions such as temperature, solar radiation, air pressure, etc., the proportion 
of LSC and spatial morphology of different cities have different impacts on the LST [79]. 
In addition, it was also affected by the difference in the morphology of the LSC of the year 
[80]. 

In summary, the results of this study show that LST is significantly positively 
correlated with ISAD and negatively correlated with UGSD. These conclusions are 
consistent with other research (i.e., Myint et al., [9]; Estoque et al., [45]). From the 
perspective of landscape configuration, the results of all the cities show that the 
correlation between LST and ISA landscape configuration is higher. This indicates that 
ISA has a stronger influence on LST than UGS. Moreover, the ISA patches of cities with 
higher scale levels are relatively larger, more complex, and more concentrated, which is 
also the reason for the higher LST. Our results are consistent with the research of Estoque 
et al., [45], Li et al. [60], and Zhang et al., [81]. In terms of the LSC of UGS, the UGS 
connected in patches with relatively large area is more helpful to reduce the LST. From 
the perspective of joint effect of ISAD (or UGSD) and ISA (or UGS) spatial configuration 
metrics, the results of all cities show that the joint effect of ISAD and ISA spatial 
configuration metrics have a stronger influence on LST than UGS has on LST. This joint 
effect is stronger than the unique effect, which is consistent with the results of Zhou et al. 
[21]. Moreover, results from the variation partitioning of all cities (Figures 11 and 12) also 
indicate that LSC density plays a more important role than that of shape configuration of 
LSC. 
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Figure 11. Unique effect of the ISAD and unique effect of the ISA landscape configuration metrics 
on the LST, and joint effect of the ISAD and the ISA landscape configuration metrics on the LST 
from 2000 to 2015 in different urban sizes and levels considered in this study. 
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Figure 12. Unique effect of the UGSD and unique effect of the UGS landscape configuration metrics 
on the LST, and joint effect of the UGS and the UGS landscape configuration metrics on the LST 
from 2000 to 2015 in different urban sizes and levels considered in this study. 

4.3. Modeling of Future LST and LSC 
4.3.1. Modeling of the Future LSC 

This study used the spatial pattern of the LSC in each city in 2007 as the initial input. 
Additionally, we used 14 variables, i.e., distance from the city center, distance from the 
county center, distance from the town center, distance from the commercial center, 
distance from the subway, distance from the highway, distance from the provincial road, 
distance from the county road, distance from the village road, DEM, aspect, slope, GDP, 
population density, and spatial distribution of water bodies, and the neural network 
model (BP-ANN model) in modeling the suitability probability of the development of 
various LSC. In addition, based on the Markov chain model (Markov Model), we 
predicted the LSC. The LSC data in 2015 were used to test the validity of prediction of the 
spatial pattern in the LSC in 2023 (Figure 13). The kappa coefficient of the FLUS model 
simulation results of each city was generally higher than 0.75, and the overall accuracy 
was higher than 80%. 
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Figure 13. Spatial distribution of LCS predicted by FLUS model in 2023 for different cities considered in this study. 

From the prediction results, under natural conditions, the spatial patterns of the LSC 
of three cities in the BTH urban agglomeration are different. In 2023, the ISA of Beijing 
will expand mainly in the southeast direction, encroaching on green space and resulting 
in a decrease in the proportion of the UGS to 63.8%, with no significant change in the 
proportion of water and other areas. The proportion of the ISA area in Tianjin will increase 
to 35.4%, expanding to the periphery mainly by central and coastal ports. This is consistent 
with the development model of Tianjin’s “double-center and one-axis”, that is, the central 
city and Binhai New Area are used as the “double centers”, and the traffic axis between 
the central city and Binhai New Area is the “one axis” for further development [82]. The 
proportion of the UGS will reduce to 47.4%. It is necessary to pay more attention to the 
protection of the UGS and the ecological environment during the urbanization processes 
due to the continuous development of construction land. In addition to expanding 
outwards along the original urban center, the ISA of Langfang will contain many scattered 
ISA areas, which will account for 26.3%, while the proportion of the UGS will decrease to 
71.8%. Compared with 2000, the growing rate of the percentage of the ISA in Beijing, 
Tianjin and Langfang in 2023 will be 20.2%, 21.7% and 14.1%, respectively. 
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Under natural conditions, the percentage of the ISA in Shanghai, the supercity in the 
YRD urban agglomeration, will increase sharply from 22.7% in 2000 to 44.5% in 2023, and 
will expand substantially from the central city to the surrounding area. The ISA of Ningbo 
will expand to the periphery with the northern and central regions as the center, and 
gradually will connect to form a belt. From 2000 to 2023, the percentage of the ISA will 
increase from 8.4% to 26.8%, and the proportion of the UGS will decrease from 87.3% to 
67.2%. The ISA of Nanjing not only will expand along the edge of the existing ISA, but 
will also fill the interior of the city. The ISA will grow rapidly and the percentage of ISA 
will increase from 11.5% in 2000 to 29.7% in 2023. 

