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Abstract: Insulator detection is one of the most significant issues in high-voltage transmission line
inspection using unmanned aerial vehicles (UAVs) and has attracted attention from researchers all
over the world. The state-of-the-art models in object detection perform well in insulator detection,
but the precision is limited by the scale of the dataset and parameters. Recently, the Generative
Adversarial Network (GAN) was found to offer excellent image generation. Therefore, we propose a
novel model called InsulatorGAN based on using conditional GANs to detect insulators in transmis-
sion lines. However, due to the fixed categories in datasets such as ImageNet and Pascal VOC, the
generated insulator images are of a low resolution and are not sufficiently realistic. To solve these
problems, we established an insulator dataset called InsuGenSet for model training. InsulatorGAN
can generate high-resolution, realistic-looking insulator-detection images that can be used for data
expansion. Moreover, InsulatorGAN can be easily adapted to other power equipment inspection
tasks and scenarios using one generator and multiple discriminators. To give the generated images
richer details, we also introduced a penalty mechanism based on a Monte Carlo search in Insulator-
GAN. In addition, we proposed a multi-scale discriminator structure based on a multi-task learning
mechanism to improve the quality of the generated images. Finally, experiments on the InsuGenSet
and CPLID datasets demonstrated that our model outperforms existing state-of-the-art models by
advancing both the resolution and quality of the generated images as well as the position of the
detection box in the images.

Keywords: unmanned aerial vehicle (UAV); power transmission line inspection; insulator detection;
conditional generative adversarial nets; image generation

1. Introduction

Insulators provide electrical insulation and mechanical support for overhead transmis-
sion lines. Insulator detection refers to the process of locating the position of the insulator
in inspection images. This process serves as the foundation for other tasks such as insulator
defect detection and power line extraction. Recently, insulator detection has attracted
significant interest from researchers in many fields such as smart grid and computer vision,
and some progress has been made [1,2].

At present, the inspection of insulators mainly depends on the visual observation
of the staff, which can easily cause omissions, unmanned aerial vehicles (UAV), with the
advantages of low cost, small size, and multiple cruise modes [3], combined with other
systems such as wireless sensor networks (WSNs) [4], which have become important
auxiliary equipment in many fields such as crop identification [5] and yield estimation [6].
On the other hand, UAVs bring safety hazards and privacy issues, such as threats to the
flight activities of birds [7]. In addition, the communication between the drone and Ground
Control Station (GCS) is vulnerable to attacks, which can cause data leakage [8]. However,
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in general, the convenience brought by drones is higher. Therefore, we believe that it is
feasible to use drones for power line inspections. Currently, researchers have used drones
for power line identification and monitoring tasks [9], This paper will focus on the research
of insulator detection algorithms using images acquired by UAVs.

In past studies, researchers have generally used feature extraction combined with
classifiers for insulator detection [10,11]. This type of method usually uses artificially
designed operators to traverse the image to obtain the edge and texture of the insulator.
This process is followed by insulator detection based on feature information. However,
such methods rely heavily on the completeness of the features. As the features used cannot
cover all situations, it is difficult to obtain good detection results. In addition, the feature
classifier requires significant manual work, and the level of automation is low, making it
difficult to apply it on a large scale in reality.

In recent years, some researchers have proposed the use of convolutional neural
networks (CNNs) for insulator detection. A power line insulator detection model was
proposed in [12] for different environmental backgrounds based on YOLO. In [13], a frame-
work based on Faster R-CNN was proposed for different types of insulators. Currently,
significant redundant information remains in the detection results from the state-of-the-
art models used for object detection. An improvement in precision comes at the cost of
an increase in the quantity of data and parameters. For situations with high real-time
requirements and small amounts of data, it is difficult for CNNs to achieve excellent de-
tection results. In addition, overhead transmission lines are mostly located in mountains,
lakes, and suburbs. Those environments are complex, which increases the difficulty of
model convergence.

One way to solve the above problems is to use a conditional Generative Adversarial
Nets (CGAN) [14]. CGAN uses aligned images to enable the framework to learn the
relevant mapping from input to output. In this way, the original image and ground truth
can be used to generate an insulator-detection image. Some researchers have achieved
good results using CGAN in image conversion tasks. For example, a network model
named pix2pix [15], proposed by Isola et al., was used to complete the conversion between
images. The pix2pix model achieved an excellent performance, but the resolution of the
generated image was only 256 * 256. The researchers in [16] noted that image generation
using an adversarial network was not reliable enough; instead, the authors used perceptual
loss to obtain the image. The resolution of the generated image was improved, but the
performance of the semantic details was poor.

The researchers in [17] sought to introduce semantic guidance in image generation
and proposed two multi-view image-generation models, X-Fork and X-Seq. The authors
inputted an image of a known perspective and the semantic segmentation map of the target
perspective together into the model and provided semantic guidance to make the gener-
ated image more realistic. Inspired by the work in [17], the researchers in [18] proposed a
SelectionGAN model based on a multi-channel attention mechanism. The SelectionGAN
model further expanded the semantic generation space. This model improved the seman-
tic details in the image by referring to the intermediate results generated and achieved
advanced results in the translation of satellite images and ground images. However, the
above techniques have poor compatibility with transmission line scenarios because not all
scenarios have sufficient semantic segmentation maps for model training.

