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Abstract: In this paper, an adaptive block compressive sensing (BCS) method is proposed for com-
pression of synthetic aperture radar (SAR) images. The proposed method enhances the compression
efficiency by dividing the magnitude of the entire SAR image into multiple blocks and subsampling
individual blocks with different compression ratios depending on the sparsity of coefficients in
the discrete wavelet transform domain. Especially, a new algorithm is devised that selects the best
block measurement matrix from a predetermined codebook to reduce the side information about
measurement matrices transferred from the remote sensing node to the ground station. Through
some modification of the iterative thresholding algorithm, a new clustered BCS recovery method
is proposed that classifies the blocks into multiple clusters according to the compression ratio and
iteratively reconstructs the SAR image from the received compressed data. Since the blocks in the
same cluster are concurrently reconstructed using the same measurement matrix, the proposed
structure mitigates the increase in computational complexity when adopting multiple measurement
matrices. Using existing SAR images and experimental data obtained by self-made drone SAR and
vehicular SAR systems, it is shown that the proposed scheme provides a good tradeoff between
the peak signal-to-noise ratio and the computational load compared to conventional BCS-based
compression techniques.

Keywords: block compressive sensing; synthetic aperture radar; adaptive measurement ratio; dual-
tree discrete wavelet transform

1. Introduction

Compressive sensing (CS), also called compressive sampling, has been studied in a lot
of literature as a means to circumvent the well-known Nyquist theorem in data acquisition.
The CS theory ensures that high bandwidth or non-bandlimited signals sampled at a sub-
Nyquist rate can be recovered with very high probability if the signals of interest are sparse
in a certain domain and the signal sensing modality satisfies the incoherence [1–3]. In other
words, when the measured signals are represented in a linear combination of sparse basis
vectors and the so-called restricted isometry property (RIP) holds, the desired signals can
be reconstructed from compressive measurements by efficient and robust CS recovery algo-
rithms such as basis pursuit denoising (BPDN) [4–6], orthogonal matching pursuit (OMP)
and its variants [7–11], and approximate message passing (AMP) algorithms [12,13]. The
BPDN method finds a sparse solution from compressive measurements using the l1-norm
minimization technique allowing a certain level of error between the measurements and
the recovered signals [5]. The OMP scheme is a kind of greedy algorithm that sequentially
finds the sparse signal component using correlation between the measurements and ba-
sis vectors [7], and notable extensions are regularized OMP [8], compressive sampling
matching pursuit (CoSaMP) [9], stagewise OMP [10], and generalized OMP [11]. To miti-
gate the excessive computational load of BPDN in large-scale applications, as well as to
minimize the recovery performance loss of OMP, the AMP algorithm exploits the iterative
thresholding based on graphical models that enables fast recovery of sparse signals [12].
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The CS principle can be applied to data compression of optical images by combining
the traditional discrete cosine transform (DCT) or the discrete wavelet transform (DWT)
with the CS recovery algorithm. Since random measurement and CS recovery of a whole
image require high computational complexity, the block CS (BCS) technique has been
developed which divides the original image into small blocks and conducts random mea-
surement and CS recovery blockwise [14–18]. The BCS recovery method exploits hard
thresholding [4,14] or soft thresholding [15,16] based on bivariate shrinkage [19] for sparse
representation in the transform domain. By applying an iterative re-weighted l1-norm min-
imization to each block, the BCS idea is extended to the BCS-FOCUSS algorithm applicable
to the compression of stereo images and video data [17]. Moreover, a partitioned block
transform technique has been devised to mitigate the storage limitation in a remote sensing
platform utilizing image coding schemes [18]. To further improve the data compression
efficiency as well as CS-based recovery performance, an adaptive BCS approach has been
investigated in [20,21] that uses different sub-sampling rates for individual blocks rather
than using the same sub-sampling rate for all blocks. For optical images, the measure-
ment ratio is dynamically assigned into each block according to the sparsity of wavelet
coefficients [20] and the variance of sub-images [21], and each block is reconstructed by
the OMP algorithm. These methods require a large amount of prior information about
dynamic sensing matrices to continuously adjust the measurement ratio, and exhibits
blocking artifacts due to the block-based CS recovery.

The CS theory has been successfully addressed in raw data compression of synthetic
aperture radar (SAR) [22–24], high-resolution SAR image formation [25–31], SAR imaging
with motion compensation [32,33], and compression of SAR images [34,35]. Moreover,
the CS-SAR imaging schemes have been verified through hardware implementations and
field experiments [36–39]. Since an original SAR image data requires excessive data rate
for transmission and huge storage resources, it is essential to compress SAR images. For
example, a drone SAR system based on ground penetration radar enables safe detection
of landmines [40,41], yet it requires efficient SAR data compression due to the limited
storage and payload constraint [42]. The 2D DCT was employed for compression of
space-born SAR images in [43]. To improve the compression efficiency, wavelet-based
approaches were developed for efficient compression of SAR images by separately applying
the DWT to the real and imaginary parts of complex SAR image data [44–46], and the
compression performance related to the magnitude and phase was improved by employing
the directional lifting wavelet transform (DLWT) [47]. The compression efficiency is further
enhanced by employing quadtree coding in the DWT domain [48] or preserving the wavelet
coefficients for low frequency subbands while sparsely representing the coefficients for
high frequency subbands using dictionaries [49]. In addition, the BCS was applied to
compression of SAR images utilizing statistical character and blockwise CS recovery [34].

This paper focuses on BCS-based compression of SAR images and the main contribu-
tions of this paper are summarized as follows.