Under natural conditions, the expansion of the ISA of Guangzhou, the supercity in 
the PRD, will be centered on the northwest, central and south parts of the PRD. In 
comparison, the expansion of ISA to the south is more obvious than other directions. The 
ISA expansion to the north due to topographical factors is insignificant. From 2000 to 2023, 
the proportion of the ISA will increase from 12.2% to 25.7%, while the UGS will decrease 
from 80% to 65.3%. By 2023, the ISA will further expand to the periphery, accounting for 
51.9%. The expansion of the ISA will encroach on the UGS and water bodies. From 2000 
to 2023, the proportion of the UGS will decrease from 45.3 to 25.6%, and the percentage of 
water bodies will decrease from 8% to 6.8%. The ISA of Zhongshan will expand to the 
surroundings centered on the north and the middle, and there will be scattered flaky ISA 
in the southern area of Zhongshan. From 2000 to 2023, the proportion of ISA will increase 
from 16.3% to 35.4%, the UGS will reduce from 50.6% to 35%, and the proportion of water 
bodies will also decrease significantly, from 14.8% to 13.3%. 

The simulation of the LSC in 2023 can play a certain guiding role for future urban 
development policy. For the above cities, compared with 2000, the ISA will increase 
sharply in 2023 at the expense of UGS and water bodies. Therefore, in the process of rapid 
urbanization, it is necessary to coordinate the proportion of various types of land in the 
city, protect the ecological environment, and coordinate development. In addition, by 
comparing the results of all cities, we found that the ISA of each city increased 
significantly from 2000 to 2015, but the increase in the percentage of ISA of cities of 
different sizes and levels differed from 2015 to 2023. Generally speaking, the above cities 
with higher scale levels show a weaker growth trend of the ISA, while the ISA of cities 
with relatively low scale levels increased more significantly than cities with larger sizes 
or scales. 

In summary, the prediction results of each city indicate that the LST will continue to 
rise. In the future, while maintaining the rapid development of economic construction, it 
is necessary to take further measures to alleviate the increasingly serious SUHI. Based on 
the existing studies [83], it is possible to alleviate the SUHI with various measures such as 
rational planning of urban layout, reducing anthropogenic heat emissions, enhancing 
urban greening, and protecting urban water bodies. 

4.3.2. Modeling of Future LST Changes 
In this study, the BP ANN algorithm was used to simulate the LST in 2023 under the 

scenario of natural surface composition expansion. The future LST simulation results can 
provide a theoretical basis for the evolution of the future UHI effect and alleviation of the 
UHI effect. The LST data in 2015 was used as the verification data to verify the accuracy 
of the prediction results. The Pearson correlation coefficients between the predicted LST 
in 2015 and the observed LST were statistically significant, and the RMSE values were 
statistically low, indicating the validity of the modeling performance of the BP ANN 
algorithm used in this study. The prediction accuracy was used to simulate the LST in 
2023. Among them, the Pearson correlation coefficients of the observed and the predicted 
LST in Beijing, Tianjin and Langfang in 2015 were 0.88, 0.77, and 0.74, respectively, and 
the RMSE values were 1.95, 1.74, and 1.5, respectively; the Pearson correlation coefficients 
of the observed and the predicted LST in Shanghai, Ningbo and Nanjing in 2015 were 0.86, 
0.78 and 0.72, and the RMSE values were 0.89, 0.88 and 1.17, respectively. The Pearson 
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correlation coefficients of the observed and predicted LST in Guangzhou, Dongguan and 
Zhongshan in 2015 were 0.84, 0.88 and 0.76, respectively, and the RMSE values were 1.22, 
1.19 and 1.16, respectively. 

Under the scenario of natural LSC expansion, the simulation results of the LST in 
cities with different urban sizes in the BTH, YRD, and PRD urban agglomerations in 2023 
are shown in Figures 14–16, respectively. The regions with high predicted LST in Beijing 
(the supercity in BTH) were highly similar to those dominated by ISA, and the regions 
with low LST were consistent with those dominated by UGS and water bodies. From 2015 
to 2023, with the expansion of the ISA, the LST will also be increasing. The average LST 
will increase from 32.5 °C to 35.3 °C, and the average LST over the ISA will increase from 
37.6 °C to 40.96 °C. The temperature difference over the UGS will increase from 6.83 °C to 
8.42 °C. There are mainly two centers in the regions with high LST in Tianjin, including 
the central city and the coastal port area, which are gradually connected in a flaky shape. 
From 2015 to 2023, the average LST will rise slightly from 29.5°C to 30.6°C, and the average 
LST over the ISA will not change significantly. However, the LST over UGS will increase 
from 28.3°C to 30.1°C. The difference in LST between the ISA and the UGS is 1.59°C. The 
regions with high LST in Langfang follow a fragmented spatial distribution pattern. The 
average LST will increase from 29.2 °C to 32.8 °C from 2015 to 2023. In 2015, the difference 
in LST between the non-commitment land surface and the UGS was 3.62 °C. However, no 
remarkable difference, only 0.53 °C, in LST over ISA and UGS, can be identified. In 
contrast, the higher the scale of the BTH urban agglomeration, the more obvious the 
temperature rise of the ISA, and the greater the difference in the LST between ISA and the 
UGS. 

