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Abstract: Hilly areas are important parts of the world’s landscape. A marginal phenomenon can be
observed in some hilly areas, leading to serious land abandonment. Extracting the spatio-temporal
distribution of abandoned land in such hilly areas can protect food security, improve people’s
livelihoods, and serve as a tool for a rational land plan. However, mapping the distribution of
abandoned land using a single type of remote sensing image is still challenging and problematic due
to the fragmentation of such hilly areas and severe cloud pollution. In this study, a new approach
by integrating Linear stretch (Ls), Maximum Value Composite (MVC), and Flexible Spatiotemporal
DAta Fusion (FSDAF) was proposed to analyze the time-series changes and extract the spatial
distribution of abandoned land. MOD09GA, MOD13Q1, and Sentinel-2 were selected as the basis of
remote sensing images to fuse a monthly 10 m spatio-temporal data set. Three pieces of vegetation
indices (VIs: ndvi, savi, ndwi) were utilized as the measures to identify the abandoned land. A
multiple spatio-temporal scales sample database was established, and the Support Vector Machine
(SVM) was used to extract abandoned land from cultivated land and woodland. The best extraction
result with an overall accuracy of 88.1% was achieved by integrating Ls, MVC, and FSDAF, with
the assistance of an SVM classifier. The fused VIs image set transcended the single source method
(Sentinel-2) with greater accuracy by a margin of 10.8–23.6% for abandoned land extraction. On the
other hand, VIs appeared to contribute positively to extract abandoned land from cultivated land and
woodland. This study not only provides technical guidance for the quick acquirement of abandoned
land distribution in hilly areas, but it also provides strong data support for the connection of targeted
poverty alleviation to rural revitalization.

Keywords: abandoned land; cloud pollution; hilly area; multi-source images; spatio-temporal fusion;
time-series change

1. Introduction

The hilly area is the transition zone between the mountain and the plain. Sloping
land is the most prevalent land type, while some sloping areas show the characteristics
of fragmented land, a staggered distribution of land cover types, diverse crop types, and
complex planting structures [1]. Some hilly areas are covered by clouds for a long time.
These complicated circumstances have caused topographical marginality and serious
abandonment of land [2]. The abandoned land in hilly areas has a significant negative
impact on countries and regions with limited per capita cultivated land resources and
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a large proportion of sloping cultivated land (such as China) [1,3,4]. The development
of effective methods to extract the distribution of abandoned land in hilly areas and to
quickly produce a temporal and spatial distribution map is of great significance to protect
food security on a local and global scale, to rationally plan land, and to improve people’s
livelihoods [5,6].

Remote sensing has been widely used to identify abandoned land around the world
(Table 1). On the one hand, land abandoned in a larger region is most commonly mapped
using low-resolution satellite images such as those produced by MODIS, which provides
consecutive images with a high temporal resolution. These studies are of great significance
for large-scale farmland abandonment research, but for local farmland abandonment, or
fragment abandoned land, higher-precision remote sensing images with a spatial and
temporal resolution are required.

On the other hand, abandoned land in a small area is usually mapped using satellite
images with a medium resolution. Based on this idea, some scholars have used Landsat/HJ-
1A remote sensing data to extract a 30 m resolution abandoned land distribution map.
These studies have made a remarkable contribution to the study of local abandoned
land. However, regardless of the 250 m–1 km resolution of the MODIS image or the 30 m
resolution of the Landsat/HJ-1 image, their pixel size was larger than the size of abandoned
land in some hilly areas, which brought errors in extracting fragmented abandoned land.
Furthermore, cloud pollution was an significant factor in their research, resulting in a
reduction in the available images and a decrease in accuracy. For such hilly areas, a higher
spatio-temporal resolution of remote sensing images is needed to increase the available
images and to improve the extraction accuracy of abandoned land. The Sentinel-2A satellite
was launched in 2015 and the Sentinel-2B satellite was launched in 2017. Their highest
spatial resolution is 10 m, and the revisit period is 5 days. The Sentinel-2 image has been
widely used in land use and coverage changes. However, few studies have extracted
abandoned land based on Sentinel-2 images. Heeyeun Yoon extracted abandoned land
from dry land and paddy fields in Gwangyang City, South Korea from 2016 to 2018 by using
three pieces of vegetation indices (VIs: ndvi, ndwi, and savi) from Sentinel-2 images and
SVM classification [7]. His team used the harmonic function of VIs to improve the accuracy
of abandoned land extraction, with an accuracy of 90.72%. Although the improvement in
the accuracy has been verified using the three pieces of vegetation indices combined with
SVM classification, the descending number of available remote sensing images and cloud
interference have remained as obstacles for data quality.

In order to obtain a more accurate temporal and spatial distribution of abandoned land,
especially in hilly areas with fragmented land and severe cloud interference, combining
the temporal resolution of MODIS and the spatial resolution of Sentinel-2 appears to be a
viable and reasonable option. The spatial and temporal adaptive reflectance fusion model
(STARFM) blends Landsat and MODIS data to predict daily surface reflectance at the
Landsat spatial resolution and the MODIS temporal frequency [8]. STARFM has been
widely used in land surface coverage and change monitoring and has achieved a series
of good application effects [9–12]. Subsequently, many algorithms based on STARFM
improvement or space-time fusion based on MODIS and Landsat have been proposed, and
a certain degree of improvement has been achieved in different usage scenarios [13–20].
Among them, the Flexible Spatiotemporal DAta Fusion (FSDAF) demonstrated promising
advantages in extracting vegetation changes in fragmented heterogeneous regions, and it
can obtain relatively good results depending on algorithm stability, data fusion accuracy,
and fusion efficiency [21–23]. Based on FSDAF, Liu developed the Improved Flexible
Spatiotemporal DAta Fusion (IFSDAF) method using all available finer-scaled images,
including those partly contaminated by clouds, to improve the accuracy [24]. Although the
IFSDAF algorithm makes maximum use of the pixels of high spatial resolution images, it
fails to analyze the changes of images in different periods. As the radiation difference of
images in different periods is large, cloud-free pixel filling may form clumpy errors, which
may distort the classification results.
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In this study, abandoned land was defined as cultivated land without cultivation or
woodland damaged due to felling, fire, and other factors for more than one year. Linear
stretching was used to smooth the difference in radiation between the different images,
and the MVC was used to obtain the largest monthly planting area in the study area. A
new approach of integrating Linear stretch (Ls), Maximum Value Composite (MVC), and
Flexible Spatiotemporal DAta Fusion (FSDAF) was proposed to analyze the time-series
changes and to extract the spatial distribution of the abandoned land. It retains the pixels
of the Sentinel-2 image to the greatest extent and obtains the surface changes of the MODIS
images under the Sentinel-2 cloud area. In order to avoid error transmission during fusion,
we first extracted the vegetation indices (VIs) and then used the integrated Ls, MVC, and
FSDAF (Ls+MVC+FSDAF) to obtain the monthly VIs data set [25]. Combining the land use
distribution map in 2018, the land cover product at 30 m in 2020 [26–30], Openstreetmap
vector, Google orthophoto, a UAV image, and time-series images of Sentinel-2, MOD09GA,
and MOD13Q1, the Support Vector Machine (SVM) was used to extract the abandoned land
distribution. The goal of providing data support and effective suggestions to the local land
management department can be achieved by extracting the distribution of abandoned land.

