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Abstract: Cross-view geolocalization matches the same target in different images from various views,
such as views of unmanned aerial vehicles (UAVs) and satellites, which is a key technology for
UAVs to autonomously locate and navigate without a positioning system (e.g., GPS and GNSS). The
most challenging aspect in this area is the shifting of targets and nonuniform scales among different
views. Published methods focus on extracting coarse features from parts of images, but neglect the
relationship between different views, and the influence of scale and shifting. To bridge this gap, an
effective network is proposed with well-designed structures, referred to as multiscale block attention
(MSBA), based on a local pattern network. MSBA cuts images into several parts with different scales,
among which self-attention is applied to make feature extraction more efficient. The features of
different views are extracted by a multibranch structure, which was designed to make different
branches learn from each other, leading to a more subtle relationship between views. The method
was implemented with the newest UAV-based geolocalization dataset. Compared with the existing
state-of-the-art (SOTA) method, MSBA accuracy improved by almost 10% when the inference time
was equal to that of the SOTA method; when the accuracy of MSBA was the same as that of the SOTA
method, inference time was shortened by 30%.

Keywords: cross-view image matching; geolocalization; UAV image localization; deep neural
network

1. Introduction

Unmanned aerial vehicles (UAVs) have rapidly developed in recent years and gradu-
ally become the main platform for remote-sensing image acquisition due to their convenient
operation and strong data-collection capabilities. Alexander et al. [1] used data from a UAV
to locate trees in a rainforest. Ammour et al. [2] proposed a deep-learning method of detect-
ing cars in UAV imagery. Deng et al. [3] applied UAV-based multispectral remote sensing
to precision agriculture. UAV application involves many fields, such as photogrammetry,
agriculture, and mapping [4–7]. However, the current positioning and navigation of UAVs
mainly rely on positioning systems such as GPS and GNSS. How to achieve autonomous
positioning and navigation of UAVs without the assistance of positioning systems is a
challenging task. Cross-view image-matching technology matches a satellite image with
geographic location tags and UAV images without geographic location tags, so as to realize
UAV image positioning and navigation.

Cross-view geolocalization has been a research focus in recent years due to the huge
application value of geolocalization. Many previous approaches focus on extracting hand-
crafted features from images [8–11]. With the rapid development of the performance of
convolutional neural networks, many studies used a CNN to automatically extract robust
features in images. To bridge the gap between images of different views, the Siamese
network was proposed [12], which is helpful for a model to learn viewpoint-invariant
features. Liu et al. [13] designed a network to encode pixels in images by orientation. Hu
et al. [14] proposed a Siamese-like architecture, acquiring more robust feature description
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by using NetVLAD [15]. Another line of works focused on metric learning and studied
various loss functions to learn discriminative features. In order to close the gap between the
learned and true distribution, Liu et al. [16] proposed stochastic attraction and repulsion
embedding loss. Vo et al. [17] showed that explicit orientation supervision can improve
location prediction accuracy by orientation regression loss. Some other works focused
on domain alignment. Shi et al. [18] applied polar transform to warp aerial images, and
realize the alignment between aerial and ground views. Further, they designed a DSM
method [19] by adopting a dynamic similarity-matching network to estimate cross-view
orientation alignment during localization. Most of the above work was carried out on two
datasets, CVUSA [20] and CVACT [13], which are used for matching ground-view and
satellite-view images. Zheng et al. proposed UAV-based dataset University-1652 [21], and
examined image-retrieval tasks from a classification perspective. The model optimized by
instance loss [22,23] could learn more discriminative embeddings than ranking loss could.
In a recent work, inspired by partition strategies [24–27], Wang et al. [28] proposed a local
pattern network (LPN) concentrating on matching drone- and satellite-view images based
on University-1652. LPN incorporated contextual information in cross-view geolocaliza-
tion, and applied a rotation-invariant square-ring feature partition strategy to enable the
network to focus on auxiliary information such as houses, roads, and trees, locating around
the geographic target, which was a breakthrough in the field of cross-view geolocalization.

