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Abstract: Atmospheric carbon monoxide (CO) significantly impacts climate change and human
health, and has become the focus of increased air quality and climate research. Since 2018, the Tropo-
sphere Monitoring Instrument (TROPOMI) has provided total column amounts of CO (CTROPOMI)
with a high spatial resolution to monitor atmospheric CO. This study compared and assessed the
accuracy of CTROPOMI measurements using surface in-situ measurements (SKME) obtained from an
extensive ground-based network over South Korea, where CO level is persistently affected by both
local emissions and trans-boundary transport. Our analysis reveals that the TROPOMI effectively
detected major emission sources of CO over South Korea and efficiently complemented the spatial
coverage of the ground-based network. In general, the correlations between CTROPOMI and SKME

were lower than those for NO2 reported in a previous study, and this discrepancy was partly at-
tributed to the lower spatiotemporal variability. Moreover, vertical CO profiles were sampled from
the ECMWF CAMS reanalysis data (EAC4) to convert CTROPOMI to surface mixing ratios (STROPOMI).
STROPOMI showed a significant underestimation compared with SKME by approximately 40%, with
a moderate correlation of approximately 0.51. The low biases of STROPOMI were more significant
during the winter season, which was mainly attributed to the underestimation of the EAC4 CO at
the surface. This study can contribute to the assessment of satellite and model data for monitoring
surface air quality and greenhouse gas emissions.

Keywords: carbon monoxide; TROPOMI; surface mixing ratio; Korea; EAC4; climate; air quality

1. Introduction

Major sources of atmospheric carbon monoxide (CO) include the incomplete com-
bustion of fossil fuels, biomass burning, and the oxidation of methane and non-methane
hydrocarbons, predominately activated by the hydroxyl radical (OH). CO is removed by
photochemical oxidation, which consumes OH during the process [1,2], thus affecting the
atmospheric cleansing capacity [2] and lifetime of methane (CH4) [3,4]. In addition, this
reaction produces greenhouse gases such as carbon dioxide (CO2) and tropospheric ozone
(O3); therefore, CO is regulated by worldwide air quality standards and is designated a
significant greenhouse gas with a radiative forcing of 0.23 W m−2 [5]. The lifetime of CO
varies from weeks to months [6], which is long enough to persist through horizontal and
vertical transport but too short to be well mixed globally. Owing to the moderate lifetime
of CO, it is frequently utilized as a tracer for the propagation of pollution [7,8]. For these
reasons, the Monitoring Atmospheric Composition and Climate (MACC) project of the
Global Monitoring for Environment and Security (GMES) program prioritized CO as an
important chemical species for air quality and climate studies [9].
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Nadir-viewing passive sensors provide global distributions of CO retrievals from
either near-infrared or thermal-infrared (TIR) radiances. Since the first measurement of CO
during four flights of the space shuttle between 1981 and 1999 [10], the measurement of
pollution in the troposphere (MOPPIT) has provided decades of global CO retrievals since
2000 from the 1-0 CO absorption band at 4.7 µm [11]. These TIR measurements are sensitive
to CO in the middle troposphere and depend on the spectral resolution and thermal contrast
in the lower troposphere. The Atmospheric Infrared Sounder [12] onboard the Aqua
launched in 2002, the Tropospheric Emission Spectrometer (TES) [13] onboard the Aura
launched in 2004, and the Infrared Atmospheric Sounding Interferometer [14] onboard the
Meteorological Operational (METOP) also utilize this TIR absorption band of CO.

