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Abstract: Many countries share an effort to understand the impact of growing urban areas on the
environment. Spatial, spectral, and temporal resolutions of remote sensing images offer unique
access to this information. Nevertheless, their use is limited because urban surface materials exhibit
a great diversity of types and are not well spatially and spectrally distinguishable. This work
aims to quantify the effect of these spatial and spectral characteristics of urban surface materials
on their retrieval from images. To avoid other sources of error, synthetic images of the historical
center of Venice were analyzed. A hyperspectral library, which characterizes the main materials
of Venice city and knowledge of the city, allowed to create a starting image at a spatial resolution
of 30 cm and spectral resolution of 3 nm and with a spectral range of 365–2500 nm, which was
spatially and spectrally resampled to match the characteristics of most remote sensing sensors.
Linear spectral mixture analysis was applied to every resampled image to evaluate and compare
their capabilities to distinguish urban surface materials. In short, the capability depends mainly on
spatial resolution, secondarily on spectral range and mixed pixel percentage, and lastly on spectral
resolution; impervious surfaces are more distinguishable than pervious surfaces. This analysis of
capability behavior is very important to select more suitable remote sensing images and/or to decide
the complementarity use of different data.

Keywords: urban land cover; spectral mixture analysis; hyperspectral image; multispectral image;
panchromatic image; high spatial resolution; moderate spatial resolution; coarse spatial resolution

1. Introduction

The world’s population that resides in urban areas is growing rapidly: the urban pop-
ulation was equal to 751 million (about 30%) in 1950 and equal to 4.2 billion (about 55%)
in 2018 [1]. United Nations predicted that this movement will concern another 2.5 billion
people (about 68%) in 2050 and that the largest urban growth will take place in Africa and
Asia [1]. The urbanization process is very complex as it is “due to a combination of four
forces: natural growth, rural to urban migration, massive migration due to extreme events,
and redefinitions of administrative boundaries” [2]. The rapid urban development has made
clear to the scientific and policy-making community that not only do cities play a key role
in social, economic, and environmental systems [1–3] but also their rapid growth impacts
negatively on land and aquatic ecosystems, the climate, and the territory [1,4–8]. International
institutions and local governments have been devoting a number of efforts to understand and
mitigate this impact. For example, National Development and Reform Committee (NDRC) in
China introduced “the Low-Carbon City” initiative [9], the European Union (EU) established
“Thematic Strategy on the Urban Environment” in 2005 [10], the government of Mexico City
launched a 15-year program called “Mexico City Green Plan” in 2007 [11], and the United
Nations promoted “United Nations Environment Programme” (UNEP) [12].

Remote sensing images offer unique access to information about the status of the
land surfaces due to their spatial, spectral, and temporal resolutions. Therefore, these data
could play an essential role in the characterization of the urban areas and in the monitoring
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of their expansion. Despite their observation capacities, Seto et al. [13] retrieved only
326 studies that mapped urban land cover with airborne and satellite data. They analyzed
the English language literature which is contained in the ISI Web of Science database and
was published between 1988 and 2008.

The urban areas are heterogeneous mosaics of many cover types; among them, there
are many surfaces through which water cannot penetrate (i.e., parking lots, roads, rooftops,
sidewalks, etc.), which are—for this feature—called impervious surfaces. The impervious
surfaces affect the energy balance of the earth’s surface (i.e., the urban heat island effect) [14],
ecological and hydrological systems increasing fragmentation [15], and altering runoff [16].
Therefore, the urban cover map is used to study the effect of materials on the urban microcli-
mate and on ecological and hydrological systems at an urban scale [17]. These studies focused
on spatially and spectrally distinguishing urban surface materials from each other and from
the background for land cover mapping and were performed with sensors characterized by
high and moderate spatial resolutions and by different spectral resolutions. The majority of
optical sensors are used for this purpose (i.e., urban cover mapping at urban scale in Table 1):
airborne hyperspectral sensors such as APEX (Airborne Prism Experiment) (e.g., [18]), AVIRIS
(Airborne Visible InfraRed Imaging Spectrometer) (e.g., [19]), DAIS (Digital Airborne Imaging
Spectrometer) (e.g., [20]), HyMap (HYperspectral MAPper) (e.g., [21]), and MIVIS (Multispectral
Infrared Visible Imaging Spectrometer) (e.g., [22]); satellite hyperspectral sensors such as CHRIS
(Compact High Resolution Imaging Spectrometer) (e.g., [23]), Hyperion (e.g., [24]), and TG-1
(TianGong-1) (e.g., [25]); satellite multispectral sensors characterized by high spatial resolution
such as IKONOS (e.g., [26]), QuickBird (e.g., [27]), and WorldView-2 (e.g., [28]); satellite panchro-
matic sensor such as IRS-1C (India’s Remote Sensing Satellite) (e.g., [29]), IKONOS (e.g., [17]),
and WorldView-2 (e.g., [30]); satellite multispectral sensors characterized by moderate spatial
resolution such as ALI (Advanced Land Imaging) (e.g., [31]), Landsat TM (Thematic Map-
per) and ETM+ (Enhanced Thematic Mapper Plus) (e.g., [32]), Sentinel 2A MSI (MultiSpectral
Instrument) (e.g., [33]), and SPOT (Satellite pour l’Observation de la Terre) (e.g., [34]).

Table 1. Selected literature in remote sensing of urban land cover mapping at urban and global scale.

Sensors
Optical

Spectral Bands
Optical Spectral

Cover (nm)Data Spatial
Resolution Panchromatic Multispectral Hyperspectral References

Urban cover mapping at urban scale

High (<10 m) IRS-1C 1 500–750 [29] 1

IKONOS 1 530–930 [17] 1; [26] 1; [29] 1;
[31] 1,2

QuickBird 1 405–1053 [35] 1,2

WorldView-2 1 450–800 [28] 1,2 [30] 1,2

IKONOS 4 450–860 [17] 1; [26] 1; [29] 1

QuickBird 5 403–918 [27] 1,2; [35] 1,2

WorldView-2 8 400–1040 [28] 1,2 [30] 1,2

APEX 288 372–2540 [18] 1

AVIRIS 244 365–2500 [19] 1

DAIS 72 400–2500 [20] 1,2

HyMap 128 400–2500 [21] 1,2

MIVIS 92 430–2478 [31] 1,2; [22] 1,2

Moderate
(10 m–100 m) SPOT 1 450–750 [34] 1,2; [35] 1,2

ALI 9 433–2350 [31] 1,2

Landsat TM 6 450–2350 [32] 1,2; [34] 1,2; [36] 1,2

Landsat ETM+ 6 450–2350
[31] 1,2; [32] 1,2; [35]
1,2; [36] 1,2; [37] 1,2;

[38] 1,2

Sentinel 2a 12 443–2200 [33] 1,2

SPOT 4 450–890 [34] 1,2

CHRIS 19–150 410–1050 [23] 1,2

Hyperion 242 400–2500 [24] 1,2; [25] 1; [31] 1,2

TG-1 128 400–2500 [25] 1
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Table 1. Cont.

Sensors
Optical

Spectral Bands
Optical Spectral

Cover (nm)Data Spatial
Resolution Panchromatic Multispectral Hyperspectral References

Urban cover mapping at country and global scale

Coarse (>100 m) DMSP-OLS 2 400–1100 [39] 1,2;
MERIS 15 390–1040 [37] 1,2

MODIS 19 405–2155 [36] 1,2; [40] 1,2; [41] 1,2

1 The study merged multi-source data. 2 The study combined different techniques.

Since the impervious surface cover is the major component of urban land cover, it is
regarded as an indicator of urban land cover, and it is used [38] to monitor the extension of
the urban areas at country and global scales [17]. These studies have focused on spatially
and spectrally distinguishing urban areas from the background and were performed with
sensors characterized by coarse spatial resolution and high revisit time. For example,
the optical remote sensing sensors used for this purpose (i.e., urban cover mapping at
country and global scale in Table 1) are DMSP-OLS (Defense Meteorological Satellite
Program’s Operational Line-scan System) (e.g., [39]), MERIS (MEdium Resolution Imaging
Spectrometer) (e.g., [37]), and MODIS (Moderate Resolution Imaging Spectroradiometer)
(e.g., the authors of [36,40,41] retrieved impervious surface land cover from MODIS data at
spatial resolutions of 250 m, 500 m, and 1 km, Table 1).