The goal of attention is to focus on salient features and suppress irrelevant features [29].
Research in the field of Re-id is quite extensive [30–34], but rare in cross-view geolocal-
ization. One line of works used convolutional operations with small receptive fields on
feature maps. Inspired by SE-Net [35], Wang et al. [36] proposed a full attention block
(FAB) to prevent the loss of spatial information. To maximize complementary information,
Li et al. [37] formulated the HA-CNN for the joint learning of soft pixel attention and
hard regional attention. Chen et al. [38] considered previous works, focused on coarse
attention, and explicitly enhanced the discrimination and richness of attention knowledge.
Another line of works widened the receptive field to introduce more contextual informa-
tion. Wang et al. [39] stacked attention modules to generate attention-aware features, and
applied attention residual learning to train deep networks. Yang et al. [40] designed an
intra-attention network search for informative and discriminative regions in images. Zhang
et al. [41] inserted a nonlocal block [42] before the encoder–decoder style attention module
to enable attention learning based on globally refined features. In a recent work, Zhang
et al. [29] mined the relation representation between feature nodes to learn semantics and
infer attention.

Since Hinton et al. [43] proposed the distillation of knowledge in 2015, joint learning
has been rapidly developing in the field of deep learning. Borrowing this idea, Romero
et al. [44] used large, powerful, and easy-to-train networks to guide small but harder-to-
train networks. JIM et al. [45] regarded the flow between layers computed by the inner
product of feature maps between layers as distilled knowledge. In a recent work, Wang
et al. [46] encoded the features into a pyramid structure, and encouraged shorter codes to
mimic longer codes by self-distillation. Different from the above distillation-based method,
Zhang et al. [47] presented a deep mutual learning (DML) strategy with an ensemble of
students learning collaboratively and teaching each other throughout the training process.

However, most of above cross-view methods focus on global information, and few
focus on contextual information. Existing hard part-based representation learning strate-
gies ignore the offset and scale of the location, and there are few attention mechanisms
specifically designed for cross-view geolocalization. To overcome the above shortcomings,
we achieved the following improvements:

1. The existing partition strategy was improved, such that the proposed model is more
robust to offset and scale changes. Different from existing works, the model was divided
into global and local branches, which were trained together to combine the whole and
parts (see Sections 2.2–2.4).
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2. An attention mechanism is proposed for cross-view geolocalization and the partition
strategy. Specifically, the attention module finds the relationship between regions and
makes each region pay attention to different features (see Section 2.5).

3. We minimized KL divergence loss to narrow difference between domains (see
Section 2.6).

4. As a result, the model achieved outstanding performance. The test results on the
benchmark dataset showed that the accuracy of the model in the task of matching drone
and satellite images greatly exceeded that of the best existing model. Moreover, compared
with the SOTA method, the model reduced inference time by 30% and achieved the same
level of accuracy. When inference time was almost the same, the accuracy of the model
was much ahead of that of the SOTA method (see Section 3).

2. Materials and Methods
2.1. Datasets and Evaluation Indicators

The research was conducted on University-1652, released by Zheng [21]. University-
1652 contains 1652 locations or so-called geographic targets from 72 universities from all
over the world. Each geographic target contains three views: satellite, drone, and street
views. Each target has 1 satellite-view image, over 50 drone-view images from different
filming angles and heights, and a few street-view images. Satellite and drone views were
selected for this research, and the performance of the method was tested in matching these
two views. Method performance is mainly reflected in two tasks, Drone→ Satellite and
Satellite → Drone. Specifically, the purpose of the former is giving a drone image and
finding the drone image of the same place; the purpose of the latter is giving a satellite
image and finding the K satellite images of the corresponding place. The details of the
query and gallery in the datasets are shown in Table 1. In the testing dataset of the Drone
→ Satellite task, there was only one true-matched satellite-view image for each drone-view
image.

Table 1. Statistics experimental data. Including the image number of query set and gallery set for
different geolocalization tasks.

Training Dataset

Views Numbers of Buildings Numbers of Images

Drone 701 37,854
Satellite 701 701

Testing Dataset

Views Numbers of Buildings Numbers of Images

Dronequery 701 37,854
Satellitequery 701 701
Dronegallery 951 51,355

Satellitegallery 951 951

Satellite-view images with geotags were from Google Maps. Google Maps images
have a similar scale to that of drone-view images and high spatial resolutions (from level
18 to 20, the spatial resolution ranges from 1.07 to 0.27 m).