To solve the above problems, this paper proposes an insulator-detection image-
generation model called InsulatorGAN based on an improved conditional generation
confrontation network. Our model can be flexibly adapted to a variety of power compo-
nent inspection tasks and other application scenarios. InsulatorGAN contains a generator
and multiple discriminators. As shown in Figure 1, our model generates images through
two steps: first, it uses a coarse image module to generate a low-resolution image (LR
image); next, a fine image module is used to improve the semantic information in the LR
image and to generate a high-resolution image (HR Image).
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Figure 1. Test examples of InsulatorGAN on InsuGenSet and CPLID. First, the LR Image is generated,
then the details are enriched to obtain the HR Image.

The differences between InsulatorGAN and previous models are as follows. First,
the generator of InsulatorGAN uses multiple stages, which ensures that InsulatorGAN
can not only generate high-resolution and realistic images but can also be applied to other
fields, such as image translation and style conversion. Second, to strengthen the semantic
constraints in the image-generation process, we used the Monte Carlo search (MCS) [19]
to sample low-resolution target images multiple times and calculate the corresponding
penalty value according to the sampling results. The penalty mechanism can force the
generator to produce images with richer semantics to avoid mode collapse [20]. Third,
to improve the ability of the discriminator, based on the multi-task learning strategy of
parameter sharing [21], we proposed a discriminator framework based on a multi-scale
structure. Although all the discriminators use the same network structure, the input
of different resolutions allows the discriminators to cooperate with each other, extract
feature maps at different abstraction levels, and accelerate the training of the model. In
addition, to solve the problem where the public dataset CPLID [1] features less data and a
simple background, we used the images obtained via UAV to build the insulator image-
generation dataset, InsuGenSet. Moreover, the insulator detection results output by the
InsulatorGAN model can be used for data expansion. We compared InsulatorGAN with
several mainstream image-generation models and achieved the best results on the CPLID
and InsuGenSet, which demonstrates that our model can generate high-resolution and
high-quality images. The main contributions of this paper are as follows:

• This paper proposes an insulator-detection image-generation model, InsulatorGAN,
based on an improved conditional Generative Adversarial Nets. This model includes
a generator and multiple discriminators. Moreover, we used a two-stage method
from coarse to fine to generate high-resolution insulator inspection images that can be
flexibly adapted to other scenes;

• To improve the constraints on the insulator image-generation process, a penalty
mechanism based on the Monte Carlo search was introduced into the generator. This
mechanism enables the generator to obtain sufficient semantic guidance and add more
semantic details to the generated image;

• Based on the parameter sharing mechanism, we propose a multi-scale discriminator
structure that enables the entire discriminator network to use feature information at
different levels of abstraction to determine whether the input image is true or false;

• To solve the small scale of the public insulator dataset CPLID, we established a dataset
called InsuGenSet for insulator-detection image generation based on real images. We
conducted many comparative experiments between the InsulatorGAN and state-of-
the-art models on InsuGenSet, and the results demonstrated the effectiveness and
flexibility of InsulatorGAN.
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The rest of this article is arranged as follows. Section 2 introduces the related work
on insulator detection and image generation. Section 3 introduces the knowledge on
GAN. The architecture of InsulatorGAN is illustrated in Section 4. In Section 5, we present
several sets of experiments that determined the effectiveness of our framework. Finally,
the conclusions and future work are outlined in Section 6.

2. Related Work
2.1. Insulator Detection

Insulators provide electrical insulation and mechanical support for overhead transmis-
sion lines. Insulator detection refers to the process of locating the position of the insulator in
an inspection image. This process provides the foundation for other tasks such as insulator
defect detection and power line extraction. Recently, insulator detection has attracted
significant interest from researchers in many fields such as smart grids and computer
vision, and some progress has been made [1,2].

Insulator detection is a major issue in power line inspection and provides a reference
for insulator defect detection, foreign object detection, wire detection, and robot path
planning. With the rise of deep convolutional neural networks in the image field, insu-
lator detection has also been given new life. The researchers in [1] proposed a cascaded
architecture for insulator defect detection.

Sadykova et al. [12] used the YOLOv3 neural network model to train a real-time
insulator detection classifier under varying image resolutions and different lighting con-
ditions to assess the presence of ice, water, and snow on the insulator. Zhao et al. [13]
improved the anchor generation method and the non-maximum suppression algorithm
in the Faster R-CNN model for use with different sizes and aspect ratios and the mutual
occlusion of insulators in aerial images. To enhance the reuse and spread of insulator
features, Liu et al. [22] added a multi-level feature mapping module based on YOLOv3
and Dense Blocks and proposed an insulator detection network called YOLOv3-dense.
Focusing on the interference of complex backgrounds and small targets, the researchers
in [23] proposed two insulator detection models, Exact R-CNN and CME-CNN. CME-CNN
added an encoder–decoder based on Exact R-CNN to obtain pure insulators.

However, the excellent performance of the above models have generally been obtained
at the cost of a complex network structure. In this case, either the real-time performance of
the network is difficult to guarantee, or the detection precision is not sufficient. The model
in this paper is an improved conditional generative adversarial network with a simple
framework and clear training methods. With the support of a small amount of data, high
detection precision can be obtained in a short time, and the generated images can be used
for data expansion, which solves the problems of the aforementioned work.

2.2. Image Generation

Image generation has become a hot research topic due to the rise of deep learning.
Variational autoencoder (VAE) [24] is a generative model based on the probability graph
model. In [25], the researchers proposed an Attribute2Image model that can generate
images from visual features by synthesizing the foreground and background. In addition,
researchers in [26] introduced an attention mechanism into VAE and proposed a DRAW
model to improve the image quality.