• An adaptive BCS method is employed to compress the magnitude of SAR images and
reconstruct the original images through BCS recovery techniques. The measurement
ratio for each block is initially computed by using the sparsity of coefficients in the
dualtreee DWT (DDWT) domain, and a new algorithm is proposed to select the best
block measurement ratio for the proposed clustered BCS with quantized measurement
ratios. This approach improves the compression efficiency of SAR images while
reducing the side information to inform the measurement matrices from the remote
sensing node to the ground station reconstructing SAR images.

• Considering the variable measurement ratios across blocks, a new clustered BCS
recovery structure is devised through some modification of the iterative thresholding
algorithm (ITA) combined with DDWT [50]. The compressed blocks with the same
measurement ratio are gathered into a cluster and reconstructed using the common
measurement matrix, and thus the computational complexity is significantly reduced
compared to the conventional adaptive BCS scheme. The best number of measurement
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matrices is suggested through the tradeoff between reconstructed image quality
and complexity.

• To optimize the parameters and evaluate the performance of the proposed method,
we use the real SAR images provided by Sandia National Lab., Radar ISR [51] and
experimental data obtained by self-made drone SAR and vehicular SAR systems. Nu-
merical simulations show that the proposed technique is more beneficial to SAR image
compression than conventional schemes such as the BCS with fixed measurement rate
and the variance-based adaptive BCS.

The original image is divided into multiple blocks and sub-sampled with random
measurement matrices for compression, and then the SAR image is reconstructed through
a BCS recovery algorithm. To improve the compression efficiency, a new clustered BCS
method is proposed that dynamically assigns the block measurement ratio by selecting from
a predetermined measurement ratio set, depending on the sparsity of coefficients in the
transform domain. In the remote sensing node, BCS is performed using the measurement
matrix corresponding to the selected measurement ratio, in order to save the storage space
and reduce the amount of data transferred to the ground station SAR processor. In the
ground station, the original SAR image is reconstructed by the proposed clustered BCS
recovery algorithm. The proposed BCS method assigns a higher measurement ratio to
the block with more nonzero coefficients and a lower ratio to that with fewer nonzero
coefficients, thus improving the overall compression efficiency.

Section 2 introduces previous works regarding SAR imaging and BCS-based image
compression. In Section refsec:proposed, we describe the compression and reconstruction
procedures for the proposed clustered BCS method. Section 4 presents field measurement
and Section 5 shows numerical simulation results. Conclusions are given in Section 6.

Notations: Superscripts T, H, ∗, and −1 denote transposition, Hermitian transpo-
sition, complex conjugate, and inversion, respectively, for any scalar, vector, or matrix.
The notations |x| and ‖X‖F denote the absolute value of x and the Frobenius-norm of
matrix X, respectively; Im and 0m represent an m-by-m identity matrix and a zero matrix,
respectively; E[x] stands for the expectation of random variable x; and round(x) means the
rounding operation.

2. Previous Works Related to SAR Imaging and BCS
2.1. SAR Image Formation

A SAR image can be obtained from radar echo signals using SAR imaging methods
such as the range-Doppler algorithm (RDA), range mitigation algorithm, polar format
algorithm, Omega-K algorithm, backprojection algorithm, and so on. For example, when
the RDA is used, the original scene is reconstructed by the range compression, the range
cell migration correction (RCMC), and the azimuth compression. Adopting the notations
in [26], we briefly describe the RDA-based SAR imaging procedure. Given a sampled
range-azimuth echo matrix Z ∈ Cm0×n0 , the range compression is expressed as

Zr = {Pr ◦ (ZFr)}FH
r , (1)

where Pr ∈ Cm0×n0 is the frequency-domain matched filter along the range direction, Fr
is the n0-point FFT matrix, and ◦ denotes the Hadamard product. Then, the RCMC and
azimuth compression are denoted as

Za = FH
a {Pa ◦ C(FaZr)}, (2)

where Za ∈ Cm0×n0 is the reconstructed 2D complex SAR image, Pa ∈ Cm0×n0 is the
frequency-domain matched filter along the azimuth direction, Fa is the m0-point FFT
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matrix, and U = C(V) is the RCMC operator approximated by the truncated sinc-kernel
interpolation computed as follows:

U( fa, r) = ∑̃
r

V( f̃a, r̃) sinc(r̃− (r + ∆r( fa, r))). (3)

Here, a and r denote the direction of azimuth and range, respectively; fa and fr are
the azimuth and range sample rates; and ∆r is the migration in time to be corrected.

2.2. BCS-Based Image Compression

Let us define a square block with B× B pixels. For convenience, suppose that m0
and n0 are integer multiples of B, respectively, in an m0 × n0 image, and define r as the
measurement ratio (0 < r ≤ 1). When the image size is large (i.e., m0 � 1 and n0 � 1),
the conventional CS-based compression and reconstruction of images require excessive
computational complexity because the dimensions of the measurement matrix are given
by rm0n0 × m0n0. To reduce the computational load, the whole image is divided into
multiple blocks with B× B pixels as shown in Figure 1. Then, the total number of blocks is
NB = m0n0

B2 and the compressed image is denoted as

y =


ΦB 0 · · · 0

0 ΦB 0
...