Due to airspace control and high cost, it is very difficult to collect a large number
of real drone-view images, so the drone-view images were simulated by the 3D model
provided by Google Earth. The view in the 3D model spirally descends, and the height of
view from 256 to 121.5 m, while images were recorded at regular intervals, so as to obtain a
large number of drone images close to the real world.

In the field of cross-view matching and image retrieval, Recall@K (R@K) and average
precision (AP) are essential evaluation indicators. R@K refers to the ratio of the number
of matched images in the top-K ranking list, and measures the recall rate of the retrieval
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system. AP measures the precision of the retrieval system. These two are used to evaluate
the performance of methods.

2.2. Backbone Structure

Multiscale block attention network (MSBA) consists of two major branches, namely,
satellite and drone views, and the street-view branch was removed, which is different
from other mainstream methods [21,28,48]. Focusing on both performance and efficiency,
Resnet50 [49] is used as the backbone to extract image features. Alternative backbones
with other classical networks such as VGG [50] or new networks with distinguished
performance are also candidates to achieve better results. The average pooling layer and
classification layer behind layer4 in Resnet50 were both removed. In order to compare
with other methods, schematically taking an image with the same size of 256 × 256 as
that of the input of the network, the entire network structure and the forward propagation
process are shown in Figure 1. The whole structure was divided into two branches, the
drone- and satellite-view branches, and they share the weights of the backbone. Each
branch contains global (branch marked with a red arrow) and local (branch marked with
a yellow arrow) branches. In the global branch, feature maps after layers 3 and 4 (details
in Section 2.4) are concatenated, and the next is sent to the max pooling layer. In the local
branch, the feature map after layer 4 is divided into six blocks (details in Section 2.3),
and average pooling and attention operations are then performed (details in Section 2.5)
on each block. All pooled features are sent to the classifier module, including the fully
connected, batch normalization, dropout, and classification layers. In the training stage,
the model is optimized by minimizing cross-entropy loss and KL divergence loss (details in
Section 2.6). During testing, the classification layer is removed from the classifier module,
and all features are concatenated to calculate the Euclidean distance of the image in the
feature space.
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Figure 1. Framework of proposed MSBA.

2.3. Multiscale Block

Considering the importance of contextual information, the square-ring partition strat-
egy is applied to divide feature maps, just like that of LPN. The square-ring feature partition
strategy can fully mine contextual information in an image, but is also accompanied with
the frequent problems of offset and scale uncertainty of geographic targets. As shown in
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Figure 2, the scale of the geographic target in satellite query and drone gallery images is
obviously different, and the geographic target is offset from the center of the drone image.
The square-ring feature partition strategy is taken for these two images, and the three
parts close to the center of the image are used to illustrate the problem of offset and scale
uncertainty (Figure 2A). The three parts in the two images were obviously misaligned, and
a large error was caused by using the distance calculation method in Figure 2A to measure
the similarity between the two parts. In this case, the method in Figure 2B may be more
reasonable. In summary, a hard partition strategy is flawed in dealing with changes in
scale and offset, and is unable to balance local and global information, which is equally im-
portant. Therefore, we address this problem by improving the square-ring feature partition
strategy and adding two global blocks with different scales on its basis, which is helpful
in resisting offset and scale changes. The six segmented feature maps (see Figure 3) are
denoted as f j

i (i ∈ [1, 6]; j ∈ [1, 2]). The pooling operation can be formulated as

zj
i = Pavg

(
f j
i

)
(1)

where Pavg stands for the average pooling operation, and zj
i stands for the result after the

pooling operation.
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2.4. Global Branch

In order to extract more robust features from the image, a global branch is added
after the backbone. Figure 4 shows that, if only local information is considered to train the
network, the attention on the central geographic target may be neglected.
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Shallow layers in neural networks tend to extract information such as structural
edges. As the network deepens, extracted information tends to be semantic. In cross-view
tasks, such as geographic target matching, the shape, structure, and edges of buildings
that concern the shallow layers are also important guidance information. However, most
existing methods employ deep features extracted by the last layer of backbones. Therefore,
in the global branch, the shallow and deep features of the backbone network are extracted
together. The difference from the local branch is that the max pooling operation is applied
after layers 3 and 4. The operation can be formulated as

wj = Pmax

(
gj
)

(2)

where gj stands for the global feature map, and Pmax stands for the max pooling operation.