 
Figure 14. Predicted LST and the average LST corresponding to each LCS in 2023 across Beijing, 
Tianjin and Langfang using the BP neural network model under the natural scenario of the LCS 
expansion. 
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Figure 15. Predicted LST and the average LST corresponding to each LSC in 2023 across Shanghai, 
Ningbo and Nanjing using the BP neural network model under the natural scenario of the LCS 
expansion. 
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Figure 16. Predicted LST and the average LST corresponding to each LSC in 2023 across Guangzhou, 
Dongguan and Zhongshan using the BP neural network model under the natural scenario of the 
LCS expansion. 

In Shanghai, the supercity in the YRD, regions with high LST expand outward from 
the main urban area. The LST over the ISA and UGS in 2015 and 2023 is 1.6 °C and 1.05 
°C respectively. The regions with high LST are found mainly in the north and central 
Ningbo and are similar to those dominated by ISA. The average LST in 2023 will be 34.4 
°C, which is an increase of 2.2 °C when compared with 2015. The average LST over ISA 
will increase by 1.3 °C, and the average LST over the UGS will increase by 2 °C. The areas 
with high LST in Nanjing are still concentrated on the north and south banks of the 
Yangtze River, and are expanding to the south. Similar to 2015, the difference in LST 
between ISA and UGS in 2023 will be 0.71 °C. 

The spatial distribution of the LST in Guangzhou, the supercity in the PRD, shows a 
decreasing trend from southwest to northeast. Compared with 2015, the average LST in 
2023 over the ISA and UGS will increase significantly, respectively, being about 3.2 °C, 
2.95 °C and 3.28 °C. The regions with high LST are widespread and low LST will be 
observed mainly over the water bodies. In 2015–2023, the average LST will increase from 
28.3 °C to 31.3 °C, and the LST over the ISA will increase from 30.1 °C to 32.2 °C. The LST 
over the UGS will increase from 26.4 °C to 29.6 °C. In Zhongshan, regions with high LST 
were concentrated mainly in the northern and central regions, expanding to the south, 
consistent with the spatial distribution of ISA. The low LST was found mainly in regions 
dominated by UGS and water bodies. From 2015 to 2023, the difference in LST between 
ISA and UGS will be 1.75 °C and 1.62 °C, respectively. 

In summary, by comparing the LST in 2015 and the predicted LST in 2023, the higher 
the scale of the city, the more significant the difference in LST between ISA and UGS. 
Comparing the spatial pattern of the LST and LSC, the expansion of the ISA density 
remarkably affects the UHI effect, and the cooling effect of water bodies and UGS is more 
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apparent in cities of large urban sizes. In the process of urban planning, an increase of the 
proportion of water bodies and UGS will have a very significant effect on alleviation of 
the UHI effect. 

5. Conclusions 
Based on Landsat 5 TM and Landsat 8 OLI/TIRS remote sensing images, spatial 

regression models, variance partitioning and spatial statistical methods, we analyzed the 
impacts of the composition and shape configuration of the LSC on LST in cities with 
different urban sizes. This study explored impacts of the LSC on LST of different sizes and 
levels of cities across three typical urban agglomerations with different climate 
backgrounds across China. Additionally, artificial neural network algorithms and other 
methods were used to simulate the future spatial pattern of LSC and LST, providing a 
scientific ground for mitigating UHI effects and sustainable urban planning. Major 
interesting and important findings and conclusions were obtained as follows: 

(1) From 2000 to 2015, the LST of each city generally showed an increasing trend over 
time. Additionally, we identified continuous expansion of ISA across the cities considered 
in this study. With the encroachment and expansion of ISA, the proportion of UGS 
decreased year by year. 

(2) Comparison of LST over LSC indicated a highly similar spatial pattern of high 
LST across cities with different urban sizes. The LST over ISA was generally higher than 
that across UGS. The difference in LST between ISA and UGS in different cities in different 
years was different, the lowest was 0.96 °C and the highest was 7.96 °C. The LST of the 
UGS and the water body was similar, indicating that these two factors significantly reduce 
the LST. 