Recently, researchers have achieved favorable performance in image generation using
GAN [27]. The training goal of the generator and the discriminator is for the two to defeat
each other. A large number of GAN-based frameworks were subsequently proposed, such
as conditional GANs [28], Bi-GANs [29], and InfoGANs [30]. GAN can also generate new
images based on labels [31], text [32,33], or images [15,34,35].

However, the images generated by the above models generally have problems such
as blurring and distortion. The model does not learn how to generate images but simply
repeats the content of the images in the training set. InsulatorGAN is also an image-based
CGANs, but our model introduces more sufficient semantic guidance with a novel penalty



Remote Sens. 2021, 13, 3971 5 of 20

mechanism, further improves the semantic architecture of the image, and overcomes the
problem of image distortion.

3. Basic Knowledge of GAN

The Generative Adversarial Network [27] includes two adversarial learning sub-
networks, a discriminator, and a generator, which are trained using the maximum–minimum
game theory. The generator G obtains an image via a d-dimensional noise vector and pro-
duces a generated image as close as possible to the real image. On the other hand, the
discriminator D is used to determine whether the input is a fake image from the generator
or a real image from a real dataset. The loss function of the entire generative adversarial
network is as follows:

min
G

max
D

VGAN(G, D) = Ex∼pr(x)[log D(x)] + Ez∼pg(z)
[log(1− D(G(z)))] (1)

where x represents the real image sampled from the real data distribution pr, and z repre-
sents the d-dimensional noise vector sampled from the Gaussian distribution pg.

CGANs [14] control the results of model generation by introducing auxiliary variables.
In the CGANs, the generator generates images based on auxiliary conditions, and the
discriminator makes judgments based on auxiliary conditions and images (false images or
real images). The loss function is as follows:

min
G

max
D

VCGAN(G, D) = Es,x∼pr(s,x)[log D(s, x)] + Es,x′∼pr(s,x′)[log(1− D(s, x′))] (2)

where s represents the auxiliary variable, and x′ = G(s, z) represents the image generated
by the generator.

In addition to fighting against loss, previous works [34,36] have also sought to min-
imize the L1 or L2 distance between the real and the fake images to help the generator
synthesize images with greater similarities to the real images. Previous research has proven
that, compared with the L2 distance, the L1 distance can help the model reduce blur and
distortion in the image. Therefore, the L1 distance was also introduced into InsulatorGAN.
The formula for minimizing the L1 distance is as follows:

min
G

VL1(G) = Ex,x′∼pr(x,x′)[‖x− x′‖1] (3)

The loss function for this type of CGANs is the sum of Equations (2) and (3).

4. InsulatorGAN
4.1. Task Definition

First, we must define the task of the insulator-detection image generation. Suppose
we have a clear image of a line insulator taken by a drone, and we mark that image as the
original image Io. After the insulators in the image are marked, the image is recorded as
the ground truth It. The insulator-detection image-generation task refers to the generated
image Ig containing the box, which is very similar to It in terms of visual effects.

4.2. Overall Framework

The framework of InsulatorGAN proposed in this paper is shown in Figure 2. Our
goal was to generate an insulator-detection image Ig. For this purpose, we used a generator
G(Io; θg) and a discriminator D((Io, Ig); θd), where θg and θd, respectively, represent the
parameters of the generator and discriminator; Io represents the image sampled from the
real data distribution; and Ig represents the image generated by the generator G.
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Figure 2. The framework of InsulatorGAN.

The training of the entire model can be divided into two adversarial learning processes:
generator learning and discriminator learning. The target of generator G is to generate
an image from the insulator detection results and make the generated images cheat the
discriminator D. In other words, the target of the generator is to minimize the distance
between the fake image and the target image. Correspondingly, the goal of the discriminator
is to accurately determine whether the input is a fake image generated by the generator or
a ground truth and to calculate a penalty value for the fake image.

4.3. Multi-Granularity Generator

As shown in Figure 3, the process of image generation is divided into three parts: First,
input the original image Io and the target image It. Here, the generator uses coarse-grained
modules to obtain low-resolution images I′g. Then, the Monte Carlo search method is
introduced to sample the low-resolution image N times. Finally, the attention mechanism
is introduced to extract the features of the N intermediate result images, and the output of
the attention mechanism and the original image Io are input into the fine-grained output
module. Finally, we obtain the high-resolution target image Ig. We hoped to improve
the quality of the image through the two-stage generation method, use the Monte Carlo
search to mine the hidden spatial information of the samples output by the coarse-grained
module, combine the penalty mechanism and the attention mechanism to constrain the
position of the generated box, and to improve image resolution and detail performance.
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4.3.1. Penalty Mechanism

To strengthen the semantic constraints during image generation and to further im-
prove the semantic details in the image, we propose a penalty mechanism based on the
Monte Carlo search (MCS) strategy, which makes the generated image more accurate in its
semantics and details.

We performed Monte Carlo searches on the low-resolution target image I′g output by
the coarse-grained generation module. The specific process can be outlined as follows:{

I1
g , . . . , IN

g

}
= MCGβ

(
I′g; N

)
(4)

Ii
g = Gβ(I′g, z) (5)

where Ii
g(i = 1, · · ·, N) represents the image obtained based on I′g sampling, and MCGβ

represents the state of the MCS simulation. Gβ represents the generation module virtualized
by MCS technology and shares parameters with the fine-grained generation module. This
module generates N intermediate result images continuously for N times. Here, z ∼ N(0, 1)
is the noise vector introduced to ensure the diversity of the sampling results. We use the
sum of the output of the encoder and the noise vector as the input of the decoder. The
noise vector ensures that each sampling model focuses on the feature vector differently
and can extract richer semantic information from the low-resolution target image.