2.5. Block Attention (BA)

In drone and satellite images, geographic targets are often close to the center, while
trees and roads are distributed outside. The farther an object leaves from the center,
the smaller the correlation it has with geographic targets. On this basis, an attention
mechanism was designed to reinforce the salient features in different regions and suppress
some redundant features.

When feature extraction is simultaneously performed on multiple local feature blocks,
extracted features are redundant in each dimension. For the purpose of deredundancy,
and letting the local feature blocks perform their duties, a block self-attention module was
added after the feature map, which is partitioned by the local branch. The entire process of
BA is shown in Figure 5. BA is formulated as follows:

Zj = C
(

zj
i

)
i ∈ [1, 6] (3)

X j = So f tmax
(

Zj
)
� Zj (4)

where C stands for the concatenate operation, So f tmax stands for performing a softmax
operation in the N direction, and � stands for multiply corresponding elements between
matrices.
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2.6. Loss Function and Improvement in Inference

Each part of the features is sent to the fully connected layer, and softmax processing is
performed on the output of that layer to normalize the result to a feature space with the
value range from 0 to 1. The optimization goal is that, in this feature space, feature vectors
of the same geographic target are closer, while the feature vectors of different geographic
targets are farther away. The network is optimized by the cross-entropy loss function and
it can be formulated as:

CE(p, y) =

{
− log(p) y = 1

− log(1− p) otherwise
(5)

where p stands for forecast result, and y stands for the ground-truth label.
Model self-distillation and mutual learning are familiar neural-network training tech-

niques [43,47], but they are rarely used in the cross-view geolocalization with domain gaps
between drone images and satellite images. Specifically, the twin networks learn from each
other, and study the implicit relationship between satellite- and drone-view images. The
corresponding local and global features in the two branches are subjected to a softmax
operation; KL divergence is then calculated and used as loss to train the network. The KL
distance from p1 to p2 is computed as:

DKL(p2||p1) =
M

∑
m = 1

pm
2 log

pm
2

pm
1

(6)

where p1, p2 stand for forecast result of the two branches, respectively.
According to the characteristics of the satellite- and drone-view images, geographic

targets are generally located close to the center of the image. Therefore, when calculating
the distance between features in the inference stage, more attention should be paid to the
center of the image. In the inference stage, the feature vector is multiplied corresponding to
each feature block by a weight, and then concatenated into a total feature vector to calculate
the distance between images. The reweighting process can be formulated as:

F = C(βi ∗ di) i ∈ [1, 7] (7)

where βi stands for weights added on the feature vector di, and C stands for the concat
operation.



Remote Sens. 2021, 13, 3979 8 of 16

2.7. Implementation

Unless otherwise specified, all training and testing images were resized to 256 × 256.
Training images were augmented with random flipping and random cropping. Batch size
was set to 8 due to the limitation of memory. The backbone was initialized by loading
the weights pretrained on ImageNet by ResNet50. The stride of the final downsampling
layer was adjusted from 2 to 1 to increase the size of the feature map output by the
backbone, which is a common trick in image retrieval. SGD was chosen as the optimizer
with momentum of 0.9 and weight decay of 5 × 10−4 to train the model. The model was
trained for 140 epochs; the initial learning rate was 1 × 10−4 for the backbone layers, and
1× 10−3 for the other layers. After 80 epochs, the learning rate dropped to one-tenth of the
original. In the inference stage, the similarity between images was evaluated by calculating
the Euclidean distance between image feature vectors. All experiments were performed
with an Nvidia 2070s GPU using the PyTorch deep-learning framework with FP16 training.