...
. . . . . . 0

0 · · · 0 ΦB

x + n, (4)

where x ∈ Rm0n0×1 is the original signal vector obtained by stacking the original 2D
image into a vector, ΦB ∈ RM×B2

is the measurement matrix commonly used for each
block, M = round(rB2) is the number of measured samples per block, y ∈ Rrm0n0×1 is
the compressed signal vector, and n ∈ Rrm0n0×1 is the measurement noise vector with
zero mean. For example, when ΦB is a random sampling matrix that randomly selects M
elements from B2 pixels, ΦB is composed of M rows randomly selected from IB2 . Since the
same measurement matrix ΦB is applied to all blocks for CS, the signal model in (4) can be
represented as

Y = ΦBX + N, (5)

where X ∈ RB2×NB , Y ∈ RM×NB , and N ∈ RM×NB are formed by reshaping s, y, and n,
respectively.

Figure 1. Image partitioning into multiple blocks (original SAR image from [51]).
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2.3. Reconstruction by BCS-SPL with Fixed Measurement Ratio

Figure 2 describes the smoothed projected Landweber (SPL) algorithm combined with
BCS that iteratively reconstructs the original image from the block compressed image with
fixed measurement ratio by repeating 2D Wiener filtering, convex projection, and thresh-
olding in the transform domain. Initially, when ΦB is known, the matrix X in (5) can be
estimated in the least squares (LS) sense from the compressed image Y as follows:

X(0) = ΦT
B(ΦBΦT

B)
−1Y . (6)

Set n = 0 and D(0)=0
Initial estimation: X(0)

2D Wiener filtering

Projection

Transform

Thresholding

Inverse transform

Projection

Block compressed image

Recovered image

( )nX

( )p nX

( 1)nX

RMS computation: D(n+1)

( 1) ( )D n D n   <

n = n+1

No

Yes

( )f nX

( )nS

ˆ ( )nS

ˆ ( )p nX

Figure 2. Image reconstruction using BCS-SPL [14,15].

In the n-th iteration, X(n) is converted to the m0× n0 image and 2D Wiener filtering is
carried out to alleviate the artifacts caused by blockwise image reconstruction. The filtered
image is recovered to the signal matrix X f (n) ∈ RB2×NB and then the i-th column of X f (n)
is projected to the hyper-plane Ci = {x; ΦBx = yi} to find the closest vector on Ci where
yi is the i-th column of Y and 1 ≤ i ≤ NB. Because the same measurement matrix ΦB is
applied to all blocks, the projected matrix Xp(n) ∈ RB2×NB is denoted as

Xp(n) = X f (n) + ΦT
B(ΦBΦT

B)
−1(Y −ΦBX f (n)). (7)

Here, the second term of (7) is the projection of the error matrix between Y and
ΦBX f (n) to meet the constraint Y = ΦBXp(n). For sparse representation, Xp(n) is again
converted to S(n) through some transform Ψ(·), i.e.,

S(n) = Ψ(Xp(n)). (8)
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For example, the DCT, DWT, and DDWT can be used for Ψ(·). To increase the sparsity
of the transform-domain coefficients, the bivariate shrinkage in [19] is used for thresholding
S(n) as follows:

Ŝ(n) = Threshold(S(n), λ) (9)

where λ is a convergence-control factor with a positive real value and the operator
Threshold(·) is given by

Threshold(x, λ) =

(√
x2 + x̃2 − λ

√
3σm
σx

)
+√

x2 + x̃2
x. (10)

Here, x̃ means the parent coefficients of x in the next coarser scale, σx is the marginal standard
deviation of x estimated in a local 3× 3 neighborhood around x, σm = median(|x|)/0.6745,
and (x)+ = max(x, 0). By the inverse transform of Ŝ(n), we have

X̂p(n) = Ψ−1(Ŝ(n)), (11)

and again by projecting X̂p(n) onto the hyper-plane, we obtain

X(n + 1) = X̂p(n) + ΦT
B(ΦBΦT

B)
−1(Y −ΦBX̂p(n)). (12)

Finally, the mean square error (MSE) between X(n) and X(n + 1) is computed as

D(n + 1) =

√
1

mn
‖X(n + 1)− X(n)‖2

F, (13)

and the loop is repeated until |D(n + 1)− D(n)| < ε where ε is the tolerance parameter.

2.4. Fully Adaptive BCS and Blockwise Image Reconstruction

In this subsection, we introduce an adaptive BCS method in which an individual
block has a different measurement ratio in the range of 0 < r ≤ 1 determined by several
criteria such as the variance, the equivalent noise level, and the local salient factor in each
block [20,21,34]. For example, when the measurement ratio is determined according to the
variance of each image block, the number of measurements for the ith block is computed as

Mi =
σ2

i NB
NB

∑
i=1

σ2
i

M (14)

where σ2
i is the variance of the ith block and i = 1, 2, · · · , NB. In this case, each block

employs a dedicated measurement and thus the image compression procedure is denoted as

yi = ΦB,ixi + ni, (15)

where yi ∈ RMi×1, ΦB,i ∈ RMi×B2
, xi ∈ RB2×1, and ni ∈ RMi×1 are the compressed signal

vector, the measurement matrix, the vector of the original image, and the noise vector in
the ith block, respectively. Moreover, the BCS image reconstruction described in Figure 2
is separately carried out for each block using ΦB,i and thus, (7) and (12) are changed as
follows:

xp,i(n) = x f ,i(n) + Φ†
B,i(yi −ΦB,ix f ,i(n)) (16)

xi(n) = x̂p,i(n) + Φ†
B,i(yi −ΦB,i x̂p,i(n)) (17)

where Φ†
B,i = ΦT

B,i(ΦB,iΦ
T
B,i)
−1. As shown in Figure 2, the BCS-SPL algorithm requires

iterative computation of xp,i(n) and xi(n) from the error vectors (yi −ΦB,ix f ,i(n)) and
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(yi − ΦB,i x̂p,i(n)). Whereas this projection process is performed in the matrix form as
in (7) and (12) for the BCS-SPL with a fixed measurement ratio, the projected vector
is separately evaluated using a different ΦB,i as in (16) and (17) for the BCS-SPL with
fully adaptive measurement ratios. Therefore, the adaptive BCS methods in [20,21,34]
increase the compression efficiency by allowing an arbitrary measurement ratio over (0, 1],
however the amount of side information is very large and the computational load for image
reconstruction is very high due to the increased number of measurement matrices. Note
that the cardinality of {ΦB,i} is NB in the worst case.