Next, N intermediate result images and images with a known angle of view are sent
to the discriminator. Then, we can calculate the penalty value based on the output of the
discriminator. The calculation process is as follows:

VG
D =

1
N

N

∑
i=1

((
1− D(Ii

g; θd

))
+ ‖Ig − It‖1 (6)

where D(Ii
g; θd) represents the probability that the image Ii

g output by the discriminator is
a real image.

4.3.2. Attention Mechanism

After obtaining N intermediate result images through sampling, we refer to the
intermediate result images to provide sufficient semantic guidance for the next stage of
generation. For this process, we propose a multi-channel attention mechanism. This
mechanism is different from the methods used in previous work, where the synthesized
image was generated only from the RGB three-channel space. We use sampling to obtain
N intermediate results as feature sets to build a larger semantic generation space, and the
model then extracts more fine-grained information by referring to the information from
different channels. Then, the calculation result is input into the fine-grained generation
module to obtain the high-resolution target image.

Next, we must perform a convolution operation on N intermediate result images to
obtain the corresponding attention weight matrix. The results are calculated as follows:

Ii
A = Softmax(Ii

gWi
A + bi

A), for i = 1, . . . , N (7)

where
{

Wi
A, bi

A
}N

i=1 represents the parameter of the convolution operation and Softmax(·)
represents the softmax function for normalization. We then multiply the resulting attention
weight matrix with the corresponding intermediate result image to obtain the final output:

I ′′ g = (I1
A ⊗ I1

g)⊕ · · · ⊕ (IN
A ⊗ IN

g ) (8)

where I ′′ g in the formula represents the final output result of the attention mechanism,
and the symbols ⊕ and ⊗ represent the addition and multiplication elements of the
matrix, respectively.
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4.3.3. Objective Function

The generator continues optimization by minimizing the following objective function:

JG(θg) = EIo∼Pr(Io),It∼Pt(It)[log(1− D(Io, G(Io, It)))] + VD
G (9)

where D(Io, G(Io, It)) represents the score of the generated image obtained by the generator
G using the original image and the ground truth (Io, It). In other words, this represents
the probability that the discriminator D considers the generated image to be the ground
truth, θg represents the parameters of the generator, and VD

G represents the penalty value
for generator G obtained using Formula (6).

4.4. Multi-Level Discriminator

The architecture of the discriminators is shown in Figure 4. The discriminator is
composed of a deep convolutional network with a simple architecture. Widening and
deepening the network to improve the discrimination ability of the discriminator will
inevitably lead to a sharp increase in the model’s parameters, which will increase the
model’s training time.
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4.4.1. Multitasking Mechanism

A discriminator network based on a multi-scale architecture is proposed in this paper.
This network uses three discriminators, D1, D2, D3, with the same structures to process
images at three different scales. Based on the parameter sharing mechanism [21], a multi-
task learning strategy is used in this paper for the training of the discriminator. We first
extracted the basic characteristics of the real sample and the generated sample through the
convolutional network and obtained the corresponding feature map. Then, we used 2 and
4 as sampling factors to down-sample the feature maps of the real and generated images to
obtain feature maps at three different scales. Moreover, we used the three discriminators
D1, D2, D3, to process the feature maps.

Although each discriminator has the same structure, a discriminator with a smaller
input can enhance the semantic information of the generated image, while a larger input
is superior at adding details to the generated image. Thus, the design of a multi-level
discriminator is very conducive to model training. When a high-resolution model is desired,
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we only need to add discriminators to the original model instead of training the model
from zero.

4.4.2. Objective Function

The formula for the above multi-task learning process is as follows:

JD(θd) = − ∑
k=1,2,3

EIo∼Pr(Io),Ig∼Pg(Ig) log Dk
((

Io, Ig
)
; θd
)

(10)

where Pr and Pg represent the sample distribution of the real images and generated im-
ages, respectively; Io represents the original image; Ig represents the generated image
obtained using the original image and ground truth; θd represents the parameters of the
discriminator; and Dk represents one of the multiple discriminators.

We then conducted adversarial learning between the generator and the discriminators.
The optimization algorithm is shown in Algorithm 1.

Algorithm 1. The Training Process of InsulatorGAN.

Input: Real insulator image dataset Io = {Io1 , · · ·, IoN}; Generator G; Discriminator {Di}i=k
i=1;

g-steps, the training step of the generator; d-steps, the training step of the discriminators.
Output: G, generator after training.
1: Initialize generator G and discriminator {Di}i=k

i=1 with random weights;
2: repeat
3: for g-steps do
4: G generate fake images;
5: Calculate the penalty value VG

D via Formula (6);
6: Minimize Formula (9) to update the parameters of the generator G;
7: end for
8: for d-steps do
9: Use G to generate fake images Ig =

{
Ig1 , · · ·, IgN

}
;

10: Use real images Io = {Io1 , · · ·, IoN} and fake images Ig =
{

Ig1 , · · ·, IgN

}
to up-date the

discriminator parameters by minimizing Formula (10);
11: end for
12: until InsulatorGAN completes convergence
13: return

4.5. Network Structure

For the problem of insulator-detection image generation, there is a large amount
of underlying feature sharing between the input and output. To allow these features to
be transmitted stably in the network, we used U-net [37] as the basic structure for the
generator and discriminators.

The structure of the generator is shown in Table 1. CONV represents a convolutional
layer; N-m indicates that each convolutional layer contains m convolution kernels; K-mxm
indicates that the scale of the convolution kernel is mxm; S-m indicates that the moving step
size of the convolution kernel is m; P-m represents the number of boundary expansions
required for the convolution kernel to iterate on the image; and IN, ReLU indicates that the
loss function of the current convolution layer is the InstanceNorm-ReLU layer [38].