Table 1. Applied remote sensing data to extract the abandoned land.

Used Remote Sensing Data Number of Studies Study IDs

MODIS 9 [4,31–38]
Landsat 17 [3,39–54]

Sentinel-2 1 [7]
SPOT 2 [55,56]

RapidEye 1 [57]

2. Materials and Methods

The technical flowchart of the study includes three steps (Figure 1). The main purpose
of step 1 was to extract the range of woodland and cultivated land, and samples of
woodland, cultivated land, and abandoned land in the ArcGIS platform, including the
following aspects: (i) Using attribute information to screen woodland and cultivated land
on the land use distribution map and land cover product, and then the results were overlay
analyzed to improve the accuracy; (ii) the spatial resolution of the above data was 30 m, so
it was necessary to screen the woodland and cultivated land range. Google orthophoto
has a spatial resolution of 1.7 m and has a good recognition ability for small plots. In the
range of obtained woodland and cultivated land, human–computer interaction was carried
out on Google orthophoto to eliminate the range that did not belong to woodland and
cultivated land. The OpenStreetMap vector can provide the distribution of roads, buildings,
water, and riverbanks, etc., which was used to mask the overlapped result. Overlying the
Google orthophoto human–computer interaction results and the Openstreetmap vector
eliminated the range that did not belong to woodland and cultivated land. (iii) The screened
distributions of woodland and cultivated land were overlayed on the true color image
of sentinel-2 to find areas that may be abandoned. A total of 9 typical areas and planned
field sampling routes were delineated. Finally, the samples of forest land, cultivated land,
and abandoned land were obtained by time-series Sentinel-2 image delineation, Google
orthophoto human–computer interaction, UAV operation in the 9 typical areas, and field
sampling in the study areas.

The main purpose of step 2 was to integrate Ls, MVC, and FSDAF to produce the
monthly cloud-free 10 m spatial resolution of the VIs image set, including the following
aspects: (i) extracting the VIs image set from Sentinel-2, MOD13Q1, and MOD09GA
separately; (ii) performing Ls, MVC, and FSDAF to obtain a 10 m resolution VIs image set
(iii) combining Ls+MVC+FSDAF VIs image set and Sentinel-2 cloud-free VIs to obtain a
monthly 10 m resolution VIs image set.
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The main purpose of step 3 was to analyze the VIs time-series of the woodland,
cultivated land, and abandoned land and extract the distribution of the abandoned land in
the study areas.
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Figure 1. Technical flowchart.

2.1. Study Area

The study area (105.056111 N~105.489121 N, 30.429114 E~30.733959 E) is located in
the middle of the Sichuan Basin, the middle reaches of the Fujiang River, and belongs to
Daying county, Suining city. It borders Pengxi county in the east, Chuanshan district and
Anju district in Suining city in the south, Lezhi county in Ziyang city, Zhongjiang county in
Deyang city in the west, and Shehong city and Santai county in Mianyang city in the north
(Figure 2). Daying county is dominated by hilly areas, with a total area of 701 km2. The
relatively fragmented land and the low level of mechanization facilitated the occurrence of
the abandonment phenomenon.

The crops in the Daying county are mainly planted in the two phenological seasons of
“spring and late autumn”, during which rice, corn, peanut, soybean, and sweet potato are
planted in the spring (from April to September), and winter wheat, rape, and potato are
planted in the late autumn (from October of the first year to March of the second year). The
crop phenological cycle is shown in Figure 3.

2.2. Data and Preprocessing
2.2.1. Data Source

The 19 L2A-level Sentinel-2 images with cloud cover of less than 80% were down-
loaded from the official website of ESA [58], and 8 MOD09GA images and 23 MOD13Q1
images were downloaded from the official website of USGU [59], the land cover product
in 2020 of the study area was downloaded the from Earth Science Big Data Science Engi-
neering Data Sharing Service System [60], the Openstreetmap vector of the study area was
downloaded from the Openstreetmap official website [61], and Google orthophoto was
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downloaded from the Bigmap platform. The land use distribution map in 2018 was ob-
tained from the Sichuan Provincial Department of Natural Resources. The remote sensing
data and its parameters are shown in Table 2.
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Table 2. Remote sensing data and parameters.

Remote Sensing Type Band Number Band Range (nm) Spatio-Temporal Resolution (d/m)