(3) The LST and the ISA density were in significantly positive correlation, while LST 
and the UGS density were in significantly negative correlation. Among LSC, the influence 
of ISA on LST was greatest. Additionally, we also found that in larger sized cities ,ISA had 
greater impacts on LST, than in smaller sized cities. This may be due to the fact that cities 
with higher scales and levels have a faster urbanization process and a larger proportion 
of ISA, so the impact on LST is more significant. In addition, based on the landscape 
metrics reflecting the shape of the LSC, we analyzed the effect of the configuration of the 
LSC on the LST. We hold the opinion that the positive correlation between the LST and 
the ISA landscape configuration metrics was stronger than the negative correlation 
between LST and the UGS landscape configuration metrics. Therefore, ISA had stronger 
impact on LST than UGS. Meanwhile, the ISA landscape configuration metrics generally 
increased, and the UGS landscape configuration metrics decreased over time. The higher 
the scale of the city, the higher the average ISA landscape configuration metrics; the 
corresponding LST was also relatively high. It showed that the larger size and scale of the 
city was closely related to the high degree of influence of the LSC on the LST. 

(4) We investigated the influence of the spatial pattern of the LSC on the LST and 
found that whether ISA or UGS, the joint effect of the composition and configuration of 
ISA and/or UGS had the most significant impact on the LST. The joint effect differed in 
magnitude from the unique effect of the composition or configuration of the LSC on the 
LST. Generally speaking, the unique effect of the ISA and the UGS had a stronger 
influence on the LST than the unique effect of its configuration. 

(5) We simulated the future LSC and LST in both space and time in each city 
considered in this study. We found that the average LST in the future will also show an 
upward trend, the proportion of the ISA will continue to expand, and the proportion of 
the UGS will continue to shrink. The higher the size of the city, the weaker the growing 
percentage of ISA, while the lower the size of the city, the stronger the growing percentage 
of ISA. By comparing the average LST over the LSC in the future, it is interesting to find 
that the larger the size of a city, the more significant is the difference in the LST between 
ISA and UGS. 
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Appendix A 

Table A1. Landsat 5 TM and Landsat 8 OLI/TIRS images information of the study area. 

Landsat Satellites Landsat Data Identification Data Acquisition Time 

2000 Landsat 5 TM 

LT51230322000145BJC00 24 May 2000 
LT51230332000145BJC00 24 May 2000 
LT51220322000170BJC00 18 June 2000 
LT51220332000170BJC00 18 June 2000 
LT51180382000158BJC02 06 June 2000 
LT51180392000158BJC02 06 June 2000 
LT51180402001080BJC00 21 March 2001112 
LT51200372000140BJC00 19 May 2000 
LT51200382000204BJC00 22 July 2000 
LT51220432001060BJC00 01 March 2001 
LT51220442001060BJC00 01 March 2001 
LT51220452001060BJC00 01 March 2001 

2007 Landsat 5 TM 

LT51230322007148IKR00 28 May 2007 
LT51230323007148IKR00 28 May 2007 
LT51220322009258IKR00 15 September 
LT51220332009242IKR00 30 August 2009 
LT51180382007209BJC00 28 July 2007 
LT51180392007209BJC00 28 July 2007 
LT51180402007209BJC00 28 July 2007 
LT51200372006140BJC01 20 May 2006 
LT51200382007207IKR00 26 July 2007 
LT51220432008208BKT00 26 July 2008 
LT51220442008208BKT00 26 July 2008 
LT51220452009290BJC00 17 October 2009 

2015 Landsat 8 OLI/TIRS 

LC81230322015106LGN00 16 April 2015 
LC81230332015106LGN01 16 April 2015 
LC81220322015227LGN01 15 August 2015 
LC81220332015275LGN00 02 October 2015 
LC81180382015215 LGN00 03 August 2015 
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LC81180392015215LGN00 03 August 2015 
LC81180402015215LGN00 03 August 2015 
LC81200372016344LGN01 09 December 2016 
LC81200382016344LGN01 09 December 2016 
LC81220432015291LGN00 18 October 2015 
LC81220442015291LGN01 18 October 2015 
LC81220452015003LGN00 03 January 2015 

Table A2. The modeling results by the OLS model for the LST, the ISAD and the ISA landscape configuration metrics 
within different cities considered in this study from 2000 to 2015. * indicates p < 0.05; ** indicates p < 0.01; ** * indicates p < 
0.001. 