The structure of the discriminator is shown in Table 2. Before the image is sent to the
discriminator, it is necessary to use a convolution kernel with a size of 3 × 3, an offset step
of 1, and an edge padding of 1 to extract the primary features in the image. After the feature
map with the same size as the original sample image is obtained, that map is down-sampled
by 2 times and 4 times. Then, the feature map obtained after down-sampling is sent to
the discriminator of the corresponding size. Notably, the first layer uses Convolution-
InstanceNorm-LeakyReLU [39] as the activation function without normalization. The
slope of Leaky ReLU is 0.2. After the last convolutional layer of the discriminators, a fully
connected layer is used to generate a one-dimensional output. The discriminators with
different input resolutions are the same in terms of network structure.
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Table 1. The architecture of the generator.

Network Layer Information Input Output

Down-Sample

CONV-(N64, K7x7, S1, P3), IN, ReLU (512, 512, 3) (512, 512, 64)
CONV-(N128, K3x3, S2, P1), IN, ReLU (512, 512, 64) (256, 256, 128)
CONV-(N256, K3x3, S2, P1), IN, ReLU (256, 256, 128) (128, 128, 256)
CONV-(N512, K3x3, S2, P1), IN, ReLU (128, 128, 256) (64, 64, 512)

CONV-(N1024, K3x3, S2, P1), IN, ReLU (64, 64, 512) (32, 32, 1024)

Residual Block

CONV-(N1024, K3x3, S1, P1), IN, ReLU (32, 32, 1024) (32, 32, 1024)
CONV-(N1024, K3x3, S1, P1), IN, ReLU (32, 32, 1024) (32, 32, 1024)
CONV-(N1024, K3x3, S1, P1), IN, ReLU (32, 32, 1024) (32, 32, 1024)
CONV-(N1024, K3x3, S1, P1), IN, ReLU (32, 32, 1024) (32, 32, 1024)
CONV-(N1024, K3x3, S1, P1), IN, ReLU (32, 32, 1024) (32, 32, 1024)
CONV-(N1024, K3x3, S1, P1), IN, ReLU (32, 32, 1024) (32, 32, 1024)
CONV-(N1024, K3x3, S1, P1), IN, ReLU (32, 32, 1024) (32, 32, 1024)
CONV-(N1024, K3x3, S1, P1), IN, ReLU (32, 32, 1024) (32, 32, 1024)
CONV-(N1024, K3x3, S1, P1), IN, ReLU (32, 32, 1024) (32, 32, 1024)

Up-Sample

CONV-(N512, K3x3, S0.5, P1), IN, ReLU (32, 32, 1024) (64, 64, 512)
CONV-(N256, K3x3, S0.5, P1), IN, ReLU (64, 64, 512) (128, 128, 256)
CONV-(N128, K3x3, S0.5, P1), IN, ReLU (128, 128, 256) (256, 256, 128)
CONV-(N64, K3x3, S0.5, P1), IN, ReLU (256, 256, 128) (512, 512, 64)

CONV-(N3, K7x7, S1, P3), IN, ReLU (512, 512, 64) (512, 512, 3)

Table 2. The architecture of the discriminators.

Network Layer Information Input Output

Input Layer

CONV-(N64, K4x4, S2, P2), Leaky ReLU (512, 512, 3) (256, 256, 64)
CONV-(N128, K4x4, S2, P2), IN, ReLU (256, 256, 64) (128, 128, 128)
CONV-(N256, K4x4, S2, P2), IN, ReLU (128, 128, 128) (64, 64, 256)
CONV-(N512, K4x4, S2, P2), IN, ReLU (64, 64, 256) (32, 32, 512)

5. Experiments and Analysis
5.1. Experiment Description
5.1.1. Dataset

First, we needed an insulator dataset with sufficient images to analyze and evaluate
the model. The current public dataset for insulator detection is only CPLID, but most of the
insulator entities are obtained through image augmentation methods such as rotation and
cropping. The real samples included are limited and cannot fully reflect the characteristics
of insulator samples from power lines. Therefore, we used the UAV to record a 500 KV
overhead power line inspection video in a location in China as the data source and produced
a dataset to be used in generating insulator-detection images. Moreover, we used AutoCAD
as a labeling tool to draw the smallest external polygonal frame around all the insulator
entities. To improve the separation between the insulator and the background, we used
magenta to draw the frame. This color is very rare in nature, which improves the model’s
focus on insulation during training. We named this dataset InsuGenSet, and the training
set and test set each contained 2500 and 500 image pairs composed of real images and
ground-truth values.

5.1.2. Experiment Configuration

InsulatorGAN training involved a total of 200 epochs. The first 100 epochs were
maintained at a 0.0001 learning rate, while the next 100 epochs gradually shrunk to 0.
Before starting the training, the parameters of the model were initialized using a normal
distribution with a mean value of 0 and a standard deviation of 0.02. An NVIDA RTX 2080
GPU with a memory capacity of 8 GB was used for training and testing. The operating
system was Ubuntu 18.04, and the PC had a memory capacity of 32 GB. All algorithms
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were built using Pytorch1.4. The number of Monte Carlo searches was 5, and the loss
proportion of the control discriminator and feature extraction matching was 10.

5.2. The Baselines

In this study, we compared InsulatorGAN with the current mainstream models of
image generation, image translation, and object detection.

Pix2Pix [15]: This method uses anti-loss learning to map from x to y, where x and
y represent images in different domains; this method has achieved excellent results in
image-translation tasks.