Sentinel-2
Band 4—Red 650–680 5/10
Band 8—NIR 785–900 5/10

Band 12—SWIR 2100–2280 5/20

MOD09GA
Band 1—Red 620–670 1/250
Band 2—NIR 841–876 1/250

Band 7—SWIR 2105–2155 1/500

MOD13Q1

ndvi - 16/250
Band 1—Red 620–670 16/250
Band 2—NIR 841–876 16/250

Band 7—SWIR 2105–2155 16/500

Since the accuracy of the samples directly affects the extraction results of the aban-
doned land, it was necessary to collect the samples at multiple temporal and spatial scales.
Cultivated land planting shows obvious periodicity, which can be identified by the planting
cycle of crops in the time-series Sentinel-2 true color images. In addition, the color of the
cultivated land was lighter, the brightness was higher, the texture continuity was good, and
the overall shape was quadrilateral with obvious boundaries. When the image of Sentinel-2
was not clear, the cultivated land could be further identified by Google orthophoto and
UAV image (Figure 4(c1,c2)). The color of woodland was dark green in the Sentinel-2 true-
color image from June to August, and it was generally located at a relatively high altitude.
Meanwhile, woodland had a certain cluster shape on the Google orthophoto and the UAV
image, which could be further identified (Figure 4(b1,b2)). The abandoned land was light
green to dark brown, with mottled texture features and no obvious boundary lines. It is
easy to be confused with cultivated land and woodland in recognition. For further identifi-
cation, the time-series Sentinel-2 true color images were used for preliminary screening,
and the Google orthophoto and UAV image were also used (Figure 4(b1–b3,c1–c3)).
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Firstly, the Sentinel-2 true-color images from January to December and the Google
orthophoto were employed to select a total of 300 samples, including 100 woodland
samples, 100 cultivated land samples, and 100 abandoned land samples. Secondly, based
on the image characteristics and preliminary data collection, Phantom 4 pro was selected
to conduct drone operations in 9 typical areas, with a flying height of 300 m. Among the
vector sketching samples, a total of 34 samples of woodland, 36 samples of cultivated land,
and 27 samples of abandoned land were obtained. Meanwhile, the GPS handsets were used
to sample 11 villages and towns across the study area. A total of 48 samples of woodland,
67 samples of cultivated land, and 39 samples of abandoned land were obtained.

The obtained samples were screened with a large space between the samples and
discretely distributed at various locations in the study area to reduce the correlation
between the samples. Subsequently, an extension of the Jeffries–Matusita distance was
used to measure class separability among the screened samples [62]. After calculation, the
separability between the three kinds of samples was greater than 1.9, indicating that the
samples after screening were well separable. The sample database was generated through
the combination of the time-series Sentinel-2 true-color image, the Google orthophoto, the
UAV image, and the ground sampling, which increases the diversity and reliability of
samples (Figure 4).

2.2.2. Data Processing

Sentinel-2 images were L2A level, MOD09GA images were L2G level, and MOD13Q1
images were L3 level. They all had undergone atmospheric correction and geometric
precision correction. The downloaded images were then processed as follows:

(1) Projection transformation: MOD09GA and MOD13Q1 images were uniformly trans-
formed into the same projection coordinate system as Sentinel-2 images (WGS 84/
UTM zone 48);

(2) Resample: MOD09GA and MOD13Q1 images in the near-infrared band and red band
were resampled to a spatial resolution of 10 m, and the mid-infrared band to 20 m.
The method of resample was a bilinear interpolation;

(3) Vector crop: The MOD09GA and MOD13Q1 images were cropped by Sentinel-2, and
all images were the same size;

(4) Image registration: The Sentinel-2 image was used as a reference to correct the
MOD09GA and MOD13Q1 images;

(5) Band calculation: The ndvi, savi, and ndwi of Sentinel-2 and MOD09GA and MOD13Q1
images were calculated, respectively:

ndvi = ρ(N)−ρ(R)/ρ(N)+ρ(R) (1)

ndvi = ρ(N)−ρ(M)/ρ(N)+ρ(M) (2)

savi = (ρ (N)−ρ(R)) ∗ (1 + L)/(ρ (N)+ρ(R)+L) (3)

where, ρ(M) is the mid-infrared band, corresponding to band 7 of the MODIS image and
band 12 of the Sentinel-2 image; ρ(N) is the near-infrared band, corresponding to band 2 of
the MODIS image and band 8 of the Sentinel-2 image; ρ(R) is the red band, corresponding
to band 1 of the MODIS image and band 4 of the Sentinel-2 image, respectively (Table 2); L
is the soil adjustment coefficient, with a value of 0.5.

Spatio-temporal fusion: Ls, MVC, and FSDAF fusion was performed on ndvi and savi
(shown in 2.3) to obtain a 10 m spatial resolution image, and Ls, MVC, and FSDAF fusion
were performed on ndwi to obtain a 20 m spatial resolution image and were resampled to
10 m spatial resolution. The method of resample was a bilinear interpolation.

Mask: The other class type was masked apart from the woodland and cultivated land.
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2.3. Data Combining
2.3.1. Ls+MVC

The maximum value composite (MVC) utilizes cloud detection and quality inspection
on the remote sensing image to compare the vegetation index image value pixel by pixel and
selects the maximum value as the synthesized result [63]. It merges the vegetation index of
the remote sensing images at different times to obtain the maximum vegetation coverage
during that period [64]. At the same time, the technique has also been applied with the
Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, in combination
with other constraints to help exclude other undesirable artefacts from extreme view angles,
cloud contamination, and other sources, producing 16-day vegetation index composites [65].
The monthly composite VIs images show to the greatest extent the largest area of crops
planted in the remote sensing image that month. However, the various geometric positions
of the sun corresponding to the remote sensing images at different times, and the change in
the amount of radiation from the surface cover over time led to differences in the amount
of radiation from different remote sensing images. If the difference is not eliminated but
the MVC is performed directly, a clumpy error may be formed (Figure 5 MVC 1/2/3).
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Two remote sensing images of the same sensor at different times in the same area
or different sensors at the same time in the same area were compared. A correlation
analysis can usually be used to obtain the relationship between the two, including linear
models, quadratic models, exponential models, geometric models, hyperbolic models,
and the logarithmic square model. Linear stretch is a common method to compare the
differences between two images. The radiation difference between the different images
can be eliminated by using the linear regression model [16], and the smooth transition of
the same ground object and the variances of different ground objects can be achieved [66].
Therefore, linear stretch was used between the remote sensing images in the above two
situations to obtain the correlation and the coefficient of determination R2 was evaluated
after the correlation.

Y = a ∗ X + b (4)

where Y is the reference image, X is the image to be stretched, and a and b are the correla-
tion coefficients.

R2 = 1−
n

∑
i=1

(
yi − ŷj

)2/
n

∑
i=1

(yi − y)2 (5)
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where yi is the pixel value of the reference image, ŷj is the pixel value of the image to be
stretched, y is the average pixel value of the reference image, and n is the number of pixels
in the study area. The value range of R2 is 0–1. The larger the value of R2, the higher the
correlation between the two images.

Combining MVC and Ls can eliminate the clumpy error of MVC. The band was
combined and ndvi was taken as an example in this study (2.3.2 and 2.3.3 are the same).
The red box in Figure 3 shows the cloud coverage area. By observing and comparing the
performance of the image in the red boxes after combination, the effect of the combined
can be evaluated. The scene classification map of the Sentinel-2 image was used to merge
the cloud areas and then the merged cloud areas were used to mask the images to obtain
cloud-free pixel images of the same size. The image with a relatively little amount of cloud
(Figure 5 ndvi_20200122) was taken as a reference image (y-axis), and the other image
(Figure 5 ndvi_20200107) was taken as the image to be stretched (x-axis) to obtain the
linear regression equation (Figure 5 Ls-first). The stretched image (Figure 3 ndvi_20200107)
was obtained as the linear regression equation was applied. Finally, the stretched image
and the reference image were used for MVC to obtain the combined image (Figure 3
Ls+MVC). By comparing the changes in the cloud coverage area between the MVC image
and the Ls+MVC image (Figure 3 MVC 1/2/3 and Ls+MVC 1/2/3), it was evident that
the Ls+MVC image had been removed from the clumpy shadow in the MVC image and a
good result was obtained.