3. Experiments Results
3.1. Comparison with the State of the Art

In Table 2, MSBA method is compared with other methods on University-1652. The
method achieved 82.33% R@1 accuracy and 84.78% AP on the task of Drone→ Satellite,
90.58% R@1 accuracy and 81.61% AP on the task of Satellite→ Drone with standard input
(image size of 256 × 256). When an image with 384 × 384 size was used as input, the
method achieved 86.61% R@1 accuracy and 88.55% AP, and 92.15% R@1 accuracy and
84.45% AP on two tasks. The performance of the method greatly surpassed that of existing
competitive models, which was nearly 10% higher than that of the existing best-performing
method, i.e., LPN in some indicators.

Table 2. Comparison of state-of-the-art results reported on University-1652. s384, input size.

Method Publication Backbone Drone→ Satellite
R@1 AP

Satellite→ Drone
R@1 AP

Soft margin triplet loss [13] CVPR’19 VGG16 53.21 58.03 65.62 54.47
Instance loss [22] TOMM’20 ResNet-50 58.23 62.91 74.47 59.45

Instance loss + verification loss [16,23] TOMM’17 ResNet-50 61.30 65.68 75.04 62.87
Instance loss + gem pooling [52] TPAMI’18 ResNet-50 65.32 69.61 79.03 65.35

LCM [48] Remote Sens’20 ResNet-50 66.65 70.82 79.89 65.38
LPN [28] TCSVT’21 ResNet-50 74.16 77.39 85.16 73.68

Ours - ResNet-50 82.33 84.78 90.58 81.61
Ours(s384) - ResNet-50 86.61 88.55 92.15 84.45

3.2. Ablation Study of Methods

As shown in Table 3, ablation experiments were performed on the proposed method.
This provided +6.16% R@1 and +5.58%AP on the task of Drone→ Satellite, and +4.56%R@1
and +7.24%AP on Satellite→ Drone. In the experiment, branch mutual learning and block
attention are two significant tricks to improve performance, contributing approximately 3%
points of improvement in both tasks. In the inference stage, assigning different weights to
all the feature vectors in the local and global branches, and then calculating the Euclidean
distance between images can also improve the retrieval performance of the model, espe-
cially when a larger weight is assigned to the feature vector of the global branch, which
is demonstrated in Figure 6 by a performance test of R@1 on a weight from 1 to 2. As
shown in Figure 6, the performance of R@1 temporarily improved with a weight. When
weight = 1.5, the model had the best performance. When the weights continued to increase,
the performance of the model began to worsen. So we chose weight = 1.5 as the parameters
of the model during inference for the global branch feature vector.
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Table 3. Results of ablation experiments of proposed method.

Method Drone→ Satellite
R@1 AP

Satellite→ Drone
R@1 AP

LPN 74.16 77.39 85.16 73.68

Baseline(ours) 76.17 79.20 86.02 74.37
+Multiscale 77.18 79.94 85.93 75.12

+Global branch 78.47 81.42 86.16 77.17
+Block attention 79.55 82.30 87.87 79.94

+KL loss 81.29 83.85 89.73 80.64
+Reweights 82.33 84.78 90.58 81.61
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3.3. Offset and Scale Ablation

In order to confirm whether the robustness of the model to offset and scale changes
was really improved compared to the current mainstream methods, a set of ablation
experiments were designed. First, the antioffset of the model was tested, and the result
is displayed in Table 4. The image was shifted from 0 to 50 pixels to the right to offset
the geographic target from the center. In order to ensure the reliability of the results, an
image with a size of 384 × 384 was used as the input of the model. Experimental results
showed that, when the offset slowly increased from 0, the performance of the model did
not significantly change. Even when the offset reached 50, the accuracy of the model on
the two tasks was still very competitive. Figure 7a shows the comparison result of the
model with the current model with good performance; with the increase in offset, the
attenuation of the model was much smaller than that of the existing model, which also
proves that the model was more robust to the offset. Second, we tested the scale change
on the task of Drone→ Satellite. Drone-query images were split into short, medium, and
long groups on the basis of the distance between drone and geographic target. The model
performed excellently with short and medium distances. When the distance was long, the
performance of the model was somewhat degraded, but it was still considered to be a good
result (Table 5). The comparison of the model proposed with the existing model is shown
in Figure 7b. The performance of the existing model fluctuated with the distance between
drone and geographic target changing from short to medium, and the distance sequentially
increased, while its performance significantly decreased. Overall, the model showed better
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adaptability to different interferences and maintained excellent performance with higher
accuracy than the existing SOTA method did.