For clear atmospheric conditions, the shortwave-infrared (SWIR) earth-radiances near
the first overtone 2-0 absorption band of CO (between 2.30–2.39 µm) is negligibly affected
by scattering in the atmosphere but is dominated by atmospheric absorption and surface
reflectance. Therefore, SWIR measurements are sensitive to the total column amount
of CO along the light path, making CO retrievals using these wavelengths suitable for
detecting emission sources of CO. In addition to the more recent progress of the MOPITT
using its SWIR measurements [15], the Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography [16] on the Envisat satellite has provided continuous time
series of global CO SWIR measurements since 2002. Worden et al. (2010) combined the
TIR and SWIR measurements of MOPITT to retrieve global CO trends and assessed its
theoretical information content, which showed increased retrieval sensitivity near the
surface compared with those using a single band [17]. In October 2017, the TROPOspheric
Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) of the European
Space Agency (ESA) was launched and continues to measure CO using SWIR radiances
with higher spatial resolution and better radiometric performance [18]. Moreover, the
TROPOMI allows for the detection of weak regional sources, such as individual wildfires,
from its daily overpasses.

The retrieval sensitivity of CO near the surface is critical for the operational use of
satellite data for air quality and climate applications, as its emissions and major chemical
interactions occur within the boundary layer. In addition to the nadir-viewing sensors,
instruments on solar occultation satellites such as the Atmospheric Chemistry Experiment-
Fourier Transform Spectrometer (ACE-FTS) on board SCISAT [19–21], or of a limb viewing
geometry including the Michelson Interferometer for Passive Atmospheric Sounding (MI-
PAS)/ENVISAT [22] and Microwave Limb Sounder (MLS) /Aura [23] provide informative
CO profile retrievals. However, CO retrievals from these sensors are limited by their
lower horizontal resolution and coverage compared with those from the nadir viewing
instruments; therefore, they are not suitable for accurately identifying regional emissions.
Retrievals using both SWIR and TIR radiances show promising results with high sensitivity
near surfaces [17]; however, to the best of our knowledge, these retrieval data are not
currently available as an operational product. To overcome the limitations of satellite
products, previous studies have combined model simulations and column retrievals from
satellites to derive surface concentrations of aerosols [24] and to trace gases [25].

Zhang et al. (2020) reported that the annual mean values of the MOPITT CO over
Asia decreased significantly at a rate of 0.58 ± 0.15% per year from 2003 to 2017 and associ-
ated this decrease with reduced biomass burning over southeast Asia during the spring
season [26]. Similar results were reported by Buchholz et al. (2021), who demonstrated a
decreasing global CO trend of approximately 0.5% per year between 2002 and 2018 based
on MOPITT data. They also attributed the significant decline in CO over Northeast China
from 2002 to 2018 to improvements in combustion efficiency [27]. Zheng et al. (2018)
suggested that decreased CO emissions in China from four primary sectors (iron and
steel industries, residential sources, gasoline-powered vehicles, and construction materials
industries) could be responsible for 76% of the inversion-based trend of east Asian CO
emissions [28]. Kang et al. (2019) estimated that the anthropogenic contribution of CO
decreased to approximately 94% from 2001 to 2011 over east China [29]. Figure 1 shows
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the mean total column amounts of CO over east and southeast Asia for 2019 from the
TROPOMI, which were binned to a 0.05◦ × 0.05◦ horizontal grid. To calculate the average
values, the CO data with a quality flag greater than or equal to 0.5, were sampled. As
shown in this figure, significant amounts of CO prevailed over east China throughout
2019, which also affected downwind regions, including the Korean peninsula [30]. Jeong
and Hong (2021) derived surface-level NO2 by combining the TROPOMI and reanalysis
data to assess long-term exposure for epidemiological studies [25]. They compared the
estimated NO2 with an extensive ground-based network over South Korea managed by the
Korean Ministry of Environment (KME). To the best of our knowledge, only a few studies
have compared satellite-retrieved and ground in-situ CO measurements, despite their
significance for assessments of satellite retrievals [31,32]. This study is a follow-up study
of [25], which aimed to compare and assess CO products of the TROPOMI (CTROPOMI)
for complementing surface measurements using an extensive ground-based network over
South Korea, and thereby to contribute to the improvement of our understanding of the air
quality impacts of CO and provide a guideline for climate studies.

Figure 1. Average CO total column amounts for 2019 from TROPOMI binned to a 0.05◦ × 0.05◦

horizontal grid over east and southeast Asia. TROPOMI CO data with quality flags ≥0.5 were used
to calculate the average values.