City Year ISAD 
SHAPE-

MN 
AREA-

MN 
FRAC-

AM 
LPI LDI AI R2 Moran’I AIC 

Beijing 2000 0.674 *** 0.047 *** 0.064 *** −0.158 *** −0.059 ** 0.296 *** 0.014 *** 0.592 0.724 *** 541094 
 2007 0.541 *** −0.058 *** 0.256 *** −0.212 *** −0.126 *** 0.304 *** −0.026 *** 0.325 0.644 *** 682229 
 2015 0.788 *** −0.095 *** 0.077 *** 0.707 *** −0.349 *** −0.413 *** 0.03 *** 0.759 0.658 *** 393801 

Tianjin 2000 0.777 *** −0.172 *** 0.929 *** −0.482 *** −0.713 *** 0.501 *** −0.021 *** 0.469 0.524 *** 382749 
 2007 0.049 *** −0.203 *** 0.016 0.125 *** 0.75 *** 0.024 −0.054 *** 0.456 0.491 *** 379852 
 2015 0.874 *** −0.083 *** 0.373 *** 0.025 −0.444 *** 0.089 *** 0.001 0.603 0.68 *** 329310 

Langfang 2000 0.769 *** −0.294 *** 1.138 *** −0.578 *** −0.777 *** 0.642 *** −0.094 *** 0.551 0.579 *** 226556 
 2007 0.593 *** −0.403 *** 1.44 *** −1.275 *** −0.689 *** 1.296 *** −0.161 *** 0.366 0.56 *** 264969 
 2015 0.686 *** −0.222 *** 0.996 *** −0.891 *** −0.453 *** 0.835 *** −0.101 *** 0.497 0.658 *** 239078 

Shanghai 2000 0.823 *** −0.015 0.34 *** −0.93 *** 0.128 *** 0.782 *** −0.042 *** 0.607 0.437 *** 192958 
 2007 0.909 *** −0.093 *** 0.791 *** −0.884 *** −0.216 *** 0.798 *** −0.057 *** 0.69 0.391 *** 168755 
 2015 0.814 *** −0.098 *** 0.684 *** −0.326 *** −0.362 *** 0.355 *** −0.039 *** 0.61 0.47 *** 191986 

Ningbo 2000 0.605 *** 0.015 0.132 *** −0.164 *** −0.169 *** 0.307 *** 0.018 ** 0.405 0.645 *** 318874 
 2007 0.816 *** 0.037 ** 0.067 * −0.068 −0.13 *** 0.154 *** 0.011 * 0.667 0.549 *** 235489 
 2015 0.789 *** 0.014 0.149 *** −0.174 *** −0.105 *** 0.239 *** 0.009** 0.684 0.617 *** 229122 

Nanjing 2000 0.722 *** −0.107 *** 0.421 *** −0.828 *** −0.107 * 0.764 *** −0.046 *** 0.471 0.588 *** 215496 
 2007 0.48 *** −0.24 *** 0.469 *** 0.184 * −0.469 *** 0.0189 −0.009 0.194 0.863 *** 264010 
 2015 0.014 *** −0.109 *** −0.371 *** 0.0403 0.911 *** 0.053 −0.052 *** 0.218 0.612 *** 257677 

Guangzhou 2000 0.481 *** 0.074 *** −0.028 −0.438 *** 0.11** 0.449 *** 0.003 0.296 0.599 *** 284862 
 2007 0.592 *** −0.011 0.145 *** −0.328 *** −0.021 0.433 *** 0.026 *** 0.427 0.708 *** 265101 
 2015 0.774 *** 0.001 0.05* −0.048 −0.036 0.183 *** 0.004 0.696 0.6 *** 189168 

Dongguan 2000 0.472 *** 0.051 * −0.092 −0.358 *** 0.29 *** 0.388 *** −0.011 0.314 0.515 *** 92150.1 
 2007 0.677 *** 0.018 −0.099 ** −0.018 0.169 *** 0.153 *** −0.002 0.601 0.543 *** 73249.3 
 2015 0.799 *** −0.021 −0.001 0.121 *** −0.007 −0.02 −0.000001 0.741 0.439 *** 55702.8 

Zhongshan 2000 0.692 *** −0.192 *** 0.551 *** −0.854 *** −0.095 0.716 *** −0.083 *** 0.393 0.606 *** 59497.9 
 2007 0.719 *** −0.061 * 0.413 *** −1.179 *** 0.171 ** 0.987 *** −0.092 *** 0.499 0.575 *** 55615.7 
 2015 0.759 *** −0.125 *** 0.351 *** −0.412 *** −0.025 0.447 *** −0.064 *** 0.529 0.585 *** 52061.1 

Table A3. The modeling results of the LST, the UGSD and the UGSD landscape configuration metrics within different 
cities considered in this study from 2000 to 2015. * indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001. 