In conclusion, urban land cover mapping was performed at urban scale with hy-
perspectral, multispectral, and panchromatic optical remote sensing images at high and
moderate spatial resolutions (e.g., [14–34]), and it was performed at country and global
scale with multispectral optical remote sensing images at coarse spatial resolution (Table 1)
(e.g., [36,37,39–41]). Despite this, the map (or image) can never be the territory that
encloses [42,43]. As a matter of fact, the authors underlined that every urban land
cover class has a large number of pixels that are not distinguishable from others other
classes [17–37,39–41]. In order to explain the large number of errors in the classification,
Small [17] defined urban areas as a complex mosaic of many different materials, which
have different sizes and shapes. Therefore, for leading a precise identification of urban
surface materials, some studies merged different remote sensing data and auxiliary infor-
mation [17–29,31–41] and combined different techniques [20–24,27,28,31–41]. Some papers
compared a few remote sensing images and/or products to evaluate thematic, spectral, and
spatial capabilities to retrieve urban land cover from remote sensing data (e.g., [31,35,44]).
Cavalli et al. [31] compared hyperspectral and multispectral remote sensing images with
high and moderate spatial resolutions to evaluate the spectral capability to retrieve urban
land cover. Tran et al. [35] highlighted that the optimal spatial resolution for urban remote
sensing detection is closely related to three levels of urban observations (i.e., urban object,
urban district, and urban spot). Potere et al. [44] examined the accuracy of some global
urban maps identifying only two classes (i.e., urban and non-urban areas) and highlighted
that these maps show great differences in urban sizes. Since these evaluations compared
only a few sensors, they offered a partial view of thematic, spectral, and spatial capabilities
to retrieve the urban surface materials from remote sensing data. Furthermore, the litera-
ture review suggests that fewer research efforts have been devoted to spectral requirements
for urban mapping than spatial resolution requirements [45].

It is interesting to note that these papers analyzed urban areas that were located in
all continents except Antarctica (i.e., Africa [36], American [17,19,24,26–28,32,36,38,41],
Asian [17,25,30,33,35,36,39,40], Australian [36], and European [17,18,20–23,29,31,34–36]
continents) and the majority of these researches were supported by national and interna-
tional projects [18,22,25–27,30,32,33,38,39,41]. This analysis confirms that many countries
share effort to understand impact of the urban areas on the environment and that remote
sensing data are globally considered a useful tool for this purpose.
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In conclusion, the literature review highlights the importance of having a complete
view of the spectral and spatial capabilities to improve the accuracy of urban land cover
from remote sensing data. Therefore, this work aims to examine the behavior of the
capabilities of most available remote sensing sensors to distinguish the urban surface
materials. In order to focus only on the spectral and spatial capabilities of most remote
sensing sensors and avoid errors due to their other sources, a synthetic hyperspectral image
of Venice historical center at high spatial resolution was created as a started image, its
spatial and spectral characteristics were modified to match those of most remote sensing
sensors, and their capabilities to distinguish the urban surface materials were evaluated
and compared.

2. Materials and Methods
2.1. Study Area

The city of Venice is worldwide known as a relevant artistic and historical center. It
is located inside a large lagoon in the northwestern Adriatic Sea which is named after
the city of Venice. It is built on about a hundred small islands, where buildings arise one
close to the other and separated by narrow streets (called “calli”), squares with different
shapes (called “campi”, only the square facing the Basilica of San Marco is called “piazza”),
streams, and canals. The Grand Canal and the Giudecca Canal are the main canals: the
first crosses the historical center drawing a wavy line, and the second, which is wider and
deeper than the Grand Canal, is also a transit route for large tourist and container ships.
However, last March, the Italian Council of Ministers decided that these large ships must
be placed far from the historical center as requested by UNESCO.

The connection between the islands is guaranteed by several bridges; the majority of
them are made of stone and others, of wood and metal. A bridge (i.e., Ponte della Libertà)
connects the mainland to the western part of the city, which is the only portion accessible by
wheeled vehicles. In the rest of the city, the movement of people or things is by pedestrian
way or by boats. Most buildings are characterized by structures (called “altane”) located on
roofs and made almost entirely of wood. From the 15th century onwards, these structures
were built to enlarge the living space or to provide a sunny and airy area in an urban
mosaic with very narrow streets and squares.

The historical center of Venice is characterized by a mixture of urban surface materials,
which have different sizes and shapes. For this reason, Venice was chosen as test site for
evaluating the capability of most remote sensing images to distinguish the urban surface
materials (Figure 1).

Figure 1. Study area: (a) study area location (white square); (b) IKONOS image of historical center of Venice.
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2.2. Hyperspectral Library

A careful analysis of the literature and the knowledge of the city acquired during
extensive field campaigns, which were conducted from June to September 2001, in June
2004, and May 2005, led to the identification of thirteen classes of materials that well
summarize the land cover materials of the historical center of Venice (Table 2 [31,46]).
During these campaigns, many images were acquired by panchromatic, multispectral, and
hyperspectral sensors characterized by different spatial resolutions [31,46,47].

Table 2. Thirteen classes of main urban surface materials of the historical center of Venice.

Land Cover Material

1 Old Tiles Old lateritic tiles cover most buildings (i.e., 89%).
2 New Tiles New lateritic tiles.
3 Lead Lead tiles were used as covering material for the public buildings and domes.
4 Concrete Concrete was primarily used in the western side of the city and in the harbor areas.
5 Trachyte Trachyte rock came from quarries of Euganean Hills (Italy) and was used for paving pedestrian streets.
6 Limestone Limestone rock came from quarries of Pietra d’Istria (Italy) and was used for decoration in the urban paving.
7 Asphalt Asphalt was primarily used in the western side of the city and in the harbor areas.
8 Pebbles
9 Sand
10 Wood Wood was used for paving some bridges, jetty, and swings.
11 Grass
12 Trees

Water Water of the channels and streams.

The classes from 1 to 7 can be classified as impervious surface cover.
The identified classes of urban surface materials were spectrally characterized not only

in different sites of the historical center in order to sample the natural spectral variability
but also in the laboratory in order to better assess the spectral features of the materials [31].
The field campaigns were conducted using a portable field spectrometer ASD (Analytical
Spectral Devices) FieldSpec Full-Range Pro [31,46]. The ASD spectrometer samples spectral
range from 350 to 2500 nm using two detectors: one covers from 350 to 1050 nm with a
spectral sampling interval of 1.4 nm, and the other covers from 1000 to 2500 nm spectral
sampling interval of 2.0 nm. The field ASD measurements were collected within 2 h of
solar noon sets by acquiring 4–5 measures for each target from a height of 1 m using a
field of view of 25◦ to fulfill the target dimension. A National Institute of Standards and
Technology calibrated panel (i.e., Spectralon reference standard) was employed to derive
absolute reflectance spectra [31,46]. Therefore, the spectral library, which was included the
accurate spectra and considered the variability of each class, was created (Figure 2).

2.3. Synthetic Image of the Historical Center of Venice

The previous studies conducted to map the urban surface materials from remote sens-
ing images highlighted three main sources of error [17–34,38]: (i) correction of atmospheric
and environmental effects; (ii) spectral characterization of each surface material in the
image; (iii) validation of classification results.