2. Data
2.1. TROPOMI Total Column Density of CO

The TROPOMI is the unique payload of the S5P satellite mission and has measured
reflected solar light by the Earth using two spectrometer modules since 2017: one covering
the ultraviolet–visible (270–495 nm) and near-infrared (675–775 nm) spectra and the other
covering the SWIR between 2305 and 2385 nm. The SWIR spectrometer was developed
by Surrey Satellite Technology Limited, United Kingdom, and has a spectral resolution
of approximately 0.25 nm with a sampling resolution of approximately 0.1 nm. The
TROPOMI also measures the Sun directly through the irradiance port and internal diffuser
for calibration [18,33].

The SWIR measurements of the TROPOMI feed the Shortwave Infrared CO Retrieval
(SICOR) algorithm to retrieve total CO column amounts and effective cloud parameters
(i.e., cloud optical thickness and cloud center height) [34,35]. The SICOR algorithm is
based on the SCIAMACHY heritage [36] and is improved for cloudy and aerosol-loaded
atmospheres. The inversion utilizes a profile-scaling method based on monthly averaged
vertical profiles of CO from the global chemistry transport model, version 5 (TM5) [37].
Moreover, it generates vertically integrated columns of CO with an averaging kernel for
each retrieval [35], which are tested extensively using SCIAMACHY measurements and
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cover the TROPOMI spectral range with a similar spectral resolution [38]. The SICOR
algorithm consists of two steps. In the first step, the SICOR algorithm retrieves the total
amount of CH4 from the TROPOMI radiances between 2315 and 2324 nm to filter optically
thick clouds and aerosols assuming a non-scattering atmosphere. A full-physics algorithm
retrieves CTROPOMI in the second step from radiances between 2324 and 2338 nm. The
CH4 retrievals from the first step were used to derive the effective cloud parameters at this
stage. One of the merits of the SICOR algorithm is that it provides reliable retrievals for
cloudy conditions because the sensitivity of the measurement to the CO above the cloud is
utilized to retrieve CTROPOMI assuming a certain vertical profile shape from the TM5 [35].
In addition, the high reflectance of the cloud enhances retrieval sensitivity.

Borsdorff et al. (2018) compared CTROPOMI with the European Center for Medium-
Range Weather Forecasts (ECMWF)/Integrated Forecasting System (IFS) products of the
Copernicus Atmosphere Monitoring Service (CAMS), which assimilates IASI and MOPITT
observations of CO [35,39]. Both CO observations show a marginal mean difference of
3.2 ± 5.5% with a Pearson correlation coefficient (r) of 0.97. Martínez-Alonso et al. (2020)
compared CTROPOMI to the MOPITT and airborne (ATom, Atmospheric Tomography mis-
sion) datasets, which showed excellent agreement with a mean bias of less than 3.73% [40].
CTROPOMI also showed good agreement with ground-based Total Carbon Column Observ-
ing Network (TCCON) measurements, with a mean bias of about 6.2 ppb [41]. In general,
the accuracy and precision of the CO data product meets the level 2 user requirements:
within an accuracy of <15% and a precision with ≤10%.

2.2. Surface Network of CO Measurements

The KME has monitored particulate matter, NO2, CO, O3, and SO2 since the 2000s
from extensive surface air quality monitoring stations in South Korea. In 2019, 569 stations
measured the surface mixing ratios of CO. These stations are predominately situated
at ambient locations in urban and rural areas far from major roadways and typically
deployed on the roofs of public buildings with fewer than five stories. To monitor roadside
air quality, several stations (41 in 2019) are situated near major roads with a height of
approximately 2.5 m above the ground level. The KME measures CO mixing ratios based
on a nondispersive method using CO analyzers (model 3008, Dasibi Environmental Corp.;
US Environmental Protection Agency reference method RFCA-0488-067) with a lower
detection limit of 0.1 ppm and response time of 120 s. Linearity of the detector is better
than 1%, and span drift is about ±1% for 24 h and ±2% for one week. Instruments are
inspected monthly. The standard inspection procedure consisted of a two-step process: first,
abnormal samples were screened based on the conditions of the instrument (i.e., calibration,
inspection, or malfunction). Next, data exceeding the normal range or rate of change were
screened [42,43]. Five minutes of temporal resolution of the raw data was averaged hourly
after the quality assurance procedures and then reported to the public [42].