Table 4. Results of ablation experiments of shifting query images during inference.

Padding Pixel Drone→ Satellite
R@1 AP

Satellite→ Drone
R@1 AP

0 86.61 88.55 92.15 84.45
10 86.22 88.23 92.01 84.24
20 85.02 87.21 90.87 83.43
30 83.95 85.46 89.44 81.95
40 81.48 83.52 88.30 79.64
50 77.53 80.64 85.59 75.84
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Table 5. Results of ablation experiments of using drone images with different distance to geographic
target to conduct retrieval. “All” stands for using all drone-views query images.

Distance Drone→ Satellite
R@1 AP

All 82.33 84.78
Short 86.02 87.93

Middle 86.02 88.09
Long 74.94 78.27

3.4. Input Size Ablation

Low-resolution images negatively impact the performance of the model, but some
real-world applications with computing resource limitations or requirements for operating
efficiency require to use low-resolution images and lose accuracy for matching drone
images with satellite images. A set of ablation experiments were used to observe changes
in model performance when images of different resolutions were used as input. As shown
in Table 6, when the input image resolution changed from 224 to 512, model performance
improved. Only in the task of Satellite→ Drone, when the resolution changed from 384
to 512, did performance decrease. This shows that the proposed model could adapt to
resolution input, that is, it could be applied to a wide range of real-world scenarios. The
performance of the proposed model was compared with that of the existing model at differ-
ent resolutions, as shown in Figure 8. LPN performance very obviously degraded when the
resolution was reduced to 224. Generally speaking, the model had good competitiveness
in application scenarios with time and space complexity constraints.



Remote Sens. 2021, 13, 3979 11 of 16

Table 6. Results of ablation experiments of different input sizes of images during training and testing.

Input Image Size Drone→ Satellite
R@1 AP

Satellite→ Drone
R@1 AP

224 78.09 80.95 87.30 77.37
256 82.33 84.78 90.58 81.61
320 85.40 87.47 92.01 84.23
384 86.61 88.55 92.15 84.45
512 86.69 88.66 92.01 84.45

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 16 
 

 

Table 6. Results of ablation experiments of different input sizes of images during training and 

testing. 

Input Image Size 
Drone → Satellite 

R@1 AP 

Satellite → Drone 

R@1 AP 

224 78.09  80.95 87.30  77.37 

256 82.33  84.78 90.58  81.61 

320 85.40  87.47 92.01  84.23 

384 86.61  88.55 92.15  84.45 

512 86.69  88.66 92.01 84.45 

  

Figure 8. Effect of input size of images. 

3.5. Inference with Different Branches 

In the inference stage, feature maps from the global and the local branches are split 

into seven blocks. As shown in Table 7, their combinations were selected to calculate the 

Euclidean distance between image features. Results showed that, when each feature block 

was individually tested, the model did not perform well on the two tasks, but when they 

were combined, the model reached a fairly high level of performance, which confirmed 

the contextual information and the importance of multibranch training. When only the 

global branch was used for inference, the model reached R@1 73.59%, AP 76.93% on the 

Drone → Satellite task, and R@1 83.74%, AP 72.12% on the Satellite → Drone task, which 

almost achieved the best performance of the existing models. This shows that the global 

and local branches can be trained together to promote each other's capability to extract 

robust features. The last column of the Table 7 shows the model inference time compared 

with that of LPN. The proposed model can greatly reduce inference time while ensuring 

accuracy, and accuracy is greatly improved when inference time is almost the same. More-

over, if only the global branch is used in the inference phase, much time and many com-

puting resources can be saved, which makes the model very suitable for real application 

scenarios. 

  

Figure 8. Effect of input size of images.