CRN [16]: Unlike the method used by GAN for image generation, the CRN model
uses a CNN to output a corresponding generated image based on an input semantic layout
image. This method creatively uses the technique of calculating the matching loss between
images and calculates the diverse loss in the generated and semantic-segmentation images.

X-Fork [17]: Similar to pix2pix, this generator produces multi-view images by learning
the mapping of G: {Ia→Ib, Sb}. Ia and Ib represent the images under perspective a and per-
spective b, respectively, and Sb represents the semantic segmentation map of perspective b.

X-Seq [17]: X-Seq uses two CGANs (G1 and G2) together as a model, where G1 syn-
thesizes the image of the target perspective, and G2 synthesizes the semantic segmentation
map of the target perspective based on the output image of G1.

SelectionGAN [18]: This model introduces a multi-channel attention mechanism based
on X-seq to selectively learn the intermediate results of the model, thereby generating
cascading images from coarse to fine.

Cascade R-CNN [40]: Cascade R-CNN is one of the baselines in object detection.
The detection speed of this method is slow, but the algorithm offers high precision
and robustness.

YOLOv4 [41]: Based on the YOLO structure, this is the most recent optimization
strategy and was adopted to achieve a balance between FPS and precision.

CenterNet [42]: Unlike Faster R-CNN and YOLOv4, this model converts object detec-
tion into key-point detection based on a heatmap.

5.3. Quantitative Evaluation

In this section, the inception score and Fréchet inception distance are used to evaluate
the quality of the generated image. Then, we use AP50-AP90 to evaluate the accuracy of
the box position in the generated image. Finally, some pixel-level indicators are used to
evaluate the similarity between the fake image and ground truth.

5.3.1. Inception Score (IS) and Fréchet Inception Distance (FID)

The Inception Score (IS) is a universal model index for generative models that can
measure the clarity and diversity of images generated by the model. A higher IS indicates
a higher quality. The calculation formula is as follows:

IS(G) = exp
(
Ex∼pg DKL(p(y|x) ‖ p(y))

)
(11)

where G represents the generator, x represents the generated image, y represents the
predicted label of the generated image, and DKL represents the KL divergence (Kullback–
Leibler Divergence), also called relative entropy.

Because the CPLID and InsuGenSet datasets contain insulators that are not included
in the ImageNet dataset [43], we could not directly use the pre-trained Inception model.
Moreover, the Inception model features a large number of parameters, so we instead used
AlexNet to score the InsulatorGAN.
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The Fréchet Inception Distance (FID) is an index used to calculate the distance between
a real image and a fake image. A lower FID value for an image indicates a higher image
quality. The calculation formula is as follows:

FID(It, Ig) = ‖µIt − µIg‖
2 + Tr

∑
It

+∑
Ig

−2
(
∑ It∑ Ig

) 1
2

 (12)

where Tr represents the sum of the elements on the diagonal of the matrix µIt , µIg represents
the mean of the feature map of the ground truth It and the generated image Ig, and ΣIt and
ΣIg represent the covariance matrix of the feature map of It and Ig. In order to increase
the calculation speed and prevent the occurrence of underfitting due to the small scale of
dataset, similar to IS, we used AlexNet instead of InceptionV3 to obtain the basic features
of the image. We used the output of the last pooling layer before the fully connected layer,
that is, a 1 * 1 * 4096 vector as the basic feature of the input image. On this basis, we could
obtain the covariance matrix of 4096 * 4096, which was ΣIt and ΣIg .

Table 3 outlines the experimental results for IS and FID. Here, the score of Insulator-
GAN was higher than the scores of the other baseline architectures, which indicates that
the images generated by InsulatorGAN are superior, in terms of quality and diversity, to
those generated by other baseline models.

Table 3. IS and FID of the different models.

Model
InsuGenSet CPLID

IS FID IS FID

Pix2Pix 3.36 57.34 3.19 58.25
CRN 3.02 57.58 2.92 58.45

X-Fork 3.48 56.89 3.26 57.93
X-Seq 3.73 56.53 3.69 57.68

SelectionGAN 3.86 56.17 3.77 57.31
InsulatorGAN 4.05 55.23 3.98 56.83

5.3.2. Precision of Box

Here, we evaluate the generation position of the detection frame based on the Average
Precision (AP) of the COCO dataset [44]. The result of this standard must be based on the
Intersection of Union (IoU) of the fake image and the Ground truth, which is used as the
basis for the threshold setting of the correct standard. The formula is shown below:

IoU =
De f aultBox ∩ GroundTruthBox
De f aultBox ∪ GroundTruthBox

(13)

where De f aultBox represents the position of the predicted frame, and GroundTruthBox
represents the location of the ground truth. The ratio of the intersection and the union of
the two is used to indicate the precision of the predicted frame.

As shown in Table 4, although the precision of InsulatorGAN was not significantly
improved compared with that of Cascade R-CNN, the precision was still higher than that
of Yolov4 and CenterNet. This result indicates that InsulatorGAN can locate the position of
the insulator in the generated image effectively and achieve the goal of insulator detection.
In addition, when the IoU threshold is 0.9, the detection precision was significantly higher
than that of other baselines because the detection frame generated by InsulatorGAN was
the smallest external polygon, which is a natural advantage of our model.
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Table 4. APs of the different models.