2.3. ECMWF Atmospheric Composition Reanalysis 4

The 4th generation global CAMS reanalysis data of the ECMWF (EAC4) assimi-
lates the total column CO, tropospheric column NO2, aerosol optical depth, and total
column/profiles of O3 from satellite retrievals to furnish the three-dimensional fields of
these species [44]. The EAC4 covers the period from 2003 with a three-hour temporal
resolution and a horizontal resolution of approximately 80 km (0.75◦ × 0.75◦) at 60 vertical
model grids. The EAC4 assimilates the MOPITT TIR total column CO (TCCO, Version 6)
retrievals that are sensitive to those in the mid and upper troposphere [45]. We sampled the
vertical profile shape of the CO from EAC4 to convert CTROPOMI to a surface-mixing ratio
(STROPOMI) for comparison with the surface measurements (SKME). Table 1 summarizes the
measurement parameters for CO used in this study, obtained from different sources.
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Table 1. Descriptions of different parameters of CO from TROPOMI, surface measurements, and
reanalysis data (EAC4).

Acronym Definition

CTROPOMI Total vertical column density of CO from TROPOMI
CEAC4 Total vertical column density of CO from EAC4

SKME
Surface mixing ratio of CO from ground network of

Korea Ministry of Environment
STROPOMI Surface mixing ratio of CO converted from CTROPOMI

SEAC4 Surface mixing ratio of CO from EAC4

3. Results
3.1. Comparison of Spatial Distributions of CO from TROPOMI and Ground Network

The mean values of CTROPOMI for 2019 over South Korea are shown in Figure 2 and
were binned to a comparable resolution of the TROPOMI (0.05◦ × 0.05◦ horizontal grid).
Panel (a) of Figure 2 represents South Korea, and panels (b) to (d) focus on the most
significant emission areas of CO in the domain of panel (a). In general, high CTROPOMI
values were observed in eastern South Korea, where the low CTROPOMI vales in Figure 2a
were predominately observed over mountainous areas. Figure 2b depicts the values over
the Seoul metropolitan area, where more than half of the Korean population (~26 million)
is distributed. As shown in this figure, the TROPOMI clearly indicate high values of
the CTROPOMI over Seoul, Incheon, and active ironworks in Dangjin. One of the largest
industrial complexes in Gwangyang and the ironworks in Pohang resulted in a significant
CO burden, as shown in Figure 2c,d, respectively. Large amounts of CTROPOMI over the
western sea of the Korean peninsula are likely associated with trans-boundary transport
from East China [30] (also see Figure 1).

Figure 2. Average TROPOMI CO total columns for 2019 binned to a 0.05◦ × 0.05◦ horizontal grid over (a) South Korea,
(b) Seoul metropolitan area, (c) Gwangyang, and (d) Pohang. TROPOMI CO data with quality flags ≥0.5 were used to
calculate the average values to avoid optically thick cloud and aerosol contaminations. The black circles in panel (a) indicate
major CO sources in South Korea.
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The annual mean value of the CO surface mixing ratio measured by the KME net-
work in South Korea is shown in Figure 3. The domains of the panels in Figure 3 are
the same as those shown in Figure 2. As shown in this figure, the KME network was
densely distributed over highly populated areas, particularly in cities situated in the Seoul
metropolitan area (Figure 3b). Such strategic distribution of the ground-based network is
efficient for monitoring NO2, which is predominantly emitted from transportation in South
Korea [25]. However, these network spatial distributions are not optimal for monitoring
CO, as this compound is predominately emitted from industrial activities. As indicated in
Figures 2 and 3, a vast number of stations over the Seoul metropolitan area demonstrate
the spatial distribution of CTROPOMI (indicated by the comparison of Figures 2b and 3b),
whereas the sparse distribution of surface measurements detected limited areas of the emis-
sion sources (as shown by comparing the lower panels of Figure 2 with those of Figure 3).
Satellite retrievals, such as TROPOMI, can efficiently complement such limitations of
ground-based networks.