2.3.2. FSDAF

FSDAF is a multi-source remote sensing spatio-temporal fusion algorithm that com-
bines unmixing, spatial interpolation, and similar neighboring pixel smoothing to obtain
robust fusion results. It can be used to obtain land surface information of gradual changes
or sudden changes in land cover types in heterogeneous regions [20]. Firstly, FSDAF
estimates the temporal variation of Sentinel-2 pixels (4Ftp) based on the unmixing of the
entire image to generate the temporal prediction (Ftp

2 ). Secondly, using the thin plate spline
interpolation to generate spatial prediction (FSP

2 ), the residuals between the Sentinel-2
pixels and the MODIS pixels are considered in FSDAF as [23]:

R(x, y) = ∆C(x, y)− 1
n

[
n

∑
i=1

Ftp
2 (xi, yi)−

n

∑
i=1

F1(xi, yi)

]
(6)

where R(x,y) is residual in the MODIS pixel at the location (x,y), n is the number of Sentinel-
2 pixels inside a MODIS pixel, and the Sentinel-2 pixel at location (xi,yi) is inside the
MODIS pixel at location (x,y). In a homogenous area, the spatial prediction performs well,
which is applied to calculate a new residual [23]:

Rho(x, y) = Fsp
2 (x, y)− Ftp

2 (x, y) (7)

A weighted function (wh) is used for a homogeneity index of residual compensation to
integrate the two residuals (i.e., Rho and R). The final prediction of FSDAF can be expressed
as [23]:

F̂2(x, y) = F1(x, y) +
ns

∑
i=1

Wi
(
∆Ftp(xi, yi) + n× R(xi, yi)× wh(xi, yi)

)
(8)

where Wi is the weight of similar pixels, and F̂2(x, y) is the predicted image.
As shown in Figure 5, the ndvi of the Sentinel-2 March image and the corresponding

ndvi of the MOD09GA image were used as the reference image pair, the ndvi of MOD13Q1
January was used as the predicted time-image, and FSDAF was used to obtain the fused
image (Figure 5 FSDAF–Jan). The FSDAF smoothed the neighboring pixels, which made
the surface coverage information smooth as well. Some errors were caused during FS-
DAF by various factors such as the radiation difference between Sentinel-2 and MODIS,
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spectral difference, spatial resolution ratio, geometric registration error, etc. [23] (Figure 5:
FSDAF1/2/3 and Ls+MVC+FSDAF1/2/3). In order to reduce the errors caused by time
changes, the time of the reference image and the predicted image should be as semblable
as possible [67]. The reference images were selected as follows: January to April was based
on March, May to June was based on June, July to August was based on August, and
September to December was based on November. Among them, August and November
were cloud-free images, and March and June were obtained by Ls+MVC.

2.3.3. Ls+MVC+FSDAF

Ls+MVC can make full use of the cloud-free pixels in Sentinel-2 images, but when
the clouds are present in the same areas in both images, cloud pollution will become a
critical issue. FSDAF can use MODIS cloud-free images, but when the changing area is
small, the predicted image may not be able to capture the changes. Ls+MVC+FSDAF can
make full use of high spatial resolution image pixels, and obtain fused images of cloud
changes, thereby obtaining a high-precision fusion image (Figure 5 Ls+MVC+FSDAF). As
shown in Figure 6, we obtained a monthly ndvi of the Sentinel-2 images through Ls+MVC,
including cloudy images (Figure 6 Sentinel2-cloud-ndvi) and cloud-free images (Figure 6
Sentinel2-cloudfree-ndvi). Based on the reference image pair composed of Sentinel2-
cloudfree-ndvi and the corresponding ndvi of MOD09GA, the monthly ndvi synthesized
by MOD13Q1 was used as the predicted image, and the fused image was obtained by
using FSDAF (Figure 6 FSDAF_ndvi). Taking the Sentinel-2 image as the reference, a
linear regression analysis was performed on the fused image, and the linear regression
equation was obtained. The fused image was stretched by the linear stretching equation,
and the stretched pixels were filled into the cloud area of Sentinel-2 to obtain a complete
cloud-free image. We combined the cloud-free images of Sentinel-2, Ls+MVC images,
and Ls+MVC+FSDAF images to obtain a monthly cloud-free VIs image set (Figure 6
Ls+MVC+FSDAF).
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Through remote sensing image processing, the images were divided into three cat-
egories to test whether the fused images could improve the extracted accuracy of the
abandoned land: (i) the cloud-free Sentinel-2 images set without image fusion (August
and November); (ii) cloud-free image set with Ls+MVC (March, June, August, November);
(iii) cloud-free image set with Ls+MVC+FSDAF (January to December).
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2.4. SVM Classification

SVM is a machine learning algorithm based on statistical learning theory, VC dimen-
sion theory, and the structural risk minimization principle. It is often used to solve few
samples, nonlinear problems, and high-dimensional pattern recognition problems. SVM
uses edge samples between different categories to find the optimal hyperplane between
different categories for division. On the premise of the limited classification samples, it
can well balance the complexity and learning ability of the model, and greatly avoid the
problems of “over-learning” and “dimension disaster”. It ensures that the extreme value
solution obtained is the global optimal solution and has a good generalization ability. For
the land classification problem, SVM uses the kernel function and penalty variables to
transform the low-dimensional linear inseparability problem into the high-dimensional
linear separable problem. The kernel function parameter (γ) and the penalty factor (C) are
set to solve the problem of individual outlier category attribution. In this way, it reaches
the goal of automatic recognition of ground object classification. Predecessors have ex-
tracted abandoned land based on SVM and obtained good results [1,5,14,29]. In this study,
trained samples and verified samples were randomly divided into 7:3. SVM classifiers
were selected to identify woodland, cultivated land, and abandoned land in the study area,
and the temporal and spatial distribution of abandoned land was extracted.

2.5. Accuracy Verification

This study used the verification samples to calculate the confusion matrix after classi-
fication. The overall accuracy, user accuracy, product accuracy, and the Kappa coefficient
were calculated through the confusion matrix to evaluate the classification results.