3. Proposed Clustered BCS with Quantized Measurement Ratio

In this section, we consider a SAR imaging system that performs image compression
in the on-board processor of a remote sensing node and image reconstruction in the
ground station, as shown in Figure 3. For image reconstruction, the remote sensing node
transfers the compressed data along with the information about measurement matrices.
In an attempt to reduce the overhead to transfer measurement matrix indices and the
computational complexity for reconstructing SAR images, we propose a new clustered
BCS scheme with quantized measurement ratio. The measurement ratio for each block is
selected from the predetermined quantized values depending on the blockwise sparsity of
wavelet coefficients. The original image is reconstructed by using the clustered BCS-SPL
method that classifies the blocks into clusters according to the measurement ratio and
concurrently performs the BCS-SPL algorithm for clustered blocks.

Tx/Rx
(on-board processor)

ground
station

BCS-based
reconstruction

compressed
SAR image

+ matrix indices

Demodulation
Measurement 

matrices

matrix
indices

compressed
image dataSAR image

Figure 3. Drone SAR image processing using the proposed clustered BCS.

3.1. Selection of Measurement Ratio

In a SAR image, the blocks including a specific target have more information than the
blocks corresponding to the background region. To estimate the amount of information
for an individual block, the 2D DDWT is carried out to obtain the subband coefficients
representing six wavelet orientations. Suppose that X ∈ RB2×NB is a matrix obtained by
reshaping the magnitude of the m0× n0 complex SAR image Za. By performing the DDWT
for X, we have

Ss = ΨDDWT(X) (18)

where ΨDDWT(·) means the DDWT operation, Ss ∈ Cm0/2×n0/2 is the level 1 DDWT
coefficients for the sth subband, and s = 1, 2, · · · , 6. Here, for notational convenience,
we neglected 2D matrix extension near image edges to mitigate coefficient distortion. To
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sparsely represent the DDWT coefficients, the thresholding function in (10) is employed
as below:

Ŝs = Threshold(Ss, λ), for all s (19)

where the level 2 DDWT coefficients are used for the parent coefficients x̃. Now, considering
the size reduction in the DDWT, Ŝs is divided into NB blocks with B

2 ×
B
2 pixels, and then

the number of nonzero elements is counted to compute the amount of information in
each block.

Let us denote the number of nonzero elements in the ith block of Ŝs as Ls,i. Then,
the total number of nonzero elements in the ith block is computed as

Li =
6

∑
s=1

Ls,i, (20)

where i = 1, 2, · · · , NB. Define K as the number of measurement matrices. Using {Li} in (20),
the measurement ratio for the ith block is selected from K quantized values as follows:

1. Compute the ratio of nonzero elements:

ρi =
Li

∑NB
i=1 Li

. (21)

2. Quantize ρi with parameter τ:

αi =

{
k, if k−1

K τ ≤ ρi <
k
K τ, k = 1, 2, · · · , K− 1

K, if τ ≤ ρi ≤ 1
. (22)

3. Remove the bias in αi:

α̂i = αi −
1

NB

NB

∑
i=1

αi. (23)

4. Compute the block measurement ratio by scaling α̂i:

ri =

{
f2α̂i + r if f1 > f2
f1α̂i + r if f1 ≤ f2

, (24)

where f1 and f2 are given by

f1 =
1− r

max({α̂i})
, f2 =

r− βr
max({−α̂i})

. (25)

Here, τ is a parameter to determine the quantization stepsize; β is a positive parameter
to ensure ri ≥ βr for all i, i.e., β defines the minimum block measurement ratio; and f1 and
f2 are scaling factors to satisfy that the average of ri is equal to r, i.e., 1

NB
∑NB

i=1 ri = r. The
parameters τ and β are pre-determined by a numerical grid search using SAR images for
training, and a practical design example is presented in Section 5.1.

3.2. SAR Image Compression Using Quantized Measurement Ratio

From the procedure in (21)–(25), the measurement ratio for each block is determined
by one of K quantized values depending on the sparsity of DDWT coefficients. Denote the
set including K quantized measurement ratios asR = {γ1, γ2, · · · , γK}, and then ri ∈ R
for all i, i.e., ri is selected from the codebookR. For SAR image compression, we generate
random measurement matrices ΦC,1, ΦC,2, · · · , ΦC,K corresponding to γ1, γ2, · · · , γK by
using the design method in [52]. Specifically, structurally random matrices are expressed as

ΦC,k = Fsm,kFot,kFpm,k, (26)
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where

• Fsm,k ∈ RMk×B2
is a subsampling matrix where Mk = round(γkB2). Fsm,k can be

generated by randomly selecting Mk rows of IB2 . This matrix selects a random subset
of rows of Fot,kFpm,k.

• Fot,k ∈ RB2×B2
is an orthogonal transform matrix. In the proposed method, Fsm,k is

defined as the B2 × B2 inverse DCT matrix. This matrix is used to spread the SAR
image information over all measurements.