The circles and squares in Figure 2 indicate ambient and roadside monitoring stations,
respectively; Jeong and Hong (2021) reported significantly higher values of NO2 from the
roadside stations than the nearby ambient monitoring sites [25]. By comparing the values
of the circles and squares in Figure 2b, we determined that unlike NO2, the CO mixing
ratios measured at roadside stations did not show significant differences from those at
ambient monitoring stations. This is likely due to the relatively longer lifetime of CO; the
emitted burden of CO remains in the atmosphere for a sufficient period to be well-mixed
within a boundary layer over the Seoul metropolitan areas. Therefore, CTROPOMI is likely
to experience less horizontal heterogeneity within its footprint but is more closely related
to boundary layer height.

Figure 3. Mean values of surface CO mixing ratio from ground air-quality monitoring network of
Korea Ministry of Environment in 2019. Panel (a) depicts the values over South Korea, and panels
(b–d) show large emission sources in domain (a). Panel (b) represents the Seoul metropolitan area,
and panels (c,d) indicate industrial complexes in Gwangyang and ironworks in Pohang, respectively.
The squares within these panels indicate air quality monitoring stations on the side of roads with
heavy traffic and the circles represent ambient air quality monitoring sites.
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Figure 4a compares the annual mean values of CTROPOMI and SKME over the KME
stations. CTROPOMI values within ±0.025◦ from each ground station were averaged for
spatial collocation. Note that the CTROPOMI and SKME are not linearly comparable due
to the spatiotemporal variabilities of vertical profile. However, as a major fraction of
CO supposed to be distributed within the mixing layer, we expect such comparison may
provide a primitive but basic assessment of the satellite retrievals before converting the
CTROPOMI to surface mixing ratio for direct comparison. The green circles and red rectangles
in Figure 4a represent the ambient urban/rural monitoring stations and roadside stations,
respectively. The RMSE denotes the root-mean-square error, and the MBE represents
the mean bias error. For a similar comparison for NO2, the annual mean values of the
TROPOMI and surface measurements show a high correlation (r = 0.84), particularly over
the ambient monitoring sites (r = 0.88) [25]. However, the correlation between CTROPOMI
and SKME was lower (r = 0.37), partly attributed to the lower variability of CO compared to
that of NO2. As discussed, the comparison for the roadside monitoring stations did not
show a notable difference from that of the ambient sites (revealed by comparing the green
circles and red squares in Figure 4a). Spatiotemporally coincident samples (CTROPOMI
within ±0.025◦ of the KME stations and SKME within ±30 min of the TROPOMI overpass
time) of CTROPOMI and SKME in 2019 are compared in Figure 4b, and show a slightly lower
correlation (r = 0.33) than that in panel (a).

Figure 4. Comparison of total column CO from TROPOMI (CTROPOMI) and in-situ surface mixing ratio from KME network
(SKME) over South Korea in 2019. Panel (a) compares annual mean values at each station, and panel (b) compares all
collocated samples. Green circles and red rectangles in panel (a) indicate ambient and roadside monitoring stations,
respectively. The RMSE stands for root-mean-squared-error, and the MBE denotes mean-bias-error.

The correlation coefficients between CTROPOMI and SKME at each KME station in 2019
are shown in Figure 5. In general, a higher correlation appeared near the emission sources
of CO owing to the higher retrieval sensitivity of the TROPOMI and variability of CO. For
NO2, the correlations between the TROPOMI retrievals and KME measurements over the
roadside stations (squares) were significantly lower than those over the ambient stations
(circles) because of their higher spatiotemporal variability near the source areas [25]. Such
differences were not observed for CO, as shown in this figure, which was attributed to its
relatively longer lifetime, as shown in Figure 3.
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Figure 5. Correlation coefficients between CTROPOMI and SKME at the KME monitoring stations
over (a) South Korea, (b) Seoul metropolitan area, (c) industrial complexes in Gwangyang, and
(d) ironworks in Pohang in 2019. Circles and squares represent ambient air-quality monitoring sites
and roadside air-quality monitoring stations, respectively.