The cloud-free Sentinel-2 images set without image fusion (August and November),
the cloud-free image set with Ls+MVC (March, June, August, November), and the cloud-
free image set with Ls+MVC+FSDAF (1 Month to December) were used to extract the
abandoned land. By comparing the classification accuracy and the Kappa coefficient, the
role of the VIs image set generated by integrating Ls, MVC, and FSDAF in the extraction of
abandoned land was assessed.

3. Results
3.1. VIs Time-Series Curve Analysis

Through the selected samples (Figure 4), we mapped the VIs time-series curve dia-
grams of woodland, cultivated land, and abandoned land according to the average value
of the samples. Their maximum and minimum values with horizontal lines were recorded
(Figure 7). According to Figure 7, it can be seen that the VIs values were closely related to
the growth cycle of vegetation. April and August are the months when crops grow most
vigorously. The time-series changes of the cultivated land VIs showed a “double peak”
shape. In comparison, however, the “double peak” shape of ndvi and savi was more obvi-
ous with the highest peak being in August, and ndwi was relatively gentle with the highest
peak in April, which coincided with the rice irrigation period. The time-series curve shape
of ndvi and savi of the woodland was “high in the middle, low on both sides”, and the
highest value was in August. The ndvi and savi time-series curve shape of the abandoned
land was “rising first, then falling”, which was similar to the woodland, but its average
value was generally lower than the woodland. It is notable that the VIs values of woodland
had a small variation range (i.e., small variance), generally fluctuating within 0.15. The
abandoned land and the cultivated land had a relatively large range of changes, due to
the various planting types of the cultivated land and the complex types of abandoned
land in the study area. The seasonal changes of the cultivated land were obvious, and
part of the cultivated land was single-crop in spring or late autumn. For example, rice
was only cultivated in April, harvested from August to September, and laid idle in other
months. Correspondingly, winter wheat was cultivated in November, harvested in May,
and idled in other months. The seasonal change of single-crop was apparent, especially
before and after the crops were harvested, and the value of the VIs dropped rapidly, which
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led to great fluctuations in the cultivated land curve. The vegetation coverage type, and
coverage degree of abandoned land was different, and its time-series curve changed greatly.
Figure 4 shows two different types of abandoned land (one was abandoned in woodland
and the other was abandoned in cultivated land). A high VIs value was observed as the
vegetation was lush, and vice versa. The three pieces of Vis (ndvi, savi, and ndwi) were
used to monitor the phenological changes of woodland, cultivated land, and abandoned
land from three aspects: vegetation growth trend, vegetation growth status under different
soil backgrounds, and vegetation water content, so as to extract the abandoned land more
effectively from the cultivated land and woodland information.
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3.2. Comparison of Classification Accuracy

The Sentinel-2 image set without data fusion (August, November), the image set with
Ls+MVC (March, June, August, November), and the image set with Ls+MVC+FSDAF (Jan-
uary to December) were used to extract the abandoned land in the study area, respectively.
The improvement in the extraction accuracy by the integration of Ls, MVC, and FSDAF
was evaluated. It can be seen that when the Sentinel-2 image set (August and November)
was used solely to extract the abandoned land, it lacked images of the growth period of the
key season of the cultivated land, and it was difficult to distinguish the abandoned land
from the cultivated land. The image set with Ls+MVC (March, June, August, November)
contained the four seasons of spring, summer, autumn, and winter, and could extract the
abandoned land from the woodland and cultivated land. However, its temporal resolution
was low, only one image was contained in each season, and the extraction accuracy needed
to be improved. The image set with Ls+MVC+FSDAF (January to December) increased the
available images, generating a VIs image set with a monthly 10 m scale in the study area,
which significantly improved the accuracy of the abandoned land extraction (Table 3).

Table 3. Accuracy of classification from the different image sets.

Remote Sensing Image Data Source Overall Accuracy User Accuracy Product Accuracy Kappa Coefficient

Sentinel-2 (August, November) 64.5% 54.5% 57.6% 0.58

Ls+MVC (March, June, August, November) 77.3% 72.7% 81.4% 0.73

Ls+MVC+FSDAF (January to December) 88.1% 94.1% 86.5% 0.87

3.3. Abandoned Land Distribution

With SVM for classification and the ArcGIS platform for editing, the image set with
Ls+MVC+FSDAF was selected to generate the abandoned land distribution map of the
study area (Figure 8).

After grid calculation, the abandoned land area in the study area was 6192 ha, ac-
counting for 9.65% of the cultivated land and woodland area.

From Figure 8, it is notable that the distribution of abandoned land in the study area
was scattered, and each township had a certain degree of abandonment. In general, the
abandonment phenomenon of land is widespread. Among them, Yufeng town had the
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highest proportion of abandoned land and Huima town had the lowest. The townships in
descending order were Yufeng (12.97%), Xiangshan (11.95%), Zhishui (11.23%), Hebian
(10.71%), and Tianbao (10.65%), Jinyuan (10.47%), Zhuotongjing (9.9%), Tongxian (8.97%),
Penglai (8.79%), Longsheng (7.7%), and Huima (4.25%). In terms of the abandoned land
area, Penglai town had the highest abandoned land area, whereas Zhishui town had the
lowest. The townships in descending order were Penglai (997 ha), Hebian (965 ha), Yufeng
(810 ha), and Longsheng (738 ha), Xiangshan (602 ha), Jinyuan (534 ha), Tianbao (523 ha),
Zhuotongjing (393 ha), Tongxian (269 ha), Huima (187 ha), and Zhishui (174 ha) (Figure 9).
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4. Discussion
4.1. Multi-Source Remote Sensing Image Fusion

Based on multi-source remote sensing data processing, Ls+MVC+FSDAF was used to
perform a spatio-temporal fusion for different types of remote sensing images, making full
use of the 10 m spatial resolution of Sentinel-2 and the 1-day temporal resolution of MODIS
and obtaining the monthly 10 m spatial resolution VIs image set. Moreover, we compared
six stretching methods, namely linear stretching, secondary stretching, exponential stretch-
ing, geometric stretching, hyperbolic stretching, and logarithmic stretching when fitting
Sentinel-2 and MODIS. It was found that for any two images to be stretched, the fitting
effect of the linear stretch was always the simplest and most effective. Ls+MVC+FSDAF
removed the influence of cloud interference, increased the available remote sensing images,
and improved the classification accuracy of the abandoned land. The method may have a
good application prospect in surface vegetation coverage and monitoring.