• Fpm,k ∈ RB2×B2
is a random permutation matrix for scrambling the signal locations.

This matrix is also called the global randomizer.

Here, ΦC,k has orthonormal row vectors, i.e., ΦC,kΦT
C,k = IMk . Note that the candidates

of {ri} and {ΦC,k} are pre-determined and shared in the remote sensing node and the
ground station as codebooks, respectively.

The original SAR image is partitioned into NB blocks with B× B pixels, and then the
blocks are classified into K clusters according to the measurement ratio. Define the number
of blocks in the kth cluster as NC,k. The blocks in the kth cluster can be compressed using
the same measurement matrix ΦC,k as follows:

YC,k = ΦC,kXC,k + NC,k, (27)

where YC,k = [yI(k,1), yI(k,2), · · · , yI(k,NC,k)
] ∈ RMk×NC,k is the compressed sub-image matrix

for kth cluster, XC,k = [xI(k,1), xI(k,2), · · · , xI(k,NC,k)
] ∈ RMk×NC,k is the original sub-image

matrix for kth cluster, xI(k,c) is the original image signal vector for the cth block whose mea-
surement ratio is equal to γk, yI(k,c) is the compressed signal vector corresponding to xI(k,c),
and NC,k ∈ RMk×NC,k is the noise matrix for kth cluster. Because the same measurement
matrix is applied to the blocks in a cluster as shown in (27), the compression procedure
can be effectively implemented through parallel processing and pipeline architectures [53].
The SAR image compression in (27) is repeated for all clusters, and thus the computational
complexity is proportional to the number of clusters K.

3.3. SAR Image Reconstruction Using Clustered BCS Algorithm

In this subsection, we propose an adaptive BCS algorithm that reconstructs the SAR
image using the clustered structure of a compressed image. Figure 4 describes the overall
procedure of the proposed adaptively clustered BCS algorithm when the BCS-SPL is em-
ployed for sub-image reconstruction in each cluster. As shown in Figure 3, the received data
from the remote sensing node are divided to the compressed image and the information
about {ri} and {ΦC,k}, respectively. After the initialization step, the compressed image
blocks are classified into K clusters according to the block measurement ratio. Because the
blocks in a cluster have the same measurement ratio, the measurement matrix can be
commonly used to reconstruct the sub-image corresponding to the cluster, and thus the
computational load is reduced by virtue of parallel processing and pipeline architectures.

In the kth cluster, the initial sub-image matrix XC,k(0) is estimated in the LS sense
using the compressed matrix YC,k as follows:

XC,k(0) = ΦT
C,k(ΦC,kΦT

C,k)
−1YC,k, (28)

where k = 1, 2, · · · , K. Then, the BCS-SPL algorithm is separately performed for each cluster
as shown in Figure 4. In the n-th iteration, X(n) is obtained by aggregating {XC,k(n)} and
2D Wiener filtering is carried out to mitigate the artifacts.

The filtered image is converted to the signal matrix for the kth cluster, X f ,k(n) ∈
RB2×NC,k , and then X f ,k(n) is separately projected onto the hyper-plane as follows:

Xp,k(n) = X f ,k(n) + ΦT
C,k(ΦC,kΦT

C,k)
−1(YC,k −ΦC,kX f ,k(n)) (29)
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Figure 4. Image reconstruction using the proposed clustered BCS.

where Xp,k(n) ∈ RB2×NC,k is the projected matrix for kth cluster and k = 1, 2, · · · , K. {Xp,k}
are merged to Xp(n), and Xp(n) is converted to S(n) through the DDWT Ψ(·) for sparse
representation, i.e.

Xp(n) = Merge(Xp,1(n), Xp,2(n), · · · , Xp,K(n)) (30a)

S(n) = Ψ(Xp(n)). (30b)

As in (9) and (10), the soft thresholding is applied to S(n) to increase the sparsity
of the transform-domain coefficients. By taking the inverse DDWT to the thresholding
operator output Ŝ(n), we have

X̂p(n) = Ψ−1(Ŝ(n)). (31)

X̂p(n) is divided into the sub-images corresponding to K clusters. When denoting the
inverse transformed sub-image for the kth cluster as X̂p,k(n), the sub-image is projected
onto the hyper-plane again as below:

XC,k(n + 1) = X̂p,k(n) + ΦT
C,k(ΦC,kΦT

C,k)
−1(YC,k −ΦC,kX̂p,k(n)), for all k. (32)

Finally, X(n + 1) is obtained by merging {XC,1(n + 1), XC,2(n + 1), · · · , XC,K(n + 1)},
and the MSE between X(n) and X(n + 1) is computed using (13). The procedure described
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in (29)–(32) is repeated until the MSE is converged, i.e., the change of the reconstructed
image is negligible.

4. Measurement for SAR Imaging

To obtain real SAR images, we performed field tests using self-made drone SAR and
vehicular SAR systems. Figure 5 shows two SAR platforms composed of a transceiver for
frequency modulated continuous wave (FMCW) radar and two horn antennas, respectively.
These SAR platforms are mounted on the underside of the drone and on the roof of the test
vehicle for field measurement. The field tests were carried out in Daebu Island of South
Korea and near the tennis court of Korea Aerospace University for the drone SAR and
the vehicular SAR, respectively, and the parameters in Table 1 were used for sensing echo
signals. The recording time per test is in the range of 60∼ 90 s, and a filtering technique was
exploited to mitigate the interference caused by clutters. The RDA described in Section 2.1
was used to generate real SAR images from the measured sensing data in both SAR systems.
The real SAR images obtained by field measurement data are presented in the next section.