The TROPOMI retrievals utilize the profile-scaling method based on monthly averaged
vertical profiles of CO from the TM5 [35,37], thus the ratio of SKME to CTROPOMI is assumed
to be higher near strong emission sources: the CO mixing ratio at the surface of these
areas is likely higher than that at ambient (well-mixed) stations. The ratios over the KME
stations are shown in Figure 6 and were significantly high near emission sources in South
Korea. The ratios along the coastal line were highly variable at each station, and could
likely be attributed to complex boundary layer processes occurring over these areas (see
Figure 6c,d). A similar complexity was observed for NO2 [25], which again emphasizes
the importance of intensive field campaigns combined with model simulations over these
areas (e.g., ozone water-land environmental transition study [46]).

3.2. Estimation of CO Surface Mixing Ratio from TROPOMI and CAMS Reanalysis Data

To derive surface air quality from satellite data, Jeong and Hong (2021) utilized the
ratio of surface mixing ratios to total column amounts from the EAC4, which are multiplied
by CTROPOMI as follows [25]:

STROPOMI =
SEAC4

CEAC4
CTROPOMI (1)

where STROPOMI is the estimated surface CO mixing ratio from CTROPOMI, and SEAC4 and
CEAC4 are the surface mixing ratio and total column amount of CO from EAC4, respectively.
As the CAMS model system (for EAC4) and TM5 (for CTROPOMI) utilizes the same chemical
mechanism, which is a modified and extended version of the CB05 [47,48], we expected
the biases that arose from the different averaging kernels to be minimized. Furthermore,
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some of the systematic biases (e.g., emission inventory) could be canceled out because the
ratio of SEAC4 to CEAC4 was relatively more accurate than their absolute values.

Figure 6. Ratio of surface mixing ratio to total column density for CO at the KME monitoring stations
over (a) South Korea, (b) Seoul metropolitan area, (c) industrial complexes in Gwangyang, and
(d) ironworks in Pohang in 2019. Circles and squares represent ambient air-quality monitoring sites
and roadside air-quality monitoring stations, respectively.

Figure 7 shows the annual statistics of the CO vertical profiles from the EAC4 of
longitudes from 125◦ to 131◦ and latitudes from 33◦ to 39◦. The black line with circles
depicts the mean values of the CO mixing ratio at each layer, the dark gray area indicates
the standard deviation (±σ), and the light gray area shows the data range (minimum and
maximum values) at each level. The mean values with a ±σ of SKME for entire stations are
indicated by the red circle with an error bar (466 ± 218 ppb), which was significantly higher
than that of the EAC4 (193 ± 95 ppb). This difference is partially attributable to the spatial
coverage of the KME network; most of the ground stations are located near urban areas
or large emission sources, whereas the EAC4 values in this figure were calculated from
data over the entire target region of South Korea. The mean (±σ) values of CTROPOMI over
this target domain and over the KME stations were 24.8 (±3.6) × 1017 molec. cm−2 and
25.3 (±4.5) × 1017 molec. cm−2, respectively. The horizontal heterogeneity of CO within
a TROPOMI pixel is relatively small due to its moderate lifetime; therefore, the spatial
coverage of the KME stations does not fully explain the difference between SKME and
SEAC4. Turquety et al. (2008) [49] compared the Laboratoire de Météorologie Dynamique,
zoom; version 4 (LMDz) and Interactive Chemistry and Aerosols; version 2 (INCA) model
simulations [50,51] to the Measurement of Ozone and Water Vapor on Airbus In-Service
Aircraft (MOZAIC) aircraft-based in-situ profiles [52] over Asia, and reported relatively
lower biases of CO from the model in the troposphere, suggesting the underestimation of
CO emissions. The uncertainties of CO emissions over South Korea in the EAC4 may have
propagated errors in the CO vertical profiles, particularly near the surface, which could
have affected the difference between SKME and SEAC4.
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Figure 7. Statistics of CO vertical profiles from ECMWF CAMS reanalysis data (EAC4). The black
line with circles indicates the mean values at each level, the dark gray area indicates ±one standard
deviation, and the light gray area shows the minimum and maximum values. Profiles were sampled
at longitudes from 125◦ to 131◦ and latitudes from 33◦ to 39◦ in 2019. The red circle denotes the mean
CO value from all stations of the KME network for 2019, and the red line presents its ±one standard
deviation.