In order to further quantitatively evaluate the accuracy of the MVC, Ls+MVC, and
FSDAF, we selected an area of 1000*1000 pixels in the study area and randomly generated
images including cloud pixels ratio of 20%, 40%, 60%, and 80%. By comparing the original
image and the fused image, the coefficient of determination (R2) and the root mean square
error (RMSE) were selected for error evaluation (Table 4). The larger R2 and the smaller
RMSE indicated that the fusion effect was more competent. The results show that with
the growth of the cloud ratio, R2 decreased and RMSE increased gradually. R2 was 0.8766
and RMSE was 0.0274 after FSDAF, indicating that the results with FSDAF were more
credible. The data illustrate that combining the Ls+MVC+FSDAF spatio-temporal fusion
algorithm significantly improved the remote sensing spatio-temporal fusion effect. Most
studies have shown that the more images of the same area that are obtained, the higher
accuracy of the extraction of land cover types [7,39,42,68]. Ls+MVC+FSDAF could fuse
multi-source remote sensing images, increase the availability of cloud-contaminated images,
and improve the extraction accuracy. However, it is worth noting that some areas were
continuously affected by cloud interference during the rainy season for a long time. Neither
the Sentinel-2 nor MODIS data were able to eliminate the impact of this continuous cloud
coverage. At this time, the use of optical remote sensing images was limited and the fusion
of the radar images may be an effective analytical method.

Table 4. Comparison of the accuracy of the different methods.

Fusion Method Basic Image S20201112
Cloud Content R2 RMSE

MVC S20201107
S20201112

20% 0.9155 0.0321
40% 0.9044 0.0326
60% 0.8988 0.0328
80% 0.8939 0.0331

Ls+MVC S20201112
S20201107

20% 0.9311 0.0192
40% 0.9122 0.0214
60% 0.9020 0.0227
80% 0.8947 0.0236

FSDAF
M20201112
S20201107
S20201112

20%
0.8766 0.027440%

60%

4.2. Analysis and Suggestions

On the ground of field investigation and visitation, it was found that the reasons
for the abandonment of the land in the study area were as follows: (1) land parcels were
fragmented, many of which were far away from farmers’ houses; (2) some hilly areas had a
poor cultivated land quality, large DEM differences, and high slopes, which are not suitable
for cultivated land planting. For example, the DEM differences and slopes of Hebian town
were higher than that of other towns, and its abandoned area and proportion were high;
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(3) weak water conservancy facilities in rural land increased the difficulty of farming and
reduced output and efficiency. For example, Huima town is located by the Fujiang river
and is rich in water resources. As a result, its abandoned area and proportion were the
lowest in the study area. In contrast, the proportion of abandoned land in other towns was
significantly higher.

To solve these problems, we propose the following suggestions: (1) cultivated land
leasing should be encouraged to increase the turnover rate so that farmers can mainly
farm the cultivated land around their houses and focus on contiguous areas to reduce
the fragmentation of land; (2) the land must be used rationally from the perspective of
ecological environment protection, and scientific and reasonable ecological planning must
be implemented. The replanting of abandoned land after logging and fires needs to be
strengthened; (3) investment in the construction of water conservancy facilities should be
increased in rural areas.

4.3. Prospects and Limitations

By integrating Ls, MVC, and FSDAF to fuse multi-source remote sensing images, a
collection of remote sensing images with a high spatio-temporal resolution was obtained.
They exhibited an excellent performance with high accuracy in the extraction of abandoned
land in hilly areas, as well as other land covers, despite the fragmented land and severe
cloud interference. In the selection of multi-source remote sensing images, n Sentinel-2
and MODIS images could not only be selected, but also the image pair could be adjusted
according to the respective needs of the research to achieve the application effect.

Ls+MVC+FSDAF requires more remote sensing images, which takes a long time for
data processing, especially in pixel registration between different images [67]. The accuracy
of the remote sensing image registration has an impact on the result of remote sensing
image fusion. Adding the automatic registration function of different image pixels can
improve the efficiency of image processing and the accuracy of data fusion [68,69]. This
study used ENVI software to align the boundaries of different images to achieve the effect
of registration. Ls+MVC+FSDAF is based on pixel-level processing; thus, the demand for
computing power will rise exponentially with the increase in the research area size and the
time sequence. For example, we spent more than 20 h in remote sensing image fusion in
the study area in total (The number of pixels was 4325 × 3350 × 8 × 3. Where 4325 × 3350
is the number of pixels in 1 image, 8 is the number of times that need to fuse, and 3 is the
number of bands of 1 image. Central processing unit (CPU): AMD R5 3600 @ 3.6 GHz;
installed memory (RAM): 16 GB; system type: 64-bit operating system, x64-based processor;
operating system: Windows 10). Google Earth Engine (GEE) is a cloud-based platform
for planetary-scale geospatial analysis that brings Google’s significant computational
capabilities to bear on a variety of high-impact societal issues including deforestation,
drought, disaster, disease, food security, water management, climate monitoring, and
environmental protection [70]. Improving algorithms and using cloud platform processing
methods can increase processing efficiency [71,72].

Three vegetation indices based on ndvi, savi, and ndwi are widely used in existing
research. However, the situation of abandoned land is much more complicated than that
of a single vegetation cover. Further excavating of the variation of band information over
time is expected to improve the extraction accuracy of abandoned land. Furthermore, with
the development of deep learning which has great potential in the extraction of abandoned
land, machine learning methods may be replaced.

The land parcels in the study area were small. Although Sentinel-2 images are public
and free with the highest resolution, the mixed pixels still exist, which have a negative
impact on the extraction of abandoned land. In the follow-up research, it will be necessary
to combine the mixed pixel decomposition model to improve the extraction accuracy of the
abandoned land. In this study, the mask was processed based on the existing data, and the
accuracy of the mask was also linked to the extraction accuracy of abandoned land. With
more accurate base data, high-quality extraction results can be obtained.
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5. Conclusions

In this study, Sentinel-2, MOD09GA, and MOD13Q1 were used as remote sensing data
sources. The ndvi, savi, and ndwi with a monthly spatial resolution of 10 m in the study
area were obtained by Ls+MVC+FSDAF. It provided a reference for the rapid extraction of
abandoned land in hilly areas that are severely polluted by clouds and planted with diverse
vegetation and have small land parcels. Moreover, the abandoned land was extracted
based on the technical flowchart of this research, which could provide reliable data support
for local food production and land resource management. In addition, based on the spatial
distribution of abandoned land and field surveys, reasonable suggestions were put forward
to improve local planting conditions and provide technical support for the prosperity of
the local economy.