(a) Drone SAR platform (b) Measurement using drone SAR

(c) Vehicular SAR platform (d) Measurement using vehicular SAR

Figure 5. Self-made SAR systems and field measurement.

Table 1. Parameters for drone SAR and vehicular SAR systems.

Parameter Drone SAR Vehicular SAR

Waveform FMCW FMCW
Carrier frequency 5.6 GHz 9.5 GHz

Bandwidth 800 MHz 1.0 GHz
Velocity 3.0 m/s 7.45 m/s

Pulse repetition frequency 125 Hz 125 Hz
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5. Simulation Results

This section evaluates the performance of the proposed BCS method with quan-
tized adaptive measurement ratio in terms of the peak signal-to-noise ratio (PSNR) of
reconstructed images, by applying the proposed technique to the real SAR images in [51]
and experimental data obtained by self-made drone SAR and vehicular SAR systems in
Section 4. Moreover, through numerical simulations, the proposed method is compared to
the existing BCS-based image compression methods in terms of the PSNR and the execution
time. In the following simulations, we use the SAR test images in Table 2, and set the block
size to B = 32 for BCS.

Table 2. SAR images for performance evaluation (the images 1∼4 are available by courtesy of Sandia National Lab., Radar
ISR [51] and the images 5 and 6 are obtained by field measurement in Section 4).

No. Image Name Size (pixels) Description

1 Naval Air Station 608× 576 Ku-Band, Spotdwell image, Jacksonville Naval Air Station
2 Kirtland AFB1 2496× 1632 Ku-Band, high-resolution image, buildings at Kirtland AFB
3 Kirtland AFB2 576× 416 Spotlight SAR image, reapplication yard at Kirtland AFB
4 Solar Tower 608× 576 Lynx SAR image, solar tower near Albuquerque
5 Daebu Island 512× 864 Drone SAR image, Daebu Island, South Korea
6 Tennis Court 320× 1160 Vehicular SAR image, tennis court at Korea Aerospace Univ.

5.1. Parameter Optimization for Proposed Clustered BCS

In the proposed clustered BCS, the measurement ratio selection procedure in (21)–(25)
requires the design of the parameters τ and β. The parameter τ adjusts the stepsize for quan-
tization of initial block measurement ratios {ρi}, while β determines the relative ratio of the
minimum block measurement ratio to the average value, i.e., β = min(r1, r2, · · · , rNB)/r.
We find the optimal values of τ and β through 2D grid search in the range of 0 < τ ≤ 0.8
and 0 < β ≤ 0.6. In the simulation, we used r = 0.5 and K = 5, and the stepsize for 2D
grid search was set to 0.1 considering accuracy and runtime. Figure 6 presents the average
PSNR of SAR images reconstructed by the proposed clustered BCS according to τ and β,
when the test images 1,3, and 4 in Table 2 were used. Note that the image 2 was not used
because its high resolution requires excessive execution time for grid search. It is shown
that the proposed method achieves the highest average PSNR when τ = 0.2 and β = 0.2.
Also, notice that the average PSNR is quite robust around the optimal τ and β, for example,
in the range of 0.1 ≤ τ ≤ 0.3 and 0.1 ≤ β ≤ 0.3.

Figure 6. PSNR of the proposed clustered BCS according to τ and β when r = 0.5 and K = 5.
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The proposed scheme necessitates the design of the number of measurement matrices
K (or the number of clusters for reconstruction). To this end, the performance of the
proposed clustered BCS method is evaluated for various K and r in terms of PSNR in
Figure 7, when τ = 0.2 and β = 0.2. The proposed methods with K ≥ 2 achieve huge
PSNR gains compared to the fixed-ratio BCS in [15] corresponding to K = 1. As expected,
the PSNR performance of the proposed scheme gradually improves with the increment
of K irrespective of the average measurement ratio r. When K = 3, K = 5, and K = 10,
the maximum PSNR loss is less than 0.12 dB, 0.05 dB, and 0.01 dB, respectively, compared to
the case with K = 20. Through the tradeoff between the PSNR loss and the computational
complexity, we set K = 5 in the following simulations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Measurement ratio (r)

25

27

29

31

33

35

37

39

41

43

P
S

N
R

 (
dB

)

Proposed clustered BCS (K=10)
Proposed clustered BCS (K=5)
Proposed clustered BCS (K=3)
Proposed clustered BCS (K=2)
Fixed-ratio BCS (K=1) [15]

Figure 7. PSNR of the proposed clustered BCS for the various number of measurement matrices K
when τ = 0.2 and β = 0.2.

5.2. Reconstructed Image Performance and Runtime

The proposed clustered BCS method is compared to the existing BCS-based com-
pression schemes for SAR images. Specifically, the following reconstruction techniques
are considered.

• Fixed-ratio BCS: the method in [15] is used. All blocks are compressed with the same
measurement ratio, and SAR images are reconstructed by the BCS-SPL in Section 2.3.

• Fully adaptive BCS: the method in [34] is used. Block measurement ratios are assigned
according to block variances in the image-domain, and SAR images are reconstructed
by separately applying the BCS-SPL to each block as explained in Section 2.4. The min-
imum block measurement ratio is set to 0.001 to avoid the numerical instability in the
BCS-SPL algorithm.

• Proposed clustered BCS: The block measurement ratio is adaptively assigned with
quantization using the procedure in Section 3.1, the original image is compressed
as explained in Section 3.2, and the SAR image is reconstructed by the proposed
clustered BCS in Section 3.3. The parameters are set as τ = 0.2, β = 0.2, and K = 5,
and the random sampling matrices are defined as (26), unless otherwise specified.