Model
InsuGenSet CPLID

AP50 AP70 AP90 AP50 AP70 AP90

CenterNet 85.38 78.34 70.53 85.74 77.90 67.92
YOLOv4 89.14 81.58 74.97 87.83 80.46 71.71

Cascade R-CNN 92.26 89.52 80.34 91.63 88.25 78.94
InsulatorGAN 96.44 93.58 90.78 95.81 92.07 89.40

5.3.3. Structural Similarity (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Sharpness
Difference (SD)

Based on the work in [45], we used the structural similarity (SSIM), peak signal-to-
noise ratio (PSNR), and sharpness difference (SD) to measure the pixel-level similarity
between the generated image and the Ground Truth.

Structural Similarity (SSIM) evaluates the similarity between images based on at-
tributes such as the brightness and contrast of the image, with a value range of [−1, 1].
When the value of SSIM is larger, the similarity of the input image pair is higher. The
formula is shown below:

SSIM(Ig, It) =
(2µIg µIt + c1)(2σIg It + c2)

(µ2
Ig
+ µ2

I2
t
+ c1)(σ2

Ig
+ σ2

I2
t
+ c2)

(14)

where µIg , µIt represent the mean value of the generated image Ig and ground truth It;
σIg , σIt represent the standard deviation of Ig and It, respectively; and c1, c2 represent a
constant introduced to ensure that the denominator is not 0.

The peak signal-to-noise ratio (PSNR) evaluates the quality of the generated image
relative to the ground truth by measuring the peak signal that reaches the noise ratio. Here,
a high value indicates a better image quality. The formula is as follows:

PSNR(Ig, It) = 10 log10

(
max2

Ig

mse

)
(15)

mse(Ig, It) =
1
n

n

∑
i=1

(
It[i]− Ig[i]

)2, maxIg = 255 (16)

The sharpness difference can be obtained during image generation by calculating
the loss of sharpness. In this paper, we used the concepts outlined in [45] to calculate the
gradient change between the fake image and the ground truth:

SharpDiff.(Ig, It) = 10 log10

(
max2

Ig

grads

)
(17)

grads =
1
N ∑

i
∑

j

(∣∣(∇i Iv +∇j Iv
)
−
(
∇i Ig +∇j Ig

)∣∣) (18)

where∇i I =
∣∣Ii,j − Ii−1,j

∣∣,∇j I =
∣∣Ii,j − Ii,j−1

∣∣ and the Sharpness Difference in Formula (17)
can be regarded as the reciprocal of the gradient.

As shown in Table 6, the score of InsulatorGAN was higher than the scores of all
baselines. The results indicate that InsulatorGAN can learn to generate high-quality
insulator-detection images for complex environments such as mountains, forests, and
towns. The proposed penalty mechanism can further improve the semantic details of the
image, make the generated image more realistic, and significantly reduce forgery traces
in the image. In addition, the similarity values for the fake image and the ground truth
were high, indicating that the generated results can be used as samples to expand the
insulator dataset.
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To compare the speed of all models, we conducted a comparative speed test. As shown
in Table 5, the test speed of the InsulatorGAN proposed in this paper was lower than that
of all the baselines. This result was due to the two-stage generation method adopted by
the model from coarse to fine, which inevitably increased the quantity of calculations.
The Monte Carlo search also required significant time. Nevertheless, the speed difference
between InsulatorGAN and SelectionGAN was relatively small, and 64FPS was enough to
meet the needs of practical applications.

Table 5. SSIM, PSNR, and SD of the different models. FPS is the number of images processed per
second during testing.

Model
InsuGenSet CPLID

FPS
SSIM PSNR SD SSIM PSNR SD

Pix2Pix 0.30 15.89 17.52 0.28 15.63 17.37 162
CRN 0.28 15.62 17.15 0.25 15.48 16.84 188

X-Fork 0.39 16.26 18.27 0.36 16.04 17.94 86
X-Seq 0.47 17.23 18.69 0.45 16.94 18.36 74

SelectionGAN 0.64 26.72 20.72 0.62 26.14 20.29 68
InsulatorGAN 0.71 28.25 22.15 0.68 27.51 21.50 64

5.4. Qualitative Evaluation

The qualitative experimental results are shown in Figures 5 and 6. The resolution of
the test images was 512 * 512. It can be seen that the image generated by InsulatorGAN
in this paper was clearer, and the details of the object or scene were richer. When using
the InsuGenSet and CPLID datasets, previous models are prone to generate fuzzy and
distorted images. InsulatorGAN instead learned how to generate images of insulators
with a strong diversity, producing more semantic details at the edges and connections
of insulators. The wires, trees, and towers in the non-insulator area were observed to be
realistic and similar to those of the Ground Truth.
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5.5. Sensitivity Analysis

In this section, we conducted five experiments on sensitivity analysis, including the
two-stage generation method, the number of introductions of Monte Carlo search, the
multi-level discriminator, the number of training iterations, and the minimum training
data experimental.

5.5.1. Two-Stage Generation

In order to verify the impact of two-stage generation on model performance, we
conducted experiments on the number of stages of InsulatorGAN introduced on the
InsuGenSet dataset. The experimental results are shown in Table 6. It can be seen from
the table that when using two-stage generation, InsulatorGAN had the most balanced
performance on various indicators.

Table 6. Comparison of the effectiveness of the generator networks.

IS FID FPS

Single generator 3.49 56.95 82
Two-stage generator 4.05 55.23 64

Three-stage generator 4.21 55.02 37

5.5.2. Monte Carlo Search

In order to verify the influence of the number of times the Monte Carlo search was
introduced on the performance of the model, we conducted experiments on the number
of introductions of InsulatorGAN’s Monte Carlo search on the InsuGenSet dataset. The
experimental results are shown in Table 7. From the experimental results, it can be seen
that when the number of times of using Monte Carlo search was 5, the performance of
InsulatorGAN on various indicators was the most balanced.
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Table 7. Introducing the Monte Carlo search time comparison.