City Year UGSD 
SHAPE-

MN 
AREA-

MN 
FRAC-

AM 
LPI LDI AI R2 Moran’I AIC 

Beijing 2000 −0.67 *** 0.018 *** 0.141 *** −0.329 *** 0.381 *** 0.567 *** −0.067 *** 0.623 0.717 *** 519350 
 2007 −0.017 *** −0.072 *** 0.299 *** −0.215 *** −0.501 *** 0.286 *** −0.036 *** 0.297 0.629 *** 693643 
 2015 −0.784 *** −0.033 *** 0.241 *** −0.024 *** −0.222 *** 0.029 * 0.042 *** 0.707 0.703 *** 448522 

Tianjin 2000 −0.586 *** 0.175 *** −0.867 *** 0.159 *** 0.562 *** −0.305 *** 0.055 *** 0.338 0.578 *** 421253 
 2007 −0.643  *** 0.011 * −0.5 *** 0.376 *** −0.044 −0.541 *** −0.004 0.421 0.563 *** 390533 
 2015 −0.695 *** 0.092 *** −0.521 *** 0.087 *** 0.363 *** −0.22 *** −0.0007 0.514 0.697 *** 364348 
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Langfang 2000 −0.72 *** 0.039 *** −0.699 *** 0.289 *** −0.061 *** −0.83 *** −0.004 *** 0.532 0.568 *** 231241 
 2007 −0.749 *** −0.082 *** 0.203 *** 0.303 *** −0.393 *** −0.275 *** 0.031 *** 0.582 0.497 *** 199182 
 2015 −0.75 *** −0.033 *** −0.425 *** 0.479 *** −0.241 *** −0.734 *** 0.007 0.584 0.53 *** 218060 

Shanghai 2000 −0.745 *** 0.078 *** −0.644 *** 0.28 *** 0.122 *** −0.478 *** 0.03 *** 0.562 0.478 *** 203939 
 2007 0.909 *** −0.093 *** 0.791 *** −0.884 *** −0.216 *** 0.798 *** −0.057 *** 0.69 0.391 *** 168755 
 2015 −0.767 *** −0.073 *** −0.232 *** 0.688 *** −0.191 *** −0.633 *** −0.016 ** 0.523 0.527 *** 212543 

Ningbo 2000 −0.444 *** 0.026 *** 0.109 *** 0.002 −0.394 *** −0.073* −0.045 *** 0.412 0.625 *** 317177 
 2007 −0.715 *** 0.015 *** −0.005 −0.092 *** 0.241 *** 0.204 *** −0.065 *** 0.54 0.649 *** 279376 
 2015 −0.809 *** 0.004 −0.072 * −0.355 *** 0.563 *** 0.355 *** −0.063 *** 0.605 0.66 *** 259549 

Nanjing 2000 −0.5 *** −0.009 −0.199 *** 0.014 0.079 * −0.253 *** −0.067 *** 0.304 0.651 *** 242417 
 2007 0.002 0.027 *** −0.037 0.17 *** −0.746 *** −0.445 *** 0.022 ** 0.123 0.849 *** 272507 
 2015 −0.303 *** 0.013 −0.115 *** 0.332 *** −0.517 *** −0.45 *** 0.042 *** 0.178 0.659 *** 262691 

Guangzhou 2000 −0.437 *** 0.033 *** 0.245 *** −0.676 *** 0.535 *** 0.824 *** −0.094 *** 0.349 0.568 *** 275906 
 2007 −0.542 *** 0.039 *** −0.032 −0.168 *** 0.366 *** 0.374 *** −0.048 *** 0.381 0.73 *** 274000 
 2015 −0.728 *** 0.037 *** −0.02 −0.313 *** 0.436 *** 0.445 *** −0.046 *** 0.653 0.632 *** 204422 

Dongguan 2000 −0.453 *** −0.0002 0.259 *** −0.494 *** 0.237 *** 0.589 *** −0.079 *** 0.311 0.514 *** 92337.4 
 2007 −0.687 *** −0.103 *** 0.417 *** −0.767 *** 0.374 *** 0.865 *** −0.115 *** 0.567 0.564 *** 76395.8 
 2015 −0.786 *** −0.044* 0.243 *** −0.354 *** 0.035 0.293 *** −0.044 *** 0.651 0.524 *** 66765.5 

Zhongshan 2000 −0.501 *** 0.013 −0.976 *** 0.607 *** 0.291 ** −0.73 *** 0.007 0.24 0.657 *** 65224 
 2007 −0.605 *** −0.135 *** −0.392 *** 0.221 ** 0.439 *** −0.16 ** −0.072 *** 0.246 0.678 *** 66221 
 2015 −0.54 *** −0.043* −0.35 *** −0.416 *** 0.754 *** 0.366 *** −0.072 *** 0.302 0.669 *** 61937.3 

Table A4. The results by the SEM for the LST, the ISAD and the ISA landscape configuration metrics in different cities 
considered in this study from 2000 to 2015. * indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001. 