The surface mixing ratios of CO from EAC4 and derived from TROPOMI were com-
pared with the KME measurements in Figure 8. A comparison between Figures 4 and 8
reveals that the correlations of the CO surface mixing ratios between the different sources
showed a higher correlation (r = 0.48–0.51) than that between SKME and CTROPOMI. More-
over, STROPOMI shows a slightly higher correlation with SKME than that between SEAC4
and SKME with a statistical significance (z-score of about 4.04). The slope of the regres-
sion line between the STROPOMI and SKME also shows slightly better consistency than that
between the SEAC4 and SKME (t-value of about 6.9). Accordingly, the RMSE and MBE
values between the STROPOMI and SKME were lower than those between the SEAC4 and
SKME, which quantifies the benefit of using TROPOMI to derive the surface CO mixing
ratio. However, such agreement between the STROPOMI and SKME was lower than that for
NO2 using the identical technique over the same spatiotemporal domain [25], and the low
bias of STROPOMI (MBE = −187.6 ppb) compared to SKME was still significant with respect
to the average value of SKME (466 ± 218 ppb) which is discussed at following figures.
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Figure 8. (a) Comparison of surface CO mixing ratios from ECMWF CAMS reanalysis data (SEAC4) and measured from
KME stations (SKME) over South Korea for 2019. Panel (b) compares the ratios estimated from TROPOMI (STROPOMI) and
SKME during the same period.

Monthly mean values of CTROPOMI (red circles) and CEAC4 (green squares) are shown
in Figure 9a. The dark colors indicate the mean values over the KME stations, and
the lighter colors depict those over the entire domain of South Korea (longitudes from
125◦ to 131◦ and latitudes from 33◦ to 39◦). Over the KME stations, the mean CEAC4
values were lower than those of CTROPOMI throughout the year by approximately 10%
(2.6 × 1017 molec. cm−2). This could be partly attributed to the lower spatial resolution of
the EAC4 (i.e., approximately 80 km) compared to that of the TROPOMI (i.e., approximately
7 km), as the greater collocated pixels of the EAC4 for each site may contain a greater
fraction of background areas around the KME stations. The average values of CEAC4 and
CTROPOMI over broader and identical spatial domains experienced these sampling issues to
a lesser degree, as demonstrated by the light colors in Figure 9a. The mean values of CEAC4
over the entire target domain were 7% lower than those of CTROPOMI. Regarding similar
comparisons, Borsdorff et al. (2018) reported biases of approximately ±15% depending
on the region (see Figure 2 of [35]), and we expected that these biases were within the
uncertainty ranges of CTROPOMI and CEAC4. In addition, the monthly variations over the
KME stations showed an excellent correlation (r = 0.98), as shown in Figure 9a.