Figure 8 compares the original SAR image with the compressed images using the
fixed-ratio BCS, fully adaptive BCS, and proposed clustered BCS methods, respectively.
We used random sampling matrices, i.e., Fot,k = Fpm,k = IB2 , to visualize the difference
among BCS-based compression schemes. The fixed-ratio BCS subsamples blocks with
the same measurement ratio, and thus the sub-image resolution is identical to all blocks.
In contrast, the sub-image resolution significantly varies according to the block sparsity in
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the fully adaptive BCS and the proposed clustered BCS. Especially, the fully adaptive BCS
scheme exhibits more variation of sub-image resolution due to the high deviation of block
measurement ratios. Notice that the block size of Kirtland AFB1 looks smaller than that of
Naval Air Station, because Kirtland AFB1 has more pixels than Naval Air Station as shown
in Table 2.

(a) Original
(Naval Air

Station)

(b) Fixed-ratio
BCS [15]

(c) Fully adaptive
BCS [34]

(d) Proposed
clustered BCS

(e) Original
(Kirtland AFB1)

(f) Fixed-ratio
BCS [15]

(g) Fully adaptive
BCS [34]

(h) Proposed
clustered BCS

Figure 8. Random sampled SAR images using various BCS methods when r = 0.5.

Figure 9 compares the reconstructed images by the various BCS-based methods.
The test images 3 (Kirtland AFB2) and 4 (Solar Tower) are used for the original SAR images,
and the measurement ratio is set to 0.5, i.e., r = 0.5. We enlarged a specific area of the SAR
image to clearly compare the restored image quality. For example, a building is magnified
in Kirtland AFB2, and a solar panel is enlarged in Solar Tower. The fully adaptive BCS and
proposed methods obtain SAR images with higher quality than the fixed-ratio BCS, as seen
in the target objects indicated as red boxes. Because the proposed clustered BCS has higher
minimum block measurement ratio than the fully adaptive BCS, the image quality of the
proposed BCS is slightly better than the fully adaptive BCS around the background region.

Figure 10a,d show the optical images of the locations where the field tests were carried
out to obtain real SAR images. When the proposed clustered BCS method is applied to the
measured drone SAR and vehicular SAR images, we can successfully reconstruct the SAR
images similar to the optical counterparts. Even when r = 0.1, i.e., just 10% of measured
SAR image data are used, main objects such as warehouses and fences can be recognized
in the restored images. As expected, the quality of reconstructed images is significantly
improved when r = 0.5, compared to the case when r = 0.1. For the vehicular SAR,
the field measurement was conducted while driving along the road in the lower part of
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Figure 10d. Therefore, the SAR images clearly present the fences near the lower road, yet
the image quality is degraded as the distance from the lower road increases.

(a) Fixed-ratio BCS [15] (b) Fully adaptive BCS [34] (c) Proposed clustered BCS

(d) Fixed-ratio BCS [15] (e) Fully adaptive BCS [34] (f) Proposed clustered BCS

Figure 9. Reconstructed SAR images using various BCS methods when r = 0.5. The original images are Kirtland AFB2 for
(a)∼(c) and Solar Tower for (d)∼(f).

(a) Optical image (Daebu
Island)

(b) Reconstructed image
(r = 0.1)

(c) Reconstructed image
(r = 0.5)

(d) Optical image (Tennis Court) (e) Reconstructed image
(r = 0.1)

(f) Reconstructed image
(r = 0.5)

Figure 10. SAR images reconstructed by the proposed clustered BCS method. (a,d) denote the optical satellite images of test
locations in Daebu Island and Tennis Court in Korea Aerospace University, respectively.
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Figure 11 compares the PSNR performance of various BCS reconstruction algorithms
when the test images in Table 2 are used. For the proposed method, we used τ = 0.2,
β = 0.2, and M = 5. Every PSNR value was obtained by averaging the results over
more than 20 random realizations of measurement matrices. The proposed clustered BCS
outperforms the fixed-ratio BCS in all test images, and the PSNR gain gradually becomes
large as the measurement ratio increases. The proposed scheme performs comparable
or better than the fully adaptive BCS method in all test images, while the PSNR gap is
very small in the range of r ≤ 0.6 except Naval Air Station and slightly increases with the
increment of the measurement ratio when r ≥ 0.7. In the fully adaptive BCS, the deviation
of r is large as inferred from (14). Thus, when r ≥ 0.7, most blocks have measurement
ratios close to one and a part of blocks have very low ratios, resulting to PSNR degradation.
Overall, the proposed method exhibits the best PSNR performance in all test images
irrespective of r.
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Figure 11. PSNR of various BCS reconstruction methods according to the measurement ratio.

Table 3 shows the specific mean and standard deviation values of PSNR corresponding
to Figure 11. As mentioned before, PSNR values were obtained by repeating the simulations
for more than 20 random realizations of measurement matrices. When r = 0.3, the average
PSNR gain of the proposed clustered BCS is in the range of [0.68, 2.81] dB compared to the
fixed-ratio BCS and [−0.22, 1.07] dB compared to the fully adaptive BCS. When r = 0.5,
the average PSNR gain of the proposed method is changed to [1.65, 4.34] dB compared to
the fixed-ratio BCS and [−0.13, 0.93] over the fully adaptive BCS. When r = 0.7, the average
PSNR gain is in the range of [2.02, 5.24] dB and [−0.01, 1.51] dB compared to the fixed-ratio
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BCS and the fully adaptive BCS, respectively. Overall, as r becomes large, the PSNR gain
grows accordingly. The standard deviation of the proposed method is slightly greater
than that of the fixed-ratio BCS and very similar to the fully adaptive BCS. For all cases,
the standard deviation of PSNR is less than 0.1 dB, and thus the PSNR variation by the
measurement matrices is almost negligible.