City Year ISAD 
SHAPE-

MN 
AREA-

MN 
FRAC-

AM 
LPI LDI AI R2 AIC 

Beijing 2000 0.708 *** 0.017 * 0.007 −0.144 *** 0.023 * 0.126 *** 0.02 *** 0.883 258028 
 2007 0.688 *** 0.011 0.051 ** −0.177 *** −0.029 0.14 *** 0.023 *** 0.737 473592 
 2015 0.863 *** −0.068 *** 0.096 *** 0.088 *** −0.095 *** −0.025 * 0.018 *** 0.906 183419 

Tianjin 2000 0.953 *** −0.122 *** 0.964 *** −1.043 *** −0.601 *** 0.899 *** −0.069 *** 0.707 302773 
 2007 0.008  *** −0.321* 0.555 *** −0.608 *** 0.522 *** 0.666 *** −0.101 *** 0.682 309919 
 2015 1.074 *** −0.052 *** 0.482 *** −0.336 *** −0.446 *** 0.296 *** −0.026 *** 0.864 181627 

Langfang 2000 1.066 *** −0.281 *** 1.241 *** −1.65 *** −0.716 *** 1.521 *** −0.167 *** 0.784 163139 
 2007 0.876 *** −0.316 *** 1.339 *** −1.95 *** −0.588 *** 1.789 *** −0.183 *** 0.682 205517 
 2015 0.951 ** −0.192 *** 1.08 *** −1.554 *** −0.495 *** 1.368 *** −0.144 *** 0.805 155246 

Shanghai 2000 0.889 *** 0.014 0.374 *** −0.664 *** −0.129 *** 0.538 *** −0.028 *** 0.746 159735 
 2007 1.011 *** −0.075 *** 0.723 *** −0.814 *** −0.278 *** 0.717 *** −0.059 *** 0.78 142922 
 2015 0.952 *** −0.059 *** 0.589 *** −0.476 *** −0.271 *** 0.462 *** −0.041 ** 0.759 154920 

Ningbo 2000 0.682 *** 0.08 *** −0.061 ** −0.035 −0.037 0.016 0.029 *** 0.768 215893 
 2007 0.888 *** 0.036** −0.037 −0.074 −0.031 0.073 * 0.026 *** 0.827 166308 
 2015 0.886 *** 0.016 0.007 −0.127 *** 0.003 0.113 *** 0.019 *** 0.863 139198 

Nanjing 2000 0.873 *** 0.012 0.271 *** −0.651 *** 0.079 * −0.253 *** −0.067 *** 0.746 158792 
 2007 0.695 *** 0.028* 0.157 *** −0.257 *** −0.095 *** 0.227** −0.009 0.877 102932 
 2015 0.003 * −0.103 *** 0.114 *** −0.258 *** 0.326 *** 0.275 *** −0.034 *** 0.685 187073 

Guangzhou 2000 0.465 *** 0.059 *** −0.026 −0.146 * 0.043 0.112 0.011* 0.696 209781 
 2007 0.612 *** 0.024 * 0.03 −0.14 ** −0.008 0.118 ** 0.004 0.823 154786 
 2015 0.795 *** 0.032 *** −0.019 −0.082** 0.012 0.071 ** 0.013 *** 0.87 112694 

Dongguan 2000 0.537 *** 0.063** −0.075 * −0.12 0.103 * 0.093 0.007 0.631 74375.7 
 2007 0.73 *** 0.015 −0.095 *** 0.028 0.085 * 0.009 0.007 0.798 53227.4 
 2015 0.865 *** 0.004 −0.041 −0.0007 −0.003 0.007 −0.044 *** 0.837 42713.4 

Zhongshan 2000 0.249 *** −0.077 ** 0.619 *** −0.795 *** −0.269 ** 0.648 *** −0.051 *** 0.719 44037.4 
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 2007 0.817 * −0.05 *** 0.448 *** −0.772 ** −0.132 ** 0.64 *** −0.066 *** 0.762 40533.4 
 2015 0.803 *** −0.036 * 0.347 *** −0.41 *** −0.139 ** 0.352 *** −0.043 *** 0.788 36459.4 

Table A5. The modeling results by the SEM of LST, UGSD and the UGS landscape configuration metrics in different cities 
considered in this study from 2000 to 2015. * indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001. 