Since this work aims to focus attention only on the spatial and spectral capability of
most remote sensing sensors to distinguish urban surface materials, a synthetic image of
the historical center of Venice was created to avoid these errors, and its spectral and spatial
characteristics were modified to match the characteristics of most remote sensing images.
Errors due to the atmospheric and environmental effects were avoided by assembling
the reflectance spectra acquired in situ. Errors due to the use of an incomplete spectral
library were avoided by identifying the main surface classes present in the historical center
of Venice and using only these spectra to create the synthetic image. Other authors also
created synthetic remote sensing images in order to demonstrate the potential of data and
models or to test algorithms and compare their results [48–50].
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Figure 2. The hyperspectral library of main urban surface materials of the historical center of Venice and the variability of
each class (i.e., the mean spectrum was plotted with a solid line and the mean spectrum plus the standard deviation and
minus the standard deviation were plotted with dashed lines): (a) the spectra of Old Tiles, New Tiles, and Lead classes;
(b) the spectra of Concrete, Trachyte, and Limestone classes; (c) the spectra of Asphalt, Pebbles, and Sand classes; (d) the
spectra of Wood, Grass, Trees, and Water classes.

This simulation was possible due to the great knowledge of the city. IKONOS-2 sensor
acquired the image of the historical center of Venice on April 2 2001, and this image, spatially
resampled at 30 cm resolution, was chosen as the base image to manually digitize the areas
where the identified surface classes were located. Only areas of the classes of grass and trees
were identified by applying thresholds to Normalized Difference Vegetation Index, which
was obtained from resampled IKONOS image. Therefore, each identified surface class was
associated with a mask which represents the places where that class was located. All pixels
included in each mask were used as ground truth in the validation of the classification results
to avoid errors that arise when a small number of pixels are used to validate classification
results. Figure 3 shows the 13 masks utilized to build the synthetic image.

The next step was to create an image with the same size as the resampled IKONOS image
and with 624 bands (i.e., the number of bands that is required to cover the spectral range from
365 to 2500 nm with a spectral resolution of 3 nm). The identified masks were used to select the
parts of this image that correspond to each class (Figure A1a), and each part was multiplied
by the spectrum of the corresponding class (Figure 2). In order to simulate the internal
spectral variability of the urban surface class, the mask of each class was associated with
its mean spectrum and its variability: one yes and one no pixel of the mask was multiplied
by the mean spectrum plus the standard deviation, and one no and one yes pixel of the
mask was multiplied by the mean spectrum minus the standard deviation. In other words,
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imagining a chessboard of the same size as the image, its pixels that were associated with the
black chessboard squares were multiplied by the mean spectrum plus the standard deviation
(Figure A1c), whereas those that were associated with the white chessboard squares were
multiplied by the mean spectrum mine the standard deviation (Figure A1d). These steps
were repeated for each mask and the resulting images were assembled together to create the
starting synthetic image (Figure A1b).

Figure 3. The masks of the 13 identified main classes of the Venice historical center.

The previous papers analyzed most remote sensing images, which are characterized
with different spectral ranges and with different spectral and spatial resolutions [17–41].
Their characteristics were grouped into two spectral ranges, five spectral resolutions, and
six spatial resolutions (Table 3).

Table 3. Spectral ranges, spectral resolutions, which were represented with Full Width at Half
Maximum (FWHM), and spatial resolutions of most remote sensing sensors.

Spectral Cover Range (nm) FWHM (nm) Spatial Resolution (m)

365–2500 3; 10; 30; 50; 100 1; 5; 10; 50; 100; 250
400–1100 3; 10; 30; 50; 100 1; 5; 10; 50; 100; 250

In order to retain spectral variability in all spatially resampled images, the spatial
resolution of the starting synthetic image was chosen equal to 30 cm because the pixels of
all spatially resampled images did not contain an integer and even number of pixels of
the base synthetic image (Table 3). Therefore, the starting synthetic image of the historical
center of Venice, which was characterized with the spectral range from 365 to 2500 nm
and with the spectral and spatial resolutions equal to 3 nm and 30 cm, respectively, was
resampled into 60 images (Table 3) in order to assess the capabilities of most remote sensing
images to retrieve the urban surface materials.
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2.4. Evaluation of Spectral and Spatial Capabilities Using Linear Spectral Mixture Analysis
and FAMs

In order to address the problem of image pixels that contain the spectral information of
more than one material, most works employed the spectral mixture analysis
approach [17,20,21,23,24,27,31,38,41]. Among these classifiers, linear spectral mixture anal-
ysis (called LSM) assumes that the reflectance of a pixel is the sum of the reflectance of each
material present therein and weighs their respective abundances [51]. The requirement for re-
ducing the residual error and producing more accurate abundances is to know all endmembers
which are present in each pixel [23,51]. Since every urban surface material of the starting image
is known, LSM was performed. Since every urban mosaic is characterized by great diversity
in the size and shape of the surface materials [17–41], the starting image was divided into
10 squares to analyze the variability of the different sizes and shapes of the surface materials.
These squares were characterized by one km side for containing 4 pixels when the image was
resampled to the lowest spatial resolution (i.e., 250 m).

Before applying the LSM classifier, the starting image divided into 10 squares was
resampled according to the spectral ranges and the spectral and spatial resolutions that
were summarized in Table 3. The spectral library, which included only the mean spectra of
all identified materials, was spectrally resampled according to Table 3 before be utilizing
as selected endmember spectra. LSM result consists of the fractional abundance images,
whose number is equal to the number of spectra of the selected endmembers, and the pixels
of these images represent the percentage of the class that is spectrally characterized by the
endmember spectrum. LSM was applied to each spectral and spatial resampled image.

LSM results were evaluated using fractional abundance models (called FAMs) as
ground truth because they represent the cumulative endmember abundance fractions as
the percentage of pixels decreases. FAMs were created starting from three observations:
(i) the resampled mask includes only pixels with 100% abundance of the corresponding
class; (ii) the pixels of the starting mask not included in the resampled mask have an
abundance of less than 100%; (iii) the abundance fractions of these pixels can be evaluated
using the buffer zone of the resampled mask because their abundance fractions depend on
the distance from the resampled mask.

The first step in the identification of these models was to calculate the percentage of
pixels with the abundance equal to 100% using the starting masks: each mask was spatially
resampled to 0.5, 1, 2, 2.5, 5, 10, 16, 20, and 50 m (Figure A2a,b shows the mask of Old
Tiles spatially resampled at 50 cm and 5 m, respectively); it was then resampled to 50 cm
resolution to facilitate the comparison of all results as they had the same number of pixels;
the pixels of the twice resampled mask were counted and compared with the total number
of pixels of the starting mask since their percentage ratio is equal to the percentage of pixels
with the abundance equal to 100% of the corresponding class (Figure A2c shows in red Old
Tiles mask resampled twice, first at 5 m and then at 0.50 m, which is superimposed on the
Old Tiles mask at 0.5 m colored in white). In other words, the masks were resampled twice
because the first time, the masks were resampled to identify the pixels with the abundance
equal to 100% (Figure A2b) and the second time, they were resampled at 50 cm to calculate
the percentage of pixels with the abundances of 100% (Figure A2c). The spatial resolution
of 50 cm was chosen because the twice resampled mask contains an integer number of
pixels of mask, which was resampled to 0.5, 1, 2, 2.5, 5, 10, 16, 20, and 50 m.

The second step was to compute the percentage of pixels with abundances more
than 75% by creating a buffer zone of the twice resampled mask within the starting mask.
This buffer zone had a pitch equal to a quarter of the spatial resolution analyzed, and the
number of its pixels was counted and compared with the total number of pixels of the
starting mask: their percentage ratio is equal to the pixel percentage with the abundance
greater than 75% of the corresponding class.

In the same way, the third step was to calculate the percentage of pixels with abun-
dances more than 50% by creating another buffer zone of the twice resampled mask within
the started mask (Figure A2d shows in blue the buffer zone of the twice resampled Old



Remote Sens. 2021, 13, 3959 9 of 29

Tiles mask overlaid on the masks in Figure A2c. This buffer zone is identified by the
distance less than and equal to 2.5 m from the twice resampled mask). This other buffer
zone had a pitch equal to half of the analyzed spatial resolution, and the number of its
pixels was counted and compared with the total number of pixels of the starting mask:
their percentage ratio is equal to the pixel percentage with the abundance greater than 50%
of the corresponding class.