To further extract the spatio-temporal distribution of abandoned land on a larger scale
and for a longer time series, big data cloud processing platforms such as GEE will become
important tools. Cloud removal algorithms, multi-source remote sensing data fusion
algorithms, and deep learning classification models will further improve the accuracy of
abandoned land extraction.

Author Contributions: Conceptualization, S.H., H.S., W.X., and J.Q.; Formal analysis, S.H., H.S., and
W.X.; Funding acquisition, H.S. and W.X.; Investigation, S.H., S.Z., and J.Z.; Methodology, S.H., H.S.,
and W.X.; Validation, S.H., S.Z., and J.Z.; Writing—original draft, S.H. and W.X.; Writing—review and
editing, S.H. and J.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Natural Science Fund of China (Grant No.
41401659) and the Science and Technology Department of Sichuan Province (Grant No. 2015JY0145).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Sentinel-2 is available via the ESA. MOD09GA and MOD13Q1 are
available via USGS. The Openstreetmap vector is available via Openstreetmap official website.
Google orthophoto is available via Bigmap platform. The land cover product is available via Earth
Science Big Data Science Engineering Data Sharing Service System. The land use distribution map is
available via the Resource and Environment Data Cloud Platform.

Acknowledgments: The authors are thankful for the provision of the codes of FSDAF and the
valuable suggestions by Xiaolin Zhu. This study was supported by the National Natural Science
Fund of China (Grant No. 41401659) and the Science and Technology Department of Sichuan Province
(Grant No. 2015JY0145).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, F.; Ho, H.C.; Chi, G.; Wang, Z. Abandoned rural residential land: Using machine learning techniques to identify rural

residential land vulnerable to be abandoned in mountainous areas. Habitat Int. 2019, 84, 43–56. [CrossRef]
2. Shi, T.; Li, X.; Xin, L.; Xu, X. The spatial distribution of farmland abandonment and its influential factors at the township level: A

case study in the mountainous area of China. Land Use Policy 2018, 70, 510–520. [CrossRef]
3. Xiao, G.; Zhu, X.; Hou, C.; Xia, X. Extraction and analysis of abandoned farmland: A case study of Qingyun and Wudi counties in

Shandong Province. J. Geogr. Sci. 2019, 29, 581–597. [CrossRef]
4. Zhu, X.; Xiao, G.; Zhang, D.; Guo, L. Mapping abandoned farmland in China using time series MODIS NDVI. Sci. Total Environ.

2020, 755 Pt 2, 142651.
5. Khanal, N.R.; Watanabe, T. Abandonment of agricultural land and its consequences: A case study in the Sikles Area, Gandaki

Basin, Nepal Himalaya. Mt. Res. Dev. 2006, 26, 32–40. [CrossRef]
6. Knoke, T.; Calvas, B.; Moreno, S.O.; Onyekwelu, J.C.; Griess, V.C. Food production and climate protection—What abandoned

lands can do to preserve natural forests. Glob. Environ. Chang. 2013, 23, 1064–1072. [CrossRef]
7. Yoon, H.; Kim, S. Detecting abandoned farmland using harmonic analysis and machine learning. ISPRS J. Photogramm. Remote Sens.

2020, 166, 201–212. [CrossRef]
8. Feng, G.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily

Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [CrossRef]

http://doi.org/10.1016/j.habitatint.2018.12.006
http://doi.org/10.1016/j.landusepol.2017.10.039
http://doi.org/10.1007/s11442-019-1616-z
http://doi.org/10.1659/0276-4741(2006)026[0032:AOALAI]2.0.CO;2
http://doi.org/10.1016/j.gloenvcha.2013.07.004
http://doi.org/10.1016/j.isprsjprs.2020.05.021
http://doi.org/10.1109/TGRS.2006.872081


Remote Sens. 2021, 13, 3956 17 of 19

9. Houborg, R.; McCabe, M.F.; Gao, F. A spatio-temporal enhancement method for medium resolution LAI (STEM-LAI). Int. J. Appl.
Earth Obs. Geoinf. 2016, 47, 15–29. [CrossRef]

10. Mizuochi, H.; Hiyama, T.; Ohta, T.; Fujioka, Y.; Kambatuku, J.R.; Iijima, M.; Nasahara, K.N. Development and evaluation of a
lookup-table-based approach to data fusion for seasonal wetlands monitoring: An integrated use of AMSR series, MODIS, and
Landsat. Remote Sens. Environ. 2017, 199, 370–388. [CrossRef]

11. Tian, F.; Wang, Y.; Fensholt, R.; Wang, K.; Zhang, L.; Huang, Y. Mapping and Evaluation of NDVI Trends from Synthetic
Time Series Obtained by Blending Landsat and MODIS Data around a Coalfield on the Loess Plateau. Remote Sens. 2013, 5,
4255–4279. [CrossRef]

12. Zhang, F.; Zhu, X.; Liu, D. Blending MODIS and Landsat images for urban flood mapping. Int. J. Remote Sens. 2014, 35,
3237–3253. [CrossRef]

13. Zurita-Milla, R.; Clevers, J.; Schaepman, M.E. Unmixing-Based Landsat TM and MERIS FR Data Fusion. IEEE Geosci. Remote
Sens. Lett. 2008, 5, 453–457. [CrossRef]

14. Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS–Landsat data fusion for relative
radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ. 2008, 112, 3112–3130. [CrossRef]

15. Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high
spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113,
1613–1627. [CrossRef]

16. Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex
heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [CrossRef]

17. Song, H.; Huang, B. Spatiotemporal Satellite Image Fusion Through One-Pair Image Learning. IEEE Trans. Geosience Remote Sens.
2013, 51, 1883–1896. [CrossRef]

18. Gao, F.; Hilker, T.; Zhu, X.; Anderson, M.; Masek, J.; Wang, P.; Yang, Y. Fusing Landsat and MODIS Data for Vegetation Monitoring.
IEEE Geosci. Remote Sens. Mag. 2015, 3, 47–60. [CrossRef]

19. Rao, Y.; Zhu, X.; Chen, J.; Wang, J. An Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with
Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+ Images. Remote Sens. 2015, 7, 7865–7891. [CrossRef]

20. Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with
different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [CrossRef]

21. Zhu, X.; Cai, F.; Tian, J.; Williams, T.K.-A. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey,
Taxonomy, Principles, Applications, and Future Directions. Remote Sens. 2018, 10, 527. [CrossRef]