Table 3. Mean (µr) and standard deviation (σr) of PSNR for various BCS reconstruction methods.

Image Name r
Fixed-Ratio BCS [15] Fully Adaptive BCS [34] Proposed Method

µr (dB) σr (dB) µr (dB) σr (dB) µr (dB) σr (dB)

Naval Air Station

0.3 30.908 0.0276 32.649 0.0799 33.719 0.0999

0.5 33.804 0.0181 37.221 0.0181 38.149 0.0501

0.7 36.994 0.0234 41.752 0.0214 42.235 0.0283

Kirtland AFB1

0.3 27.756 0.0125 28.894 0.0032 28.800 0.0065

0.5 29.683 0.0054 31.161 0.0029 31.332 0.0026

0.7 32.247 0.0078 33.961 0.0046 34.266 0.0036

Kirtland AFB2

0.3 32.641 0.0475 35.486 0.0200 35.394 0.0240

0.5 35.386 0.0298 38.577 0.0166 38.540 0.0391

0.7 38.528 0.0474 41.909 0.0152 41.902 0.0027

Solar Tower

0.3 22.549 0.0257 24.472 0.0262 24.253 0.0396

0.5 24.838 0.0380 27.301 0.0210 27.337 0.0157

0.7 27.821 0.0469 30.581 0.0060 31.107 0.0102

Daebu Island

0.3 21.829 0.0082 22.590 0.0037 22.514 0.0066

0.5 23.463 0.0094 25.335 0.0134 25.202 0.0216

0.7 25.828 0.0151 30.472 0.0141 30.942 0.0072

Tennis Court

0.3 25.819 0.0301 26.573 0.0093 26.615 0.0210

0.5 27.900 0.0121 29.502 0.0213 29.783 0.0282

0.7 30.750 0.0161 34.441 0.0218 35.953 0.0270

To compare the complexity of various BCS reconstruction methods, Figure 12 presents
the runtime when the SAR test images in Table 2 are used. The BCS reconstruction methods
were programmed by MATLAB v9.9.0, and the execution time was measured using a
desktop PC with Core i7-10700KF 3.8 GHz CPU, 16 GB RAM, and 64-bit Windows 10.
Because the execution time for SAR image compression is less than 5% of the runtime for
reconstruction in all BCS schemes, we only consider the execution time for SAR image
reconstruction. As mentioned before, the parameters τ and β are fixed when recording the
runtime, i.e., τ = 0.2 and β = 0.2, and thus the execution time for designing τ and β is
not taken into account. Every runtime value was obtained by averaging the results over
more than 20 random realizations of measurement matrices. As expected in reconstruction
algorithms in Sections 2.3, 2.4, and 3.3, the fixed-ratio BCS has the lowest runtime, the fully
adaptive BCS exhibits the highest runtime, and the proposed method requires slightly
more execution time than the fixed-ratio BCS in all test images. On average, the runtime of
the proposed scheme is 1.27∼2.56 times greater than that of the fixed-ratio BCS, whereas
the runtime of the fully adaptive BCS is 5.04∼20.15 times greater than that of the fixed-ratio
BCS. The fully adaptive BCS and proposed BCS methods tend to require less execution time
as r increases, due to the decrease of the number of iterations for the BCS-SPL algorithm.
Figures 11 and 12 show that the proposed clustered BCS is advantageous over the fixed-
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ratio BCS and fully adaptive BCS techniques, when jointly taking into account the PSNR
performance and the runtime.
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Figure 12. Runtime of various BCS reconstruction methods according to the measurement ratio.

6. Conclusions

In this paper, we proposed a new quantization method of block measurement ratios
for SAR image compression based on the clustered BCS, and derived the reconstruction
algorithm that classifies the blocks into clusters according to the measurement ratio and it-
eratively recovers the SAR sub-image cluster-wise. The proposed BCS method increases the
overall compression efficiency by assigning a higher measurement ratio to the block with
more nonzero coefficients and a lower ratio to that with fewer nonzero coefficients. In ad-
dition, the codebook size for measurement matrices can be reduced through quantization
of block measurement ratios, thereby alleviating the increase in computational complexity.
For intensive performance verification, the proposed scheme has been applied to multiple
SAR images obtained from airborne, drone and vehicular SAR platforms, respectively.
The image properties from different platform types exhibit significant variations with
regards to speckle noises and contrast levels but the proposed scheme maintains consistent
performances for all cases. For this reason, the PSNR performance of the reconstructed SAR
image is significantly improved at the cost of a moderate complexity increase compared to
the conventional fixed-ratio BCS. With much reduced computational load, the proposed
scheme achieves PSNR performances that are comparable to the fully adaptive BCS.
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Recent deployment of video SAR demands a huge amount of data samples with
the increased frame rates in high resolutions. While this poses significant challenges for
data collection and storage, our work can be employed to relieve the burden of dealing
with these problems. The proposed technique can be applied to the compression of drone
SAR images and further extended to compressing video SAR of higher frames in order
to alleviate the storage limitation while minimizing the image quality loss. Through this
approach, the drone SAR can be utilized in more diverse applications such as detection
of landmines, military surveillance, and lifesaving in case of disasters. In future, further
research works are expected for clustered SAR missions by adopting the proposed clustered
BCS for SAR raw data compression.
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