Subsequently, the pixel percentages with abundance equal to 100%, with abundance
greater than 75%, and with abundance greater than 50% were plotted versus the spatial
resolutions in order to compute the best fitting functions and to assign pixel percentages
with these abundances to spatial resolutions of most remote sensing images (Table 3).

The masks were resampled at many spatial resolutions (i.e., 0.5, 1, 2, 2.5, 5, 10, 16,
20, and 50 m) to better calculate the best fitting functions that were required to assign
percentages of pixels with the abundances of 100% and more than 75% and 50% to the
spatial resolutions of most remote sensing images. All the best fitting functions calculated
were linear. Figure 4 shows—as an example—the scatterplots of Water, Old Tiles, and
Trachyte classes which were obtained using the mean values for all zones.

Figure 4. Scatterplots of the averages of pixel percentages with abundances equal to 100% (colored in blue) and more than
50% (colored in red) versus spatial resolutions, their best-fit functions, and their FAMs obtained for the resampled images at
10 m (colored in green): (a) scatterplot and FAM of Water class; (b) scatterplot and FAM of Old Tiles class; (c) scatterplot and
FAM of Trachyte class.

Tables A1 and A2 summarize the features of best-fitting functions (i.e., the mean
and the standard deviation values of the slopes, the intercepts, and the linear regressions)
of the pixel percentages having 100% abundances and having abundances more than
50%, respectively.

In the last step in FAM implementation, the pixel percentages with abundances equal to
100%, more than 75%, and 50% identified for all selected spatial resolutions (Table 3) allowed
us to calculate the distributions of the cumulative abundance fractions of each endmember
versus the percentage of pixels (i.e., FAMs). FAMs were computed for each class in each zone
at each spatial resolution (i.e., every class was characterized with 60 models). Figure 4 shows
the averages of FAMs, which were computed for masks of Water, Old Tiles, and Trachyte
resampled to 10 m (i.e., the green lines in Figure 4a–c, respectively).

Since the pure pixel is characterized by 100% abundance of only one endmember, the
pixel that contains abundance fractions from 1 to 100% of more than one endmember is
called a mixed pixel. Averages of the percentages of mixed pixels (i.e., the percentages of
pixels with less than 99% abundance) of all surface classes and surfaces were calculated for
images at all spatial resolutions analyzed using averages of FAMs (Table A3).

LSM results were evaluated by analyzing only the pixels of each fractional abundance
image within the starting mask of the corresponding endmember. The abundance fractions of
these pixels allowed us to calculate the cumulative abundance fractions of each endmember
versus the percentage of pixels. Therefore, evaluation of LSM results was carried out by
four values which compare these cumulative endmember abundance fractions and the corre-
sponding FAMs and evaluate their differences: Kling–Gupta efficiency (KGE) and the sum



Remote Sens. 2021, 13, 3959 10 of 29

of differences between all abundances (Totals Errors), the sum of differences between abun-
dances from 100 to 50% (100–50% Errors), and the sum of differences between abundances
less than 49% (49–0% Errors) in absolute values. This distinction of abundance percentages
was performed since it divides pixels that are assigned to an endmember from those that are
not assigned [25,51]. The KGE value was used to evaluate the similarity between the classified
and modeled endmember abundance fractions according to pixel percentage. The KGE value(

KGE = 1−
√
(R− 1)2 + (σmodelled

σclassified
− 1)2

+ (µmodelled
µclassified

− 1)2
)

expresses in a single number

the similarity using their linear correlation (R), standard deviation (σ), and mean (µ) values
of modeled and classified data [52]. The KGE value is used to calibrate and evaluate not
only the hydrological models but also the bio-optical models [53]. The literature grouped the
KGE value into three classes: values equal to 1, positive and negative values indicating equal,
approximately similar, and non-comparable distributions [52].

3. Results
3.1. LSM Results

Since the starting image was spatially and spectrally resampled into 60 images (Table 3)
that were then divided into 10 zones, the LSM classifier was applied to 600 images, and
their KGE, Total Errors, 100–50% Errors, and 49–0% Errors values were calculated.

In 10 zones of the starting image, the pixel percentages of Old Tiles, New Tiles, Lead,
Concrete, Trachyte, Limestone, Asphalt, Pebbles, Sand, Wood, Grass, Trees, and Water
classes ranged from 52 to 7%, from 2 to 0%, from 1 to 0%, from 6 to 0%, from 13 to 3%, from
2 to 0%, from 17 to 0%, from 4 to 0%, from 3 to 0%, from 5 to 0%, from 8 to 2%, from 4 to
1%, and from 40 to 10%, respectively. The pixel percentages of the materials classified as
impervious, pervious, and vegetated surfaces ranged from 72 to 20%, from 13 to 2%, and
from 12 to 3%, respectively, and their average percentages are 51, 6, and 8%, respectively.
The mean percentages of the Water class are 23%. Since the pixel percentages of the
impervious surfaces were higher than those of the other surface materials, the analysis
of the results regarding these surfaces materials was performed first on each endmember
using the average of the values for all zones and then overall using their weighted averages,
while the analysis of the results regarding materials classified as pervious and vegetated
surfaces was performed using their weighted averages only.

KGE, Total Errors, 100–50% Errors, and 49–0% Errors values were assembled into
arrays with six columns and five rows representing the selected spatial and spectral
resolutions. Figure 5 shows the arrays made to assess and compare classification results
of Old Tiles, New Tiles, Lead, Concrete, Trachyte, Limestone, and Asphalt endmembers
(Figure 5a–f, respectively). In Figure 5, the matrices on the left show the values obtained
from the images with the spectral range from 365 to 2500 nm, the matrices in the middle
show the values obtained from the images with the spectral range from 400 to 1100 nm,
and the matrices on the right show the difference between the values of the first and
second matrices.
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Figure 5. Mean values of KGE, Total Error, 100–50% Errors, and 49–0% Errors obtained from images with spectral
ranges of 365–2500 and 400–1100 nm and their differences: (a) the values of Old Tiles endmember; (b) the values of New
Tiles endmember; (c) the values of Lead endmember; (d) the values of Concrete endmember; (e) the values of Trachyte
endmember; (f) the values of Limestone endmember; (g) the values of Asphalt endmember.

Figure 6 shows weighted averages of KGE, Total Errors, 100–50% Errors, and 49–0% Errors
values arranged in matrices to evaluate and compare the classification results of impervious,
pervious, and vegetated surfaces, and Water endmember (Figure 6a–d, respectively). In Figure 6,
the matrices on the left show the values obtained from the images with the spectral range of
365–2500 nm, the matrices in the middle show the values obtained from the images with the
spectral range of 400–1100 nm, and the matrices on the right show the difference between the
values of the first and second matrices.

Since Total errors, 100–50% Errors, and 49–0% Errors are given in absolute values, the
negative errors (i.e., classified abundance fractions were greater than FAMs) were counted,
and when their number is greater than that of the positive errors, their values were colored
in black in Figures 5 and 6 and vice versa, their values were colored in red. Similarly,
the differences between the values calculated from images with the spectral range of
365–2500 nm and the values calculated from images with the spectral range of 400–1100 nm
are colored blue when the former values are greater than the latter, and conversely, the
differences are colored green when the latter values are greater than the former.
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Figure 6. Cont.
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Figure 6. Weighted averages of KGE, Total Errors, 100–50% Errors, and 49–0% Errors values obtained from images with
spectral ranges of 365–2500 and 400–1100 nm and their differences: (a) the values of impervious surfaces; (b) the values of
pervious surfaces; (c) the values of vegetated surfaces; (d) the values of Water endmember.
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Figures 5 and 6 also show the mean values of the standard deviations calculated
from the KGE and the Total Errors values of the 10 zones. It is worth noting that these
mean values are all very low. Therefore, the values of KGE and errors depend little on the
percentage of endmembers present in the scene.

Since the percentage of pixels in the “Old Tiles” class was greater than those of the
other urban surface materials that were classified as impervious surfaces, the classification
results of Old Tiles endmember (Figure 5a) are comparable with the classification results of
the impervious surfaces (Figure 6a).

3.2. FAMs Calculated to Validate LSM Results

The common effort of works, which analyzed the urban surface materials from remote
sensing images, is to improve thematic accuracy by searching for the most appropriate
classifier and by carefully validating the results [17–41,44]. The majority of these stud-
ies employed the spectral mixture analysis approach [17,20,21,23,24,27,31,38,41], and the
literature highlights two forms of ground truth available to assess its thematic accuracy:
a spectral library and a set of areas representing pixel-by-pixel abundances of image
endmembers [17,20,21,23,24,27,31,38,41,54]. Since the spectral library was employed to
simulate the starting image, the thematic accuracy of classified urban surface materials
was assessed using FAMs as ground truths since they provide abundance fractions of all
pixels of corresponding endmembers. Sixty FAMs for each endmember were exploited
not only to validate the results of each image but also to assess how different sizes and
shapes of endmembers weighed on the classification results. Figure 4 clearly shows how
FAMs change as the size and shape of endmembers change: the size and shape of Water
endmember are different from those of Old Tiles endmember, and the size and shape of the
latter are different from those of Trachyte endmember. Therefore, FAMs allow us to classify
the image endmembers according to their sizes and shapes. The features of the best-fitting
functions arranged in descending order highlighted two groups of endmembers: the first
group includes Water, Asphalt, Lead, Concrete, Old Tiles, and New Tiles endmembers and
the second group includes Grass, Trees, Trachyte, Sand, Pebbles, Wood, and Limestone
endmembers. In the first group, the average of the slopes of the best-fitting functions and
the average of their standard deviations range between −1.13% and −4.34% and between
0.4% and 1.55%, respectively; in the second group, the values range between −7.71% and
−20.51% and between 4.17% and 6.43%, respectively. The difference between these groups
is very marked because this ranking divides the materials that can be mapped with great
non-jagged shapes from those that can be mapped with small, jagged shapes.

4. Discussion
4.1. Analysis of Fractional Abundance Images

The literature highlights that greater capability to distinguish materials can be achieved
from remote sensing images having greater spectral and spatial resolutions and greater
spectral range [17–25,31,55–57]. In other words, the shared premise requires that the ca-
pability decreases as spectral resolutions (called spectral resolution requirement), spatial
resolutions (called spatial resolution requirement), and spectral ranges (called spectral
range requirement) decrease [17–25,31,55–57]. In order to not take this shared premise
for granted, the capabilities of the images with spectral and spatial characteristics of the
most available remote sensing sensors (Table 3) were compared. Since the KGE value,
representing the capability to classify the urban surface materials, is inversely proportional
to the errors (i.e., Total Errors, 100–50% Errors, and 49–0% Errors), the shared premise
requires that the first value decreases and the second values increase as spectral resolutions
(spectral resolution requirement), spatial resolutions (spatial resolution requirement), and
spectral ranges (spectral range requirement) decrease.

With reference to the impervious surfaces, spectral resolution and spectral range
requirements were met by KGE, Total Errors, 100–50% Errors, and 49–0% Errors values
(Figure 6a) except for the error values obtained from the images at the spatial resolutions
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of 50, 100, and 250 m, which did not meet the spectral range requirement. In other words,
the amount of error in classifying images with a high percentage of mixed pixels depends
poorly on decreasing the spectral range and spectral resolution of the images. The spatial
resolution requirement was not met by the KGE values: the images with an average
percentage of mixed pixels about of 44% (Table A3) show the greatest KGE values; the
values decrease very slightly as mixed pixel percentage decreases; they decrease rapidly as
mixed pixel percentage increases except for the mages at spectral resolutions of 3 and 10 nm
with a spatial resolution of 250 m. These images show the KGE values lower than those
obtained from images with a spatial resolution of 100 m. The spatial resolution requirement
was met by the Total Errors values obtaining from the images with the spectral range of
365–2500 nm, while it was not met by the Total Errors values obtaining from the images
with the spectral range of 400–1100 nm. They show the same behavior as the KGE values.

It is important to underline that the images at the spectral resolution of 100 nm and
at the spatial resolutions of 1, 5, and 10 m with a spectral range of 400–1100 nm show
greater Total Errors and 100–50% Errors values than those obtained from all images at
spatial resolutions of 50, 100, and 250 m. In other words, multispectral sensors with high
spatial resolution in the spectral range between 400 and 1100 nm have a lower capability
to distinguish the urban surface materials than hyperspectral sensors with low spatial
resolution in the same spectral range.

The analysis of the fractional abundance images of impervious surfaces is very impor-
tant for urban land cover mapping not only since their pixel percentage was greater than
those of other urban surface materials but also since these surface materials have a more
negative impact on the environment than other urban materials [14–17].

With reference to the pervious surfaces, the spectral resolution and spectral range
requirements were met by the KGE, Total Errors, 100–50% Errors, and 49–0% Errors values
(Figure 6b). The spatial resolution requirement was not met by the KGE values: the
greatest values were obtained from the images at the spatial resolution of 5 m (their mean
percentage of mixed pixels equal to 47%, Table A3), and their values decrease slightly as
spatial resolution increases, while they decrease rapidly as spatial resolution decreases
except for spatial resolution of 250 m. The spatial resolution requirement was met by Total
Errors values obtaining from the images with both spectral ranges.

Each requirement is not met by the KGE values of vegetated surfaces; the images at a
spatial resolution of 5 m (their mean percentage of mixed pixels of these images is equal to
45%, Table A3) exhibit the greatest KGE values. The spatial resolution and spectral range
requirements were partially met by Total Errors, 100–50% Errors, and 49–0% Errors values.
In other words, the vegetation signatures are distinguishable from those of other urban
surface materials regardless of the spectral range and the spectral resolution of the images
(Figure 2 [27,31,58,59]).

The spatial and spectral resolution requirements are not met by the KGE and Total
Errors values of the Water endmember (i.e., the endmember with the smallest values of
KGE). The images at spatial resolution of 10 m (their mean percentage of mixed pixels is
equal to 43%, Table A3) with the spectral range of 365–2550 nm exhibit the greatest KGE
values and the smallest Total Errors values, while the images at a spatial resolution of 5 m
with the spectral range of 400–1100 nm exhibit the highest KGE values (Figure 6d). The
total Errors values obtaining from the images with spectral range of 400–1100 point out
an increase as spatial resolution decreases except for the values obtained from the image
at spatial resolution of 250 m, which are smaller than the values obtained from the image
at spatial resolution of 100 m. Spectral range requirement was met by values of Water
endmember. Since the water column signatures are characterized by very low reflectance
in the visible and by reflectance close to zero in the other spectral regions (Figure 2), they
are not well distinguishable from those of other urban surface materials, especially when
the images with the spectral range of 365–2500 nm are classified [60,61].
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4.2. The Percentages of Mixed Pixels

On the one hand, the analysis of LSM classification results confirmed that the capability
to retrieve the impervious and the pervious surfaces generally decreases with decreasing
spectral resolution and spectral range of the images. On the other hand, the analysis
shows that the capability does not decrease with decreasing spatial resolution because the
capability of the images depends more on increasing their percentage of mixed pixels than
on decreasing their spatial resolution. Overall, the capability depends more on crossing
or not crossing the 50% threshold of mixed pixels. Analysis of the fractional abundance
images showed how mixed pixel percentages affect the capability to classify the urban
surface materials: the KGE values achieve their maximum values in the images with mixed
pixel percentages about equal to 50% and decrease slightly as mixed pixel percentages
decrease, whereas the values decrease rapidly as mixed pixel percentages increase; finally,
the KGE values become nearly constant in the images with mixed pixel percentages equal
to 100%.

The values of Total Errors, 100–50% Errors, and 49–0% Errors are also affected by
the variation in the mixed pixel percentage: the errors values of some endmembers show
similar behavior to the KGE values, and the errors values of other endmembers decrease
or increase rapidly corresponding to images with the percentage of mixed pixels greater
than 50%. It is important to note that the values of 100–50% Errors obtained from the
images with the mean percentage of mixed pixels less than 50% were greater than the
values of 49–0% Errors: this difference is greater in the images with the spectral range of
400–1100 nm than that in the images with the spectral range of 365–2500 nm; it is greater
in the images at great spatial resolution than that in the images at small spatial resolution.
Overall, 100–50% Errors values obtained from the images with the mixed pixel percentages
less than 50% reveal an underestimation of abundances between 100 and 50% of the
endmembers (the percentage errors colored in red in Figures 5 and 6), whereas 100–50%
Errors values obtained from the images with the mixed pixel percentages more than 50%
reveal an overestimation of abundances between 100 and 50% of the endmembers (the
percentage errors colored in black in Figures 5 and 6).

As the spatial resolution decreases, the behavior of KGE and errors reveals a division
of endmembers into two groups: the first shows a strong change in their behavior between
the images at the spatial resolution smaller than and equal to 10 m and the images at the
spatial resolution greater than 50 m; the second shows a strong change in their behavior
between the images at the spatial resolution smaller than and equal to 5 m and the im-
ages at the spatial resolution greater than 10 m. The first group includes five sevenths
of endmembers identified as impervious surfaces and Water endmember (their mixed
pixel percentages in these images are about equal to 44%); the second group includes the
remaining endmembers (their mixed pixel percentages in these images are about equal
to 46%). These two groups appropriately correspond to the previously identified groups
that were highlighted by examining the best-fitting functions: the first group includes
the materials with large, non-jagged shapes, and the second includes the materials with
small, jagged shapes. Therefore, the capability does not depend only on the shape of the
endmembers, but it depends on the characteristic of the scene that associates their size to
their shape [35].

4.3. Ranking of the Capabilities of Most Remote Sensing Images

The capability of remote sensing images to distinguish between the urban surface
materials leads to assigning a pixel to the right class or a different class and depends on
characteristics of the scene and image (i.e., the size and shape of the endmembers, the
spatial and spectral resolution, and the spectral range of the remote sensing images). In
order to assess how much each individual characteristic affects the capability of each urban
surface material, the images with the same characteristic were grouped together, creating
a set of groups consistent with that characteristic whose number is a function of that
characteristic (i.e., two, six, five, and two sets of images grouped together according to 50%
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threshold of mixed pixels, the spatial and spectral resolutions, and the spectral range of
the analyzed images, respectively). The KGE values of one set of images were averaged to
compare them with those of every other set that was grouped by the same characteristic:
the average KGE values of the group of the images with mixed pixel percentages below
50% were compared with the values of the images with mixed pixel percentages above
50%, whereas the average KGE values of the groups of images with different spatial or
spectral resolution or different spectral range were compared with those of each other set
that was grouped by spatial resolution, spectral resolution, and spectral range, respectively.
Since the KGE values range from 1 to minus infinity, a unit was subtracted from all values
and added once the average was calculated.

Table 4 shows the average KGE values obtained from the images with the spectral
range of 365–2500 nm and the mixed pixel percentages less than 50% and more than
50% and from the images with the spectral ranges of 400–1100 nm and the mixed pixel
percentages less than 50% and more than 50%.

Table 4. The average KGE values obtained from groups of the images at each spectral range with the mixed pixel percentages
less than 50% and more than 50%.

Images at Spectral Range of

365–2500 nm
with Mixed Pixel Percentages

400–1100 nm
with Mixed Pixel Percentages

Less than 50% More than 50% Less than 50% More than 50%

Impervious surfaces 0.49 −0.02 0.24 −0.37
Pervious surfaces 0.45 −1.83 0.36 −8.85
Vegetated surfaces 0.54 0.16 0.48 −0.17
Water class 0.23 −2.87 0.04 −4.24

On the whole, these KGE values show the following list of the capabilities in descend-
ing order: vegetated, impervious, and pervious surfaces and Water endmember. The values
obtained from the images with the spectral range of 400–1100 nm exhibit an exception:
the pervious surfaces in the images with the mixed pixel percentages less than 50% show
greater capabilities than impervious surfaces; the pervious surfaces in the images with
mixed pixel percentages more than 50% show the smallest capabilities.

The differences between the capabilities of the image sets grouped by mixed pixel
percentage show that the greatest loss of capability occurs in the retrieval of the pervious
surfaces and Water endmember.

In the second column of Table 4, the average KGE values are very similar, varying
between 0.54 and 0.23 (i.e., mean and standard deviation values are equal to 0.43 and 0.14,
respectively). The average KGE value of impervious surfaces is greater than that of pervious
surfaces, but the difference between them is very small (i.e., 0.04). In the third column,
the average KGE values are very scattered, varying between 0.16 and −2.87 (i.e., mean
and standard deviation values are equal to −1.14 and 1.46, respectively). The average
KGE value of impervious surfaces is much greater than that of pervious surfaces (i.e., the
difference between them is equal to 1.81). In the fourth column, the average KGE values are
very similar, varying between 0.48 and 0.04 (i.e., mean and standard deviation values are
equal to 0.28 and 0.19, respectively). The average KGE value of pervious surfaces is greater
than that of impervious surfaces, but the difference between them is small (i.e., 0.12). In the
fifth column, the average KGE values are very scattered, varying between −0.17 and −8.92
(i.e., mean and standard deviation values are equal to −3.41 and 4.09, respectively). The
average KGE value of impervious surfaces is much greater than that of pervious surfaces
(i.e., the difference between them is equal to 8.49).

In short, the KGE values of the images with the mixed pixel percentages below 50%
are always positive and overall are not scattered, whereas the values of the images with
the mixed pixel percentages above 50% are mostly negative (except for vegetated surfaces),



Remote Sens. 2021, 13, 3959 21 of 29

even very great ones, and overall are very scattered. This difference in the capability
behavior highlights that the capability of the former images to distinguish the endmembers
depends primarily on their internal spectral variability, whereas the capability of the latter
images to distinguish the endmembers depends primarily on the spectral characteristics
of all endmembers and their variabilities. Moreover, this difference was detected in the
images at all resolutions, thus also in the images with high spatial resolution and low
spectral resolution, not confirming what was claimed by Small [17].

It is important to remember the characteristics of these two groups of surface materials:
the first, which includes materials with large, non-jagged shapes, shows the mixed pixel
percentage less than 50% in images at the spatial resolutions less than 10 m, and the second,
which includes materials with small, jagged shapes, shows the mixed pixel percentage
less than 50% in images at the spatial resolutions less than 5 m. Therefore, the image
sets grouped by mixed pixel percentage and those grouped by spatial resolution are very
similar but not the same. The average KGE values of impervious, pervious, and vegetated
surfaces and Water endmember were calculated by averaging the values obtained from the
images at all spectral resolutions for each spatial resolution (Table 5).

Table 5. The average KGE values obtained from the images at each spatial resolution with each spectral range.

Spatial Resolution (m)
Images at Spectral Range of 365–2500 nm Images at Spectral Range of 400–1100 nm

Impervious
Surfaces

Pervious
Surfaces

Vegetated
Surfaces

Water
Endmember

Impervious
Surfaces

Pervious
Surfaces

Vegetated
Surfaces

Water
Endmember

1 0.41 0.41 0.48 0.05 0.13 0.29 0.36 0.15
5 0.50 0.49 0.59 0.28 0.20 0.42 0.61 0.26
10 0.56 0.24 0.13 0.36 0.38 0.13 0.13 −0.29
50 −0.05 −0.40 0.09 −1.11 −0.26 −0.18 0.08 −1.77

100 0.10 −4.10 0.32 −3.60 −0.54 −32.53 0.39 −5.35
250 −0.11 −3.06 0.10 −3.91 −0.30 −2.84 −1.29 −5.61

On the whole, these KGE values calculated from the images with the spectral range
of 365–2500 nm show the following list of the capabilities in descending order: vegetated,
impervious, and pervious surfaces and Water endmember. The values of the vegetated
surfaces and Water endmember obtained from the images at the spatial resolutions of
10 and 100 m are the only exceptions. The KGE values calculated from the images at
the spatial resolutions of 1 and 5 m with the spectral range of 400–1100 nm show the
following list of the capabilities in descending order: vegetated and pervious surfaces,
Water endmember, and impervious surfaces. On the whole, the KGE values calculated
from the images at the spatial resolutions of 10, 50, 100, and 250 m with the spectral range
of 400–1100 nm show the following list of the capabilities in descending order: vegetated,
impervious and pervious surfaces, and Water endmember.