As shown in Figures 7 and 8, significant underestimations of SEAC4 (by approximately
46%) and STROPOMI (by approximately 40%) compared to SKME were also observed in the
monthly mean values of these parameters throughout the year (Figure 9b). The black
diamonds in Figure 9b depict the monthly mean values of SKME for 24-h measurements,
and the blue squares indicate those for the TROPOMI overpass time. In general, the SKME
values were high in winter and low in summer, despite the CTROPOMI peak observed in
March (revealed by comparison of Figure 9a,b). The high CTROPOMI values in March were
likely associated with active biomass burning over southeast Asia, whereas the SKME peak
in January was attributed to the stable boundary layer during this period. The mean
SKME values from 24-h samples and from the TROPOMI overpass time showed slight
differences of approximately 6–10% in spring and winter but comparable values in summer,
which was attributed to diurnal boundary layer development. Note that the NO2 from the
KME at the TROPOMI overpass time was consistently lower by approximately 23% than
the 24-h mean values because of a combination of its chemical processes and boundary
layer development during the daytime [25]. The monthly mean SEAC4 values showed
generally similar tendencies (r = 0.89), but with significantly low biases throughout the
year, particularly in winter. Such relatively low biases of SEAC4 resulted in similar degrees
of underestimation of STROPOMI, as presented in Figure 9b.
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Figure 9. (a) Monthly variations of total column CO from ECMWF CAMS reanalysis data (CEAC4;
green square) and TROPOMI (CTROPOMI; red circle) in 2019. Dark colors of this panel depict their
mean values over the KME stations, and light colors indicate the mean values over the entire South
Korean domain (125◦ to 131◦ longitude and 33◦ to 39◦ latitude). Panel (b) presents monthly variations
in the surface CO mixing ratio from the KME stations (black diamond: 24-h average, blue square: at
TROPOMI overpass time, approximately 13:00 local time), EAC4 (green circle), and the TROPOMI
(red triangle).

4. Summary and Discussions

This study aimed to assess CTROPOMI using an extensive ground-based network over
South Korea to derive the surface mixing ratio of CO over the globe, key information in
understanding its role in the regional air quality climate. Our analysis reveals that the
CO concentration over South Korea is persistently affected by both local emissions and
trans-boundary transport, emphasizing the importance of satellite-based remote sensing
over the region. The TROPOMI accurately detected major sources of CO over South Korea
(e.g., Seoul, Dangjin, Pohang, and Gwangyang), complementing the spatial coverage of
ground-based networks. In general, the correlations between CTROPOMI and SKME (r = 0.33
for all coincident samples, r = 0.37 for annual mean values at each site) were lower than
those for NO2 reported in a previous study [25], and this observation was partly attributed
to the lower spatiotemporal variability. Moreover, higher correlations were observed near
the emission sources. We utilized vertical profiles from EAC4 to convert the total column
amounts of CO from TROPOMI to the surface mixing ratio. This converted STROPOMI was
directly compared to SKME, which showed a significant underestimation of approximately
40%, with a moderate correlation of approximately 0.51. The relatively low biases of
STROPOMI were more significant in winter and were associated with the underestimation
of SEAC4.

Turquety et al. (2008) also reported a significant underestimation of CO (by approxi-
mately 49% below 850 hPa) from the LMDz-INCA model compared to the MOZAIC aircraft
measurements over highly polluted areas in Bangkok, Thailand. They suggested that part
of this underestimation could be attributed to the relatively low horizontal resolution of the
model (i.e., 3.75◦ in longitude 2.5◦ in latitude) [49], which may not accurately resolve highly
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polluted areas. Moreover, Khan et al. (2017) also reported a significantly low bias of the
MOPITT CO compared to the KME measurement in Seoul, South Korea, by approximately
35%, with a low correlation of 0.28 [53]. To the best of our knowledge, the factors affecting
the low biases of the surface CO mixing ratio from satellites and models over this region
remain uncertain. Intensive field campaigns combining various chemistry models of high
spatial resolution (comparable to that of the TROPOMI) and in-situ profile measurements
(e.g., from aircraft or unmanned aerial systems) may help to better understand these dis-
crepancies. Moreover, multi-band retrievals of CO using both SWIR and TIR [17] may also
help to detect the surface burden of CO more efficiently over a broader region. One of the
important merits of this study is that this method is applicable to other regions (e.g., other
Asian or developing countries, where in-situ measurements are sparse) as the EAC4 and
TROPOMI provides relatively uniform quality over globe. However, comparison studies
between the satellite retrievals and surface measurements are essential for broader regions
to understand uncertainties in the assumed CO profiles and emissions.
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