City Year UGSD 
SHAPE-

MN 
AREA-

MN 
FRAC-

AM 
LPI LDI AI R2 AIC 

Beijing 2000 −0.7 *** 0.022 *** −0.029 ** −0.017 *** 0.009 0.005 −0.021 *** 0.882 256111 
 2007 −0.003** 0.085 *** −0.052 *** −0.015 −0.421 *** −0.078 *** −0.006 0.722 490252 
 2015 −0.841 *** −0.01 *** 0.011 0.047 *** −0.063 *** −0.075 *** −0.02 *** 0.902 202098 

Tianjin 2000 −0.712 *** 0.081 *** −0.558 *** 0.481 *** 0.157 *** −0.445 *** 0.045 *** 0.683 321000 
 2007 −0.675  *** 0.014 ** −0.39 *** 0.275 *** 0.032 *** −0.386 *** 0.016 *** 0.682 309919 
 2015 −0.771 *** 0.023 *** −0.323 *** 0.345 *** 0.114 *** −0.299 *** 0.014 *** 0.846 205080 

Langfang 2000 −0.891 *** 0.016 *** −0.552 *** 0.335 *** −0.044 * −0.739 *** 0.023 *** 0.768 170234 
 2007 −0.741 *** 0.102 *** −0.76 *** 0.281 *** 0.043 −0.857 *** 0.0345 *** 0.678 206887 
 2015 −0.852 ** −0.027 *** −0.46 *** 0.439 *** 0.009 −0.581 *** 0.021 *** 0.784 162180 

Shanghai 2000 −0.785 *** 0.04 *** −0.398 *** 0.191 *** 0.191 *** −0.3 *** 0.024 *** 0.737 164506 
 2007 −0.774 *** −0.043 *** 0.096 *** 0.05* −0.072 ** −0.037 −0.022 *** 0.757 156928 
 2015 −0.83 *** −0.036 *** −0.293 *** 0.463 *** 0.069 ** −0.406 *** 0.012* 0.74 164919 

Ningbo 2000 −0.496 *** 0.033 *** −0.028 0.041 *** −0.273 *** −0.139 *** 0.004 0.757 221564 
 2007 −0.707 *** 0.013 ** −0.018 −0.016 * 0.041 0.031 * −0.023 *** 0.813 181500 
 2015 −0.853 *** 0.019 *** −0.068 *** −0.025 0.104 *** −0.001 −0.015 *** 0.85 154105 

Nanjing 2000 −0.621 *** 0.007 −0.176 *** 0.143 *** 0.013 −0.232 *** −0.009 0.731 167733 
 2007 0.003 * 0.04 *** −0.148 *** 0.091 *** −0.216 *** −0.213 *** 0.011 ** 0.863 114682 
 2015 −0.43 *** 0.009 −0.109 *** 0.103 *** −0.069 ** −0.164 *** 0.003 0.694 184050 

Guangzhou 2000 −0.427 *** 0.032 *** 0.071 ** −0.175 *** 0.021 0.208 *** −0.013* 0.693 209151 
 2007 −0.498 *** 0.031 *** −0.064 *** 0.009 −0.033 −0.047 ** 0.002 0.819 157696 
 2015 −0.678 *** 0.034 *** −0.076 *** −0.031 ** 0.034 0.013 0.002 0.861 121155 

Dongguan 2000 −0.479 *** 0.029 *** 0.106 * −0.101 ** −0.083 0.106 * −0.015 0.626 74827.3 
 2007 −0.712 *** −0.014 0.165 *** −0.183 *** −0.003 0.199 *** −0.033 *** 0.789 54989.2 
 2015 −0.783 *** −0.019 0.099* −0.172 *** 0.021 0.142 ** −0.015 * 0.818 48173.7 

Zhongshan 2000 −0.619 *** 0.005 −0.595 *** 0.392 0.254 *** −0.438 *** 0.015 0.723 44648.6 
 2007 −0.611 *** −0.011 −0.362 *** 0.298 ** 0.157 ** −0.321 *** 0.01 0.742 43877.6 
 2015 −0.41 *** 0.032 −0.288 *** −0.004 0.264 *** −0.007 0.005 0.763 40265.9 

Abbreviations 
Abbreviations Full Name of Abbreviated Words 
ISA Impervious Surface Area 
UGS Urban Green Space 
LST Land Surface Temperature 
BTH Beijing–Tianjin–Hebei 
YRD Yangtze River Delta 
PRD Pearl River Delta  
UHI Urban Heat Island 
SUHI Surface Urban Heat Island 
LSC Land Surface Components 
ANN Artificial Neural Network 
NDVI The Normalized Difference Vegetation Index 
MNDWI The Modified Normalized Difference Water Index 
BCI The Biophysical Composition Index 
NDBI The Normalized Difference Built-up Index 
ISAD Impervious Surface Area Density 



Remote Sens. 2021, 13, 4008 38 of 40 
 

UGSD Urban Green Space Density 
SHAPE_MN Mean Patch Shape Index 
AREA_MN Mean Patch Size  
FRAC_AM Area-Weighted Fractal Dimension Index 
LPI Largest Patch Index  
LDI Landscape Division Index 
AI Aggregation Index  
OLS The Ordinary Least Squares 
SLM Spatial Lag Model 
SEM Spatial Error Model 
LM Lagrange Multiplier 
R-LM Robust Lagrange Multiplier 
AIC Akaike’s Information Criterion 
MFPNN Multi-layer Feed Forward back Propagation Neural Network 
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