In this case, the capability loss was calculated by subtracting the capability of the
images grouped by greater spatial resolution from the capability of the images grouped
by immediately smaller spatial resolution. The greatest loss of the capability occurs in
the images between the spatial resolutions of 50 and 10 m for impervious surfaces, in the
images between the spatial resolutions of 100 and 50 m for pervious and vegetated surfaces
and the Water endmember except for the capability of the vegetated surfaces, which was
obtained from the images with the spectral range 400–1100 nm. In these images, the greatest
loss of capability occurs in the images between the spatial resolutions of 100 and 250 m.

These classifications confirm those based on mixed pixel percentages except for the
average values obtained from the images at the resolution of 10 m, where only the mixed
pixel percentages of impervious surfaces and Water endmember are less under 50%. More-
over, the average values calculated from the images at the spatial resolutions of 1 and 5 m
(where all endmembers exhibit mixed pixel percentages less than 50%) show a very small
standard deviation (i.e., 0.17), whereas the average values calculated from the images at
the spatial resolutions of 50 and 100 m show great standard deviation that increases as
spatial resolution decreases (i.e., 0.69 and 8.95, respectively). The average values calculated
from the images at the spatial resolution of 250 m show a smaller standard deviation than
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that calculated from the images at the spatial resolution of 100 m and greater than that
calculated from the images at the spatial resolution of 50 m (i.e., 2.18).

In order to rank the capability from the image sets grouped by each spectral resolution,
the mean values of KGE were calculated by averaging the values obtained from the images
at all spatial resolutions for each spectral resolution (Table 6).

Table 6. The average KGE values obtained from the images at each spectral resolution with each spectral range.

Spectral Resolution (nm)
Images at Spectral Range of 365–2500 nm Images at Spectral Range of 400–1100 nm

Impervious
Surfaces

Pervious
Surfaces

Vegetated
Surfaces

Water
Endmember

Impervious
Surfaces

Pervious
Surfaces

Vegetated
Surfaces

Water
Endmember

3 0.31 −0.97 0.29 −0.98 0.10 −5.47 0.02 −1.43
10 0.22 −1.10 0.29 −0.91 0.03 −5.50 0.00 −1.51
30 0.26 −1.10 0.30 −1.08 −0.06 −5.51 0.04 −1.67
50 0.22 −1.09 0.28 −1.12 −0.25 −5.58 0.03 −3.27

100 0.17 −1.08 0.26 −2.53 −0.14 −6.86 0.15 −2.62

The vegetated surfaces show the best capability to be distinguished from remote
sensing images except for high spectral resolution images where the impervious surfaces
show the best capability. On the whole, the impervious surfaces show the second-best
capability, followed by those of Water endmember and pervious surfaces. The average
values obtained from the images with the spectral range of 365–2500 nm highlight that the
vegetated surfaces show slightly greater values than those of impervious surfaces, which
are much greater than the values of Water endmember and pervious surfaces. The average
values obtained from the images with the spectral range of 400–1100 nm highlight that the
differences between the average values of each surface material are much great, and the
values of pervious surfaces are smaller than −5.

The capability loss was calculated by subtracting the capability of the images grouped
by greater spectral resolution from the capability of the images grouped by immediately
smaller spectral resolution. The greatest capability loss occurs in the images with the spec-
tral range of 365–2500 nm between the spectral resolutions of 10 and 3 nm for impervious
and pervious surfaces, between the spectral resolutions of 50 and 30 nm for vegetated
surfaces, and between the spectral resolutions of 100 and 50 nm for Water endmember. On
the other hand, the greatest loss of capability occurs in the images with the spectral range
of 400–1000 nm between the spectral resolutions of 50 and 30 nm for impervious surfaces
and Water endmember, between the spectral resolutions of 100 and 50 nm for pervious
surfaces, and between the spectral resolutions of 50 and 100 nm for vegetated surfaces. The
value of vegetated surfaces obtained from the images at the spectral resolution of 100 nm
is greater than that obtained from the images at the spectral resolution of 50 nm. This is
also noticeable in the values of the impervious surfaces obtained from the images with the
spectral range of 365–2500 nm, whereas the value of pervious surfaces obtained from the
images at the spectral resolution of 250 nm is greater than that obtained from the images at
the spectral resolution of 100 nm.

In order to rank the capability from image sets grouped by each spectral range, the
mean values of KGE were calculated by averaging the values obtained from all images for
each spectral range (Table 7).

Table 7. The average KGE values obtained from all images with each spectral range.

Image with Spectral Range of

365–2500 nm 400–1100 nm

Impervious surfaces 0.24 −0.06
Pervious surfaces −1.07 −5.78
Vegetated surfaces 0.28 0.05
Water class −1.32 −2.10
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On the whole, these KGE values show the following list of the capabilities in descend-
ing order: vegetated, impervious and pervious surfaces, and Water endmember. The values
obtained from the images with the spectra range of 400–1100 nm show an exception: the
pervious surfaces exhibit the smallest capability.

In short, the capabilities to distinguish the urban surface materials obtained from
the images with different percentages of mixed pixels, those obtained from the images at
different spatial or spectral resolutions, and those obtained from the images with different
spatial ranges show the same ranking: vegetated, impervious and pervious surfaces, and
Water endmember. In other words, the capability to map pervious surfaces from remote
sensing images is greatly affected by scene and sensor characteristics, whereas the capability
to map vegetated surfaces and secondarily impervious surfaces is less affected by scene
and sensor characteristics.

This analysis provided an estimate of the capability of each image set, but it did not
assess how much the increase of mixed pixel percentage impacted on the capability to
distinguish the urban surface materials with respect to the decrease of the spatial and
spectral resolutions and to the decrease of the spectral range of the remote sensing image.
For this purpose, the capability losses due to the increase in the mixed pixel percentage
and the decrease in the spectral range and spatial and spectral resolutions were averaged
and compared (Table 8).

Table 8. The average capability loss due to increase in mixed pixel percentage and decrease in spatial and spatial resolution
and spectral range.

The Capability Loss of Remote Sensing Images to Distinguish the Urban Surface Materials Due to

Increase in
Pixed Pixel Percentage

Decrease in
Spatial Resolution

Decrease in
Spectral Resolution

Decrease in
Spectral Range

Impervious surfaces 0.30 0.25 0.08 0.30
Pervious surfaces 3.56 6.85 0.19 4.71
Vegetated surfaces 0.19 0.38 0.03 0.24
Water class 0.78 1.05 0.52 0.78

Overall, the capability losses depending on the scene and sensor characteristics show
the following list in descending order: the capability loss due to the decrease in the spatial
resolution, the capability loss due to the decrease in spectral range, the capability loss due
to the increase in endmember size and shape, and the capability loss due to the decrease in
spectral resolution. The loss of the capability to distinguish impervious surfaces shows
an exception because the capabilities due to the decrease in spectral range and to the
increase in the percentage of mixed pixels are greater than that due to the decrease in
spatial resolution. The values of the capability loss highlight that not only the decrease
in the spatial resolution weighs heavily on the capability to distinguish the urban surface
materials but also the decrease in the spectral range and the increase in the percentage
of mixed pixels, whereas the decrease in the spectral resolution weighs much less on the
capability. Moreover, scene and sensor characteristics weigh more heavily on the distinction
of pervious surfaces than on that of other urban surface materials.