MCS SSIM PSNR SD FPS

Not introduced 0.58 26.39 19.30 75
N = 1 0.64 26.95 20.46 70
N = 3 0.69 27.71 21.37 67
N = 5 0.71 28.25 22.15 64
N = 7 0.73 28.58 22.54 58
N = 9 0.74 28.73 23.02 51

5.5.3. Multi-Level Discriminator

To verify the impact of the multi-level discriminator on the performance of the model,
we conducted experiments on the number of times the discriminator of InsulatorGAN was
introduced on the InsuGenSet dataset. The experimental results are shown in Table 8. It
can be seen from the experimental results that when the three-level discriminator was used,
the performance of InsulatorGAN on various indicators was the most balanced.

Table 8. Comparison of the effectiveness of the discriminant networks.

SSIM PSNR SD FPS

Single discriminator 0.61 26.59 19.82 72
Two-level discriminator 0.66 27.38 20.74 68

Three-level discriminator 0.71 28.25 22.15 64
Four-level discriminator 0.73 28.61 22.88 59

5.5.4. Number of Epochs

To verify the impact of the number of epochs on the performance of the model, we
conducted experiments on the number of iterations of InsulatorGAN on the InsuGenSet
dataset. The experimental results are shown in Table 9. From the experimental results, it
can be seen that when the epoch was 200, InsulatorGAN had the most average performance
on various indicators.

Table 9. The effect of different epoch numbers on the experimental results.

Number of Epochs SSIM PSNR SD FPS

50 0.33 16.73 17.92 65
100 0.59 18.58 19.06 63
150 0.67 24.56 21.30 63
200 0.71 28.25 22.15 64
250 0.69 27.94 21.85 61

5.5.5. Minimum Training Data Experiment

In order to verify the impact of the training set size on the model’s performance,
we conducted experiments on the minimum training sample size of InsulatorGAN on
the InsuGenSet dataset. The experimental results are shown in Table 10. It can be seen
from the results that the performance of InsulatorGAN did not drop significantly with the
reduction of the training set at the beginning. Until the training set size is reduced to 70%,
InsulatorGAN’s scores on various indicators are similar to SelectionGAN, which shows
that InsulatorGAN has strong robustness and can still learn key feature information even
on a small-scale dataset. To a certain extent, it overcomes the shortcomings of the previous
model’s poor generalization ability.
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Table 10. Minimum training data experimental results.

The Amount of Training Set SSIM PSNR SD

2000 (100%) 0.71 28.25 22.15
1800 (90%) 0.69 27.93 21.85
1600 (80%) 0.66 25.97 20.36
1400 (70%) 0.63 25.04 19.82
1200 (60%) 0.57 23.92 17.31

5.6. Ablation Analysis

To analyze the functions of the different components in InsulatorGAN, we performed
an ablative analysis on InsuGenSet. As shown in Table 11, model B had better indicators
than model A, which demonstrates that the two-stage generation method from coarse to
fine was able to better improve the clarity of the image. Model C promoted the learning of
the generator by introducing a multi-level discriminator, which enhanced the quality of the
generated image while improving stability. The score of Model D shows that the penalty
mechanism significantly improved the performance of InsulatorGAN, allowing the model
to obtain sufficient semantic constraints during the generation process and increasing the
clarity and realism of the generated image.

Table 11. The results of the ablation analysis.

Model Architecture SSIM PSNR SD

A Pix2Pix 0.30 15.89 17.52
B A + two-stage generation 0.52 21.35 19.21
C B + multi-level discriminator 0.61 24.82 20.80
D C + Monte Carlo search 0.71 28.25 22.15

5.7. Computational Complexity

The network parameters and training time were counted to evaluate the space com-
plexity and time complexity of the networks. The results are shown in Table 12. It can be
seen that, compared with Cascade R-CNN, InsulatorGAN had a smaller number of network
parameters, but it obtained a better test performance. Compared with generative models
such as SelectionGAN, although the parameter amount and training time of InsulatorGAN
increased slightly, the performance improvement it brings was worthwhile.

Table 12. Network parameters (Param.) and training time of the different models.

Model Param. Training Time (h)

CenterNet 14 M 4.05
YOLOv4 28 M 6.38

Cascade R-CNN 184 M 49.84
Pix2Pix 47 M 14.92

CRN 36 M 10.88
X-Fork 62 M 16.30
X-Seq 70 M 18.57

SelectionGAN 78 M 20.06
InsulatorGAN 82 M 22.73

6. Conclusions

This paper proposed a power-line-insulator-detection image-generation model called
InsulatorGAN, which can generate insulator-detection images based on aerial images
taken by drones. This model first uses a coarse-grained module to generate low-resolution
target images and then uses a Monte Carlo search to mine the hidden information of
the intermediate results. Finally, this method uses a fine-grained model to synthesize
high-resolution target images based on the search results. Quantitative and qualitative
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experiments on the public CPLID dataset and the self-built InsuGenSet dataset provided
the following results. Compared with current mainstream models, the model in this paper
can generate clearer and more diversified insulator-detection images. The ablative analysis
experiment demonstrated that the penalty mechanism proposed in this paper based on a
Monte Carlo search significantly improved the image quality. In addition, the model in
this paper can be flexibly transferred to multiple scenarios. In the future, we will further
explore the application of this model to other power-line components, image-style transfer,
image translation, and other fields.
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