22. Liu, M.; Ke, Y.; Yin, Q.; Chen, X.; Im, J. Comparison of Five Spatio-Temporal Satellite Image Fusion Models over Landscapes with
Various Spatial Heterogeneity and Temporal Variation. Remote Sens. 2019, 11, 2612. [CrossRef]

23. Zhou, J.; Chen, J.; Chen, X.; Zhu, X.; Qiu, Y.; Song, H.; Rao, Y.; Zhang, C.; Cao, X.; Cui, X. Sensitivity of six typical spatiotemporal
fusion methods to different influential factors: A comparative study for a normalized difference vegetation index time series
reconstruction. Remote Sens. Environ. 2021, 252, 112130. [CrossRef]

24. Liu, M.; Yang, W.; Zhu, X.; Chen, J.; Chen, X.; Yang, L.; Helmer, E.H. An Improved Flexible Spatiotemporal DAta Fusion (IFSDAF)
method for producing high spatiotemporal resolution normalized difference vegetation index time series. Remote Sens. Environ.
2019, 227, 74–89. [CrossRef]

25. Chen, X.; Liu, M.; Zhu, X.; Chen, J.; Zhong, Y.; Cao, X. "Blend-then-Index" or "Index-then-Blend": A theoretical analysis for
Generating High-resolution NDVI Time Series by STARFM. Photogramm. Eng. Remote Sens. 2018, 84, 65–73. [CrossRef]

26. Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m
using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [CrossRef]

27. Zhang, X.; Liu, L.; Wu, C.; Chen, X.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using
multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12,
1625–1648. [CrossRef]

28. Zhang, X.; Liu, L.; Chen, X.; Xie, S.; Gao, Y. Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational
SPECLib-Based Approach. Remote Sens. 2019, 11, 1056. [CrossRef]

29. Xie, S.; Liu, L.; Zhang, X.; Yang, J.; Gao, Y. Automatic land-cover mapping using Landsat time-series data based on Google Earth
Engine. 2019, 11, 3023. Remote Sens. 2019, 11, 3023. [CrossRef]

30. Gao, Y.; Liu, L.; Zhang, X.; Chen, X.; Xie, S. Consistency analysis and accuracy assessment of three global 30-m Land-Cover
products over the European Union using the LUCAS Dataset. Remote Sens. 2020, 12, 3479. [CrossRef]

31. Löw, F.; Prishchepov, A.V.; Waldner, F.; Dubovyk, O.; Akramkhanov, A.; Biradar, C.; Lamers, J.P. Mapping cropland abandonment
in the Aral Sea Basin with MODIS time series. Remote Sens. 2018, 10, 159. [CrossRef]

32. Lesiv, M.; Schepaschenko, D.; Moltchanova, E.; Bun, R.; Dürauer, M.; Prishchepov, A.V.; Schierhorn, F.; Estel, S.; Kuemmerle,
T.; Alcántara, C. Spatial distribution of arable and abandoned land across former Soviet Union countries. Sci. Data 2018, 5,
180056. [CrossRef]

33. Tong, X.; Brandt, M.; Hiernaux, P.; Herrmann, S.M.; Tian, F.; Prishchepov, A.V.; Fensholt, R. Revisiting the coupling between
NDVI trends and cropland changes in the Sahel drylands: A case study in western Niger. Remote Sens. Environ. 2017, 191,
286–296. [CrossRef]

http://doi.org/10.1016/j.jag.2015.11.013
http://doi.org/10.1016/j.rse.2017.07.026
http://doi.org/10.3390/rs5094255
http://doi.org/10.1080/01431161.2014.903351
http://doi.org/10.1109/LGRS.2008.919685
http://doi.org/10.1016/j.rse.2008.03.009
http://doi.org/10.1016/j.rse.2009.03.007
http://doi.org/10.1016/j.rse.2010.05.032
http://doi.org/10.1109/TGRS.2012.2213095
http://doi.org/10.1109/MGRS.2015.2434351
http://doi.org/10.3390/rs70607865
http://doi.org/10.1016/j.rse.2015.11.016
http://doi.org/10.3390/rs10040527
http://doi.org/10.3390/rs11222612
http://doi.org/10.1016/j.rse.2020.112130
http://doi.org/10.1016/j.rse.2019.03.012
http://doi.org/10.14358/PERS.84.2.65
http://doi.org/10.5194/essd-13-2753-2021
http://doi.org/10.5194/essd-12-1625-2020
http://doi.org/10.3390/rs11091056
http://doi.org/10.3390/rs11243023
http://doi.org/10.3390/rs12213479
http://doi.org/10.3390/rs10020159
http://doi.org/10.1038/sdata.2018.56
http://doi.org/10.1016/j.rse.2017.01.030


Remote Sens. 2021, 13, 3956 18 of 19

34. Estel, S.; Kuemmerle, T.; Levers, C.; Baumann, M.; Hostert, P. Mapping cropland-use intensity across Europe using MODIS NDVI
time series. Environ. Res. Lett. 2016, 11, 024015. [CrossRef]

35. Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.; Hostert, P. Mapping farmland abandonment and recultivation
across Europe using MODIS NDVI time series. Remote Sens. Environ. 2015, 163, 312–325. [CrossRef]

36. Alcantara, C.; Kuemmerle, T.; Baumann, M.; Bragina, E.V.; Griffiths, P.; Hostert, P.; Knorn, J.; Müller, D.; Prishchepov, A.V.;
Schierhorn, F.; et al. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite
data. Environ. Res. Lett. 2013, 8, 035035. [CrossRef]

37. Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS
satellite data. Remote Sens. Environ. 2012, 124, 334–347. [CrossRef]

38. Schweers, W.; Bai, Z.; Campbell, E.; Hennenberg, K.; Fritsche, U.; Mang, H.P.; Lucas, M.; Li, Z.; Scanlon, A.; Chen, H. Identification
of potential areas for biomass production in China: Discussion of a recent approach and future challenges. Biomass Bioenergy 2011,
35, 2268–2279. [CrossRef]

39. Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping agricultural land abandonment from
spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 2018, 210, 12–24. [CrossRef]

40. Yusoff, N.M.; Muharam, F.M.; Khairunniza-Bejo, S. Towards the use of remote-sensing data for monitoring of abandoned oil
palm lands in Malaysia: A semi-automatic approach. Int. J. Remote Sens. 2017, 38, 432–449. [CrossRef]
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