The study of the urban environment from remote sensing data must be enhanced
now, more than ever, by analyzing their capabilities to distinguish between the urban
surface materials in order to take full advantage of available sensor features. To this end,
it is initially planned to identify miss-assigned endmembers and analyze their capability
to distinguish urban surface materials and then to experiment with other classifiers and
compare their results.

5. Conclusions

The aim of this work was to assess and compare the capabilities of most remote
sensing images to distinguish the urban surface materials. This comparison becomes
now, more than ever, fundamental, considering that every remote sensing sensor is
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used to map urban surface materials [13,45] and that many countries are investing in
the analysis of the impact of the urban area on the environment exploiting remote sensing
data [18,22,25–27,30,32,33,38,39,41].

The results show that the capability to distinguish the urban surface materials depends
on the spatial and spectral resolution, the spectral range of the images, and the percentage of
mixed pixels. In particular, the behavior of capabilities is significantly affected by exceeding,
or not exceeding, the 50% mixed pixel percentage. Fractional abundance models show
that only some impervious surfaces, which are characterized by large, non-jagged shapes,
exceed this percentage threshold of mixed pixels in the images at 50 m spatial resolution,
whereas the remaining impervious surfaces and pervious and vegetated surfaces, which
are characterized by small, jagged shapes, exceed the threshold in the images at 10 m
spatial resolution.

The overall analysis of all results shows that the decrease in the spatial resolution of
remote sensing images causes the greatest loss of capability to distinguish the urban surface
materials, followed by the decrease in the spectral range, the increase in the mixed pixel
percentage, and lastly, by the decrease in the spectral resolution (the averages of capability
losses are 2.13, 1.51, 1.21, and 0.21, respectively). Moreover, the data highlight that scene
and sensor characteristics weigh more heavily on the retrieval of pervious surfaces than on
the retrieval of other urban surface materials because the pervious surfaces highlight the
greatest loss of capability due to not only the decrease in the spatial resolution of the images
but also the decrease in the spectral range and the increase in the mixed pixel percentage
(the capability losses are 6.85, 4.71, and 3.56, respectively). The capability to map the
vegetated surfaces, and secondarily, that to map the impervious surfaces, is much less
influenced by the scene and sensor characteristics than the capability to map the pervious
surfaces (the averages of capability losses are 0.21, 0.23, and 3.83, respectively).

In conclusion, since every work that mapped the urban cover using remote imagery
complained of a large number of errors due to poorly distinguishable urban surface
materials [17–41,44,45], this assessment of capability behavior is a very useful tool for
selecting the most suitable remote sensing image and/or deciding on the complementary
use of other data and/or methods.
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Appendix A

The appendix provides the flow of steps performed to create the synthetic starting
image (Figure A1) and to calculate the percentage of pixels with the abundance equal to
100% and more than 50% (Figure A2).
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Figure A1. The steps performed to create the synthetic starting image: (a) the “Old Tiles” mask with a green square showing
the detail highlighted in the (c,d); (b) the starting synthetic image at 665 nm; (c) the detail of the “Old Titles” mask multiplied
by the mean spectrum plus the standard deviation; (d) the detail of the “Old Titles” mask multiplied by the mean spectrum
mine the standard deviation.



Remote Sens. 2021, 13, 3959 26 of 29

Figure A2. The steps performed to calculate the percentage of pixels with the abundance equal to 100% and more than
50%: (a) the “Old Tiles” mask at spatial resolution of 0,50 m; (b) the “Old Tiles” mask at spatial resolution of 5 m; (c) the
mask “Old Tiles” resampled twice, first at 5 m and then at 0.50 m, colored in red superimposed on the mask “Old Tiles” at a
spatial resolution of 0.5 m colored in white; (d) the buffer zone identified by the distance less and equal to the 2.5 m from
the “Old Tiles” mask resampled, twice colored in blue superimposed on the “Old Tiles” masks of the (c).

The appendix also contains the features of the best-fit functions of the percentages
of pixels that have 100% abundances and abundances greater than 50%: the information
about two steps in FAM development that led to the division of urban surface materials
into two groups.

Table A1. The average and standard deviation (σ) values of the slopes, intercepts, and linear regressions (R2) of the best
fitting functions of pixel percentages with the abundance equal to 100% of each class versus the spatial resolutions.

Class Slope Intercept R2

Mean σ Mean σ Mean σ

Old Tiles −5.52% 0.16% 105.0% 5.00% 0.945 0.046
New Tiles −5.43% 0.14% 102.0% 2.00% 0.936 0.009
Lead −4.36% 1.81% 106.0% 6.00% 0.978 0.031
Concrete −5.36% 1.81% 103.0% 3.00% 0.884 0.026
Trachyte −11.90% 5.10% 105.0% 5.00% 0.796 0.049
Limestone −24.00% 4.00% 101.0% 1.00% 0.704 0.172
Asphalt −3.70% 0.50% 102.0% 2.00% 0.950 0.050
Pebbles −20.10% 4.10% 101.0% 1.00% 0.921 0.085
Sand −13.20% 5.80% 102.0% 2.00% 0.859 1.050
Wood −24.20% 4.00% 108.0% 0.10% 0.822 2.050
Grass −10.20% 5.00% 100.0% 0.10% 0.785 3.050
Trees −13.00% 4.30% 100.0% 0.00% 0.799 4.050
Water −1.75% 0.60% 100.0% 0.10% 0.947 5.050



Remote Sens. 2021, 13, 3959 27 of 29

Table A2. The average and standard deviation (σ) values of the slopes, intercepts, and linear regressions (R2) of the best
fitting functions of pixel percentages with the abundance of more than 50% of each class versus the spatial resolutions.

Class Slope Intercept R2

Mean σ Mean σ Mean σ

Old Tiles −2.61% 0.8% 100.0% 10.00% 0.929 0.046
New Tiles −3.16% 0.65% 101.0% 1.00% 0.976 0.000
Lead −2.44% 1.34% 101.0% 3.20% 0.984 0.008
Concrete −3.33% 1.29% 101.0% 1.00% 0.970 0.002
Trachyte −7.11% 3.24% 101.0% 5.00% 0.935 0.018
Limestone −17.03% 7.25% 103.0% 3.00% 0.920 0.011
Asphalt −2.11% 0.50% 100.0% 1.00% 0.984 0.002
Pebbles −14.4% 4.75% 100.0% 1.00% 0.984 0.015
Sand −13.30% 7.06% 100.0% 5.00% 0.992 0.003
Wood −10.46% 5.04% 99.0% 5.00% 0.863 0.019
Grass −5.21% 4.96% 100.0% 5.00% 0.940 0.009
Trees −4.69% 4.46% 100.0% 6.00% 0.925 0.079
Water −0.51% 0.79% 100.0% 0.40% 0.965 0.041

In addition, the appendix lists the averages of mixed pixel percentages (i.e., pixels with
less than 99% abundance) of all classes and surfaces that were computed for the images at
all spatial resolutions by exploiting the FAMs (Table A3).

Table A3. The average of mixed pixel percentages of every class and surface obtained for images at all spatial
resolutions analyzed.

Spatial Resolution (m)

1 5 10 50 100 250

Old Tiles class 15% 26% 47% 100% 100% 100%
New Tiles class 22% 31% 41% 100% 100% 100%
Lead class 14% 25% 42% 100% 100% 100%
Concrete class 17% 32% 47% 100% 100% 100%
Trachyte class 30% 49% 79% 100% 100% 100%
Limestone class 26% 43% 68% 100% 100% 100%
Asphalt class 8% 22% 43% 100% 100% 100%
Pebbles class 12% 44% 79% 100% 100% 100%
Sand class 18% 49% 85% 100% 100% 100%
Wood class 19% 49% 90% 100% 100% 100%
Grass class 17% 49% 95% 100% 100% 100%
Trees class 13% 42% 95% 100% 100% 100%
Water class 8% 25% 43% 100% 100% 100%

Impervious surfaces 19% 32% 52% 100% 100% 100%
Pervious surfaces 16% 47% 85% 100% 100% 100%
Vegetated surfaces 15% 45% 95% 100% 100% 100%
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