3.5. Inference with Different Branches

In the inference stage, feature maps from the global and the local branches are split
into seven blocks. As shown in Table 7, their combinations were selected to calculate the
Euclidean distance between image features. Results showed that, when each feature block
was individually tested, the model did not perform well on the two tasks, but when they
were combined, the model reached a fairly high level of performance, which confirmed the
contextual information and the importance of multibranch training. When only the global
branch was used for inference, the model reached R@1 73.59%, AP 76.93% on the Drone
→ Satellite task, and R@1 83.74%, AP 72.12% on the Satellite→ Drone task, which almost
achieved the best performance of the existing models. This shows that the global and
local branches can be trained together to promote each other’s capability to extract robust
features. The last column of the Table 7 shows the model inference time compared with that
of LPN. The proposed model can greatly reduce inference time while ensuring accuracy,
and accuracy is greatly improved when inference time is almost the same. Moreover, if
only the global branch is used in the inference phase, much time and many computing
resources can be saved, which makes the model very suitable for real application scenarios.
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Table 7. Results of ablation experiments of using different parts during inference. “P1–P6” means us-
ing only one part in Figure 4. “Global” means only using global branch. “All” means the combination
of all of them. “RW” means reweights.

Part Combination Drone→ Satellite
R@1 AP

Satellite→ Drone
R@1 AP Inference Time

P1 51.73 56.64 70.76 51.31 —
P2 59.66 63.77 77.75 58.85 —
P3 52.89 57.18 78.32 53.17 —
P4 63.49 67.70 79.32 62.95 —
P5 63.30 67.37 78.17 62.53 —

P6 55.09 55.09 78.03 55.28
—
—
—

Global 73.59 76.93 84.74 73.12 0.72×
All 81.29 83.85 89.73 80.64 1.05×

All(RW) 82.33 84.78 90.58 81.61 1.05×
LPN 74.16 77.39 85.16 73.68 1.00×

3.6. Result Visualization

To further prove the reliability of proposed method, visualized results are displayed
in Figure 9, showing the heatmaps generated by LPN and MSBA on some testing images.
MSBA focuses on more regions in the image than those of LPN, especially the location
of geographic targets. This phenomenon may be because of adding global branches and
giving different weights to different regions in the training, but LPN treats different regions
equally. The retrieval results of Satellite → Drone and Drone → Satellite tasks are also
visualized. Figure 10 shows that MSBA had a high top-5 hit rate on the task of Satellite→
Drone; on the other task, the method could correctly retrieve even in some very similar
images.
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4. Discussions

Through the experiments results on two tasks (Satellite → Drone and Drone →
Satellite), we deeply explored the model’s retrieval performance and compared it with
that of existing models. The participation of global and local branches in training can
make the model pay more attention to important information in the images, such as central
geographic landmarks. From the experiments of combining different blocks, the joint
training of the global and local branches greatly improved the accuracy of the global
branch in inference. In the case of improving the accuracy of SOTA method, inference
time was shortened by using global branch alone because the dimension of the global
feature was only 512, and the parameter number of the model was reduced. Nevertheless,
the experiment of assigning different weights to the features of the global branch in the
inference stage shows that, if the features of the global branches are given too large weight,
the accuracy of the model is worsened, which reveals that extracted features from each
part of the image are essential. In the offset and scale experiments, MSBA was more robust
than the existing method. However, when the offset and scale changes were obvious, the
performance of the model worsened, so only using multilevel blocks to solve these problems



Remote Sens. 2021, 13, 3979 14 of 16

has limitations. How to solve the problems of offset and scale change is meaningful and
promising work, and we will conduct further research on these two tasks.

5. Conclusions

In this paper, we began with the autonomous positioning and navigation of drones
without positioning system, leading to two tasks (Satellite→ Drone and Drone→ Satellite)
in cross-view geolocalization. Next, we indicated the shortcomings of the existing method,
and proposed a method with better accuracy, which is more robust to offset and scale
changes.

Experiment conclusions are as follows: (1) The multiscale division of feature maps can
reduce the sensitivity of the model to offset and scale. (2) The joint training of the global
and local branches leads the network to more fully mine features in an image. (3) The block
attention mechanism and KL divergence loss can further improve the retrieval accuracy of
the model. Moreover, the method (MSBA) achieved excellent accuracy and inference speed
on drone-based geolocalization benchmarks (University-1652). Due to the widespread
existence of offset and scale, and the limitation of computing time in real scenes, MSBA is
very competitive in practical applications.
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