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Abstract: Rainfall estimation over the Pacific region is difficult due to the large distances between
rain gauges and the high convection nature of many rainfall events. This study evaluates space-based
rainfall observations over the South West Pacific Region from the Japan Aerospace Exploration
Agency’s (JAXA) Global Satellite Mapping of Precipitation (GSMaP), the USA National Oceano-
graphic and Atmospheric Administration’s (NOAA) Climate Prediction Center morphing technique
(CMORPH), the Climate Hazards group Infrared Precipitation with Stations (CHIRPS), and the Na-
tional Aeronautics and Space Administration’s (NASA) Integrated Multi-Satellite Retrievals for GPM
(IMERG). The technique of collocation analysis (CA) is used to compare the performance of monthly
satellite precipitation estimates (SPEs). Multi-Source Weighted-Ensemble Precipitation (MSWEP)
was used as a reference dataset to compare with each SPE. European Centre for Medium-range
Weather Forecasts’ (ECMWF) ERA5 reanalysis was also combined with Soil Moisture-2-Rain–ASCAT
(SM2RAIN–ASCAT) to perform triple CA for the six sub-regions of Fiji, New Caledonia, Papua New
Guinea (PNG), the Solomon Islands, Timor, and Vanuatu. It was found that GSMaP performed
best over low rain gauge density areas, including mountainous areas of PNG (the cross-correlation,
CC = 0.64), and the Solomon Islands (CC = 0.74). CHIRPS had the most consistent performance
(high correlations and low errors) across all six sub-regions in the study area. Based on the results,
recommendations are made for the use of SPEs over the South West Pacific Region.

Keywords: satellite precipitation estimates; South West Pacific Region; satellite precipitation validation

1. Introduction

Rainfall is fundamental to sustaining communities, economy, and the natural environ-
ment. Numerous climate-sensitive sectors rely upon accurate precipitation measurements,
and the demand for greater accuracy will increase as rainfall variability increases globally
due to anthropogenic climate change [1]. Accurate rainfall estimation crucially impacts a
range of sectors, e.g., agriculture, fire and forestry management, landslide prevention [2],
and hydrological modelling of reservoirs [3].

Rain gauges and weather radars have been the traditional means of measuring precip-
itation, yet satellite remote sensing is increasingly considered as complementary to rain
gauges due to its improving accuracy and spatial coverage [4,5]. Rain gauges themselves
are prone to errors from evaporative losses, maintenance, and distribution issues (espe-
cially in remote areas), and the small representative area is particularly problematic in
regions with high topography and convection rainfall [6]. Weather radars can be effective
for capturing the spatial extent of precipitation, but their use is limited, particularly in
developing and least developed countries, due to large upfront expense and maintenance
costs [7].
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Satellite precipitation estimates (SPEs) provide data with potentially global coverage
that are maintained in the long-term by reputable national space agencies and meteoro-
logical services, available in near-real-time, and for the most part available free-of-charge
online [6]. On the other hand, SPEs generally have relatively low spatial resolution and are
less accurate than rain gauges or weather radars at the local scale [6].

Due to the assumptions made in SPE retrieval algorithms, it is vital to verify their
accuracy [8]. Traditionally, rain gauges and weather radars have been used as ground
validation to test the accuracy of SPEs [8,9]. Recently, the technique of collocation analysis
(CA) has been used to evaluate the accuracy of SPEs in regions with insufficient ground-
validation infrastructure [10,11]. In this study, CA was selected as a novel methodology
to investigate the accuracy of various SPEs over a rain gauge sparse region—the South
West Pacific.

The small island developing states and least developed countries in the Pacific are
among the world’s poorest nations, with a low GDP per capita, and a high vulnerability to
natural hazards [12]. These island nations are also highly exposed to meteorological haz-
ards, both drought and acute water shortages and, conversely, heavy precipitation leading
to flooding [13,14]. Climate change is altering precipitation patterns [1], causing reduced
total rainfall in some areas and increasing the risk of severe drought in the region [15,16].

Despite efforts to improve the rain gauge record, the South West Pacific Islands is
one of the regions where surface-based precipitation observations are very sparse [15,16].
Therefore, SPEs are an obvious choice for precipitation monitoring to help vulnerable
Pacific communities, potentially enabling better management of hydrometeorological
hazards such as droughts and floods.

CA was used on a global scale for the first time in 2017 for evaluating SPEs by
comparing them to a satellite rainfall product derived from soil moisture data and a climate
reanalysis product [10]. Since then, the methodology has been used for comparing the
accuracy of SPEs globally and across various regions [17–19]. The recent comparison of
SPEs by Beck et al. [20] revealed that ERA5 was the most accurate ungauged product,
while gauge-based SPEs were more accurate than gauge-corrected ones. Tanim et al. [19]
used ERA-Interim and interpolated gauge data in a CA to show that IMERG Final run was
more accurate than IR-based SPEs including CMORPH. Global CAs have revealed that for
tropical rainforests, such as those common to Pacific Island Nations, SM2RAIN–ASCAT
and ERA5 do not perform as well as SPEs [10,21]. However, there have been no CA studies
analysing SPE accuracy over the South West Pacific Region, and this research addresses the
identified gap in the literature.

This paper is organised as follows. Section 2 describes the study area, datasets,
and methods used in the study. Section 3 presents the results, while Section 4 discusses
the findings and provides recommendations for SPE usage. Section 5 summarises the
major findings.

2. Materials and Methods
2.1. Study Area

A map of the study area and relevant sub-regions is presented in Figure 1.
The study area extends from 0◦ N to 30◦ S, and from 120◦ E to the International

Date Line (further extension eastward was limited by the availability of the Soil Moisture
product. Soil Moisture 2 Rain–ASCAT (SM2RAIN–ASCAT). The study area includes the six
sub-regions: Timor, Papua New Guinea (PNG), Bougainville Island and Solomon Islands,
Vanuatu, New Caledonia, and the main islands of Fiji. The study period is limited to the
temporal range of SM2RAIN–ASCAT, from January 2007 to December 2020.
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Figure 1. Example plot of precipitation anomaly for March 2007 depicting the study area, from 120° 
E to 180° E, 0° N to 30° S. The red boxes indicate the six studied sub−regions. 

The study area extends from 0° N to 30° S, and from 120° E to the International Date 
Line (further extension eastward was limited by the availability of the Soil Moisture 
product. Soil Moisture 2 Rain–ASCAT (SM2RAIN–ASCAT). The study area includes the 
six sub-regions: Timor, Papua New Guinea (PNG), Bougainville Island and Solomon Is-
lands, Vanuatu, New Caledonia, and the main islands of Fiji. The study period is limited 
to the temporal range of SM2RAIN–ASCAT, from January 2007 to December 2020. 
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V2), and National Aeronautics and Space Administration's (NASA) Integrated Mul-
ti-Satellite Retrievals for GPM (IMERG V6b). 

The Global Precipitation Mission (GPM) is a constellation of low earth orbiting sat-
ellites which uses PMW imagers and sounders and a dual frequency radar for remotely 
detecting precipitation; it is maintained by both NASA and JAXA. GSMaP [22] and 
IMERG [23] provide several SPEs created using different precipitation retrieval algo-
rithms based on data from the GPM constellation.  

In addition to utilising MW-based estimates from the GPM constellation, GSMaP 
also uses infrared (IR) data from geostationary satellites to observe the movement of 
cloud systems and advection estimates, as well as applying a Kalman filter to form better 
estimates when data is sparse [24]. A daily global dataset of rain gauges from the CPC is 
used for calibration via the matching over 24-hour totals, which allows for more accurate 
calibration of MW readings than the use of monthly datasets [25]. 

CMORPH uses a similar cloud advection algorithm to GSMaP and the same rain 
gauge network for daily calibration [26]. CMORPH MW inputs have been calibrated by 
matching the probability distribution functions of the estimates to those from rain gauge 
values over land and through the use of corrective ratios formed from matching means to 
the GPCP dataset over the ocean. In this study, the CMORPH Blended (CMORPH-BLD) 
product which further incorporates gauge data through optimal interpolation was se-
lected for evaluation. CMORPH-BLD has been shown to be more accurate than the 

Figure 1. Example plot of precipitation anomaly for March 2007 depicting the study area, from 120◦ E
to 180◦ E, 0◦ N to 30◦ S. The red boxes indicate the six studied sub-regions.

2.2. Datasets

Four satellite precipitation datasets commonly used in evaluation studies were se-
lected for this study: the Japan Aerospace Exploration Agency’s (JAXA) Global Satellite
Mapping of Precipitation (GSMaP V6), the USA National Oceanographic and Atmospheric
Administration’s (NOAA) Climate Prediction Center morphing technique (CMORPH V1),
Climate Hazards group Infrared Precipitation with Stations (CHIRPS V2), and National
Aeronautics and Space Administration’s (NASA) Integrated Multi-Satellite Retrievals for
GPM (IMERG V6b).

The Global Precipitation Mission (GPM) is a constellation of low earth orbiting satel-
lites which uses PMW imagers and sounders and a dual frequency radar for remotely detect-
ing precipitation; it is maintained by both NASA and JAXA. GSMaP [22] and IMERG [23]
provide several SPEs created using different precipitation retrieval algorithms based on
data from the GPM constellation.

In addition to utilising MW-based estimates from the GPM constellation, GSMaP
also uses infrared (IR) data from geostationary satellites to observe the movement of
cloud systems and advection estimates, as well as applying a Kalman filter to form better
estimates when data is sparse [24]. A daily global dataset of rain gauges from the CPC is
used for calibration via the matching over 24-hour totals, which allows for more accurate
calibration of MW readings than the use of monthly datasets [25].

CMORPH uses a similar cloud advection algorithm to GSMaP and the same rain gauge
network for daily calibration [26]. CMORPH MW inputs have been calibrated by matching
the probability distribution functions of the estimates to those from rain gauge values over
land and through the use of corrective ratios formed from matching means to the GPCP
dataset over the ocean. In this study, the CMORPH Blended (CMORPH-BLD) product
which further incorporates gauge data through optimal interpolation was selected for
evaluation. CMORPH-BLD has been shown to be more accurate than the gauge-corrected
product CMORPH-CRT, over regions where a dense gauge network exists [27], though
performance was similar when gauge density is low such as, for example, over PNG [28].

GSMaP and CMORPH data were made available through the World Meteorological
Organization’s Space-based Weather and Climate Extremes Monitoring Demonstration
Project [29].

IMERG Final Run monthly product blends the Global Precipitation Climatology
Centre (GPCC) V5 Monitoring Product and is retroactively used to gauge-correct the Early
and Late runs [30]. IMERG also uses a cloud advection algorithm and a Kalman filter.
Morphed MW estimates are used where their availability is sufficient, with an IR-based SPE
called PERSIANN-CCS being used otherwise. Although GSMaP and IMERG are similar
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in selecting the satellite sensors that they use, the difference in rain gauge data used for
calibration and in their precipitation retrieval algorithms results in different performance.

The CHIRPS dataset was created as part of the USA Agency for International Develop-
ment Famine Early Warning Systems Network (FEWS NET) [5]. It forms a climatological
field using long-term trends from both gauge and satellite products (including CMORPH
and Land Surface Temperature estimates) onto which precipitation estimate from near
real time IR Cold Cloud Duration (CCD) are incorporated. Blending also takes place with
interpolation from up to five nearby gauges. Its higher resolution (0.05◦ compared to
0.1◦ or 0.25◦ of other datasets) and temporal coverage (beginning from 1981 compared to
around the 2000s for other SPEs) may make it applicable for Pacific Island Nations that
lack consistent rain gauge history.

All SPEs require calibration to surface rainfall [31] and the choice of ground-truth
data impacts the accuracy of the satellite products. CMORPH blends in CPC daily data,
CHIRPS blends in nearest gauges, IMERG blends in monthly rainfall data, and GSMaP
corrects to daily data. It has been shown that using daily gauge data resulted in GSMaP
being more accurate over the Tibetan Plateau than IMERG [25].

The Multi-Source Weighted-Ensemble Precipitation dataset (MSWEP V2.8) is a merged
product combining numerous gauge, reanalysis, and satellite products [32] and will serve
as a gridded reference dataset for this study. However, as ERA-INT, GSMaP, and CMORPH
are inputs to MSWEP, it thus will not be used in collocation analysis performed in this study.

Soil Moisture 2 Rain (SM2RAIN–ASCAT) [33] and ERA5 [34] use precipitation deriva-
tion and reanalysis methods, respectively, to estimate rainfall and are often used in CA to
compare SPEs [10,18,20].

SM2RAIN–ASCAT considers an inverse water equation where rainfall is estimated
from observed soil moisture and modelled soil temperature and evaporation [33]. It can
be more effective than other MW based SPEs when an estimation of accumulated rainfall
is desired as opposed to the instantaneous estimates generated by SPEs [33] which are
subject to sampling bias. The SM2RAIN–ASCAT product is used in this study, as it has the
largest temporal range of all SM2RAIN products covering January 2007 until December
2020. The ASCAT product is based upon three MetOp C-Band MW sounders [21].

The European Centre for Medium-Range Weather Forecasts (ECMWF) produces the
ERA5 reanalysis product, which uses a wide range of weather observations from multiple
sources including satellites, weather balloons, aircrafts, and weather stations, for humidity,
air pressure, wind, and temperature, to provide an accurate history of global meteorological
observations from 1950 to present [34]. It does not directly ingest rain gauge data, with
a second-order inclusion occurring from the use of a gauge-adjusted radar analysis over
the USA, in addition to the use of satellite data. A comparison of ERA5 to global rain
gauge datasets reveals that ERA5 overestimates rainfall over the oceans, but is in very close
agreement for precipitation over land [34].

2.3. Method

CA is a methodology that assumes an unknown uncertainty for a geophysical process
(in this case precipitation) and then compares at least three datasets made up of mutually
independent measurements to determine their relative accuracy [11,35]. There are two
main types of CA which make different assumptions about errors. There is a simple
additive error model:

R = a + B T + ε (1)

and a multiplicative error model, which is considered more accurate for rainfall data due
to the sporadic nature of rainfall amounts [11]:

ln(R) = a TB ln(ε) (2)

where R is the observed rainfall amount, T is the unknown true rainfall amount, ε is the
random error, and a and B denote systematic biases.
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CA methods overcome the need for an exact source of truth, and are spatially con-
sistent across a domain [36]. A noteworthy feature of CA is that the methodology relies
upon the contributing datasets being independent of each other. More specifically, CA’s
underlying assumptions are of (i) stationarity of the statistics, (ii) linearity between at
least three estimates (versus the same target) across all timescales, and (iii) existence of
uncorrelated error between at least three estimates [10,11].

Monthly averaged daily precipitation data (January 2007–December 2020) was down-
loaded as NetCDF4 files for all datasets except IMERG (downloaded as HDF5), converted
to units of mm per day, and regridded to a common resolution of 0.25◦, as this was the
native resolution of SM2RAIN–ASCAT, ERA5, and CMORPH datasets. The land-based
SPEs of CHIRPS, CMORPH, and SM2RAIN–ASCAT were extrapolated to smooth around
coastlines, and a common land–sea mask from CMORPH was applied for all the datasets to
remove the variation of masks amongst the datasets. CMORPH’s mask was used as it pre-
sented a compromise of coverage over Pacific Island Countries with the other land-based
SPEs (CHIRPS, SM2RAIN–ASCAT) as well as the land–sea mask of ERA5.

Due to the performance of each product varying in accuracy throughout the year [17]
it is conventional to use monthly anomalies rather than rainfall totals. Using anomalies
restricts our analysis to assume an additive error model (Equation (1)), rather than the
multiplicative variant (Equation (2)). Despite the benefits of a multiplicative error model,
recent studies, such as Chen et al. [17] and Massari et al. [10], used an additive error model
which still provided robust results. Therefore, it is reasonable to remove the climatological
component of the data from all the datasets and perform an additive error analysis.

MSWEP was used as a reference dataset to compare each SPE. It is considered to be
the most accurate near-real-time satellite product available due to its optimised merging
of other rainfall products [20]. The Mean Bias, Mean Average Error, Root Mean Square
Error, and Pearson-R correlation are used, as they are conventional comparative statistical
measures used to understand dataset accuracy in SPE research (formulas can be found
in [28]). Assumptions of linearity and normality also were validated through plotting
to ensure that Pearson correlation was the correct statistic for this process. Fisher’s z-
transformation comparison of correlation coefficients was used to determine significance
of the Pearson correlations.

The upper and lower quantiles for each SPE were also compared with MSWEP to
record how consistently a value in the lower 20% or upper 80% of the reference dataset was
identified by the SPE. The metric of this comparison is percent hit rate, which compares
the number of events that lie in the top and bottom quantile of the SPE data to the number
expected from MSWEP. While daily data may be more relevant for the accuracy of pre-
cipitation estimates for individual tropical cyclone events, the use of monthly data can be
relevant to climate extremes such as droughts and accumulated heavy precipitation during
the Southern Hemisphere tropical cyclone season, typically from November through to
April [37,38].

The time series of one SPE, SM2RAIN–ASCAT and ERA5 were used to create a 3 × 3
covariance matrix (C) for each pixel. This matrix was then used to calculate the cross-
correlation (CC) and RMSE between the SPE and the unknown true rainfall for each SPE.
As we are using an additive error model, the equations are:

CC =

√
CX,Y CX,Z

CX,X CY,Z
(3)

RMSE =

√
CX,X − CX,Y CX,Z

CY,Z
(4)

where X represents the SPE being considered, Y is SM2RAIN–ASCAT, and Z is ERA5.
Assumption of stationarity were tested by the Augmented Dickey–Fuller unit root

test, and linearity by visual inspection. It is worth noting that the assumptions of these
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datasets having uncorrelated errors are not completely met, as some sensors from the GPM
constellation are included in ERA5 [34]. Although SM2R is best not used with ERA5 in triple
CA [21], it is still used in cases where a suitable rain gauge product is not available [10,17].
Similarly, Quadruple Collocation using the four SPEs was explored, but was not utilized
due to the overlap of sensors violating the assumptions of independence.

3. Results
3.1. Performance of Datasets Compared to MSWEP

Figure 2 shows the spatial differences in Mean Bias errors (MBE) between each SPE
and the reference MSWEP for six sub-regions. It is evident that topography impacts bias in
SPEs, with often opposite direct biases between highlands and lowlands. In general, there
is an overestimation of precipitation over mountains. Around coastal areas, the SPEs are
more likely to underestimate rainfall, which is consistent with issues of SPEs measuring
rainfall over oceans [39].

The comparison of each of the SPEs to MSWEP is summarised in Figure 3; see Appendix A
for details and comparison, including SM2RAIN–ASCAT. GSMaP and IMERG have
stronger yet insignificant Pearson correlations in Solomon Islands, Timor, and PNG; how-
ever, CMORPH and CHIRPS have significantly greater performance when over more
densely gauged subregions of Fiji, Vanuatu, and New Caledonia (Figure 3b). CMORPH
has the largest RMSE over PNG, GSMaP has the largest over Fiji, Vanuatu, New Caledonia,
and Solomon Islands, while IMERG has the smallest or near smallest errors over these
sub-regions (Figure 3c). SM2RAIN–ASCAT had significantly lower average correlations
than the other SPEs for all sub-regions, with the exception of insignificantly lower R values
in Timor (Significance P = 0.86) and PNG (P = 0.19).
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A comparison of the percent hit rate for the upper and lower quantiles with MSWEP
indicated there was no consistent difference between the accuracy of lower and upper
quantiles for any of the SPEs when compared to MSWEP. The gauge-based products of
CMORPH-BLD and IMERG show greater quantile accuracy in Fiji and New Caledonia,
both sub-regions with denser gauge networks. CHIRPS had overall the lowest average hit
rate (90.6%), while GSMaP performed well for sub-regions with low gauge density.

3.2. Triple Collocation Analysis

As in the comparison to MSWEP, we found poor performance of the SPEs over PNG
compared to the other sub-regions. While most of the datasets show agreement, there are
some areas where performance across the datasets diverges.

Cross correlation between each SPE and the unknown truth from triple CA of ERA5
and SM2RAIN–ASCAT are shown in Figure 4. All SPEs demonstrated best performance
over Fiji, New Caledonia, and Vanuatu. GSMaP shows far greater CC over PNG, partic-
ularly over highlands, than the other datasets. IMERG appears to perform weaker than
other SPEs over PNG, Timor, and the Solomon Islands, but has comparable performance
over Fiji, Vanuatu, and New Caledonia.



Remote Sens. 2021, 13, 3929 8 of 16

Remote Sens. 2021, 13, 3929 7 of 16 
 

 

V
an

ua
tu

 

 

So
lo

m
on

 Is
-

la
nd

s 

 

N
ew

 C
al

ed
o-

ni
a 

 

 
Figure 2. Mean bias error for each SPE over each sub−region. 

The comparison of each of the SPEs to MSWEP is summarised in Figure 3; see Ap-
pendix for details and comparison, including SM2RAIN–ASCAT. GSMaP and IMERG 
have stronger yet insignificant Pearson correlations in Solomon Islands, Timor, and PNG; 
however, CMORPH and CHIRPS have significantly greater performance when over 
more densely gauged subregions of Fiji, Vanuatu, and New Caledonia (Figure 3b). 
CMORPH has the largest RMSE over PNG, GSMaP has the largest over Fiji, Vanuatu, 
New Caledonia, and Solomon Islands, while IMERG has the smallest or near smallest 
errors over these sub-regions (Figure 3c). SM2RAIN–ASCAT had significantly lower av-
erage correlations than the other SPEs for all sub-regions, with the exception of insignif-
icantly lower R values in Timor (Significance P = 0.86) and PNG (P = 0.19).  

 

Remote Sens. 2021, 13, 3929 8 of 16 
 

 

 

 

Figure 3. Comparison of (a) the mean MBE, (b) mean Pearson (R) Correlation, and (c) mean RMSE for each sub−region for 
the four SPEs. 

A comparison of the percent hit rate for the upper and lower quantiles with MSWEP 
indicated there was no consistent difference between the accuracy of lower and upper 
quantiles for any of the SPEs when compared to MSWEP. The gauge-based products of 
CMORPH-BLD and IMERG show greater quantile accuracy in Fiji and New Caledonia, 
both sub-regions with denser gauge networks. CHIRPS had overall the lowest average 
hit rate (90.6%), while GSMaP performed well for sub-regions with low gauge density. 

3.2. Triple Collocation Analysis 
As in the comparison to MSWEP, we found poor performance of the SPEs over PNG 

compared to the other sub-regions. While most of the datasets show agreement, there are 
some areas where performance across the datasets diverges.  

Cross correlation between each SPE and the unknown truth from triple CA of ERA5 
and SM2RAIN–ASCAT are shown in Figure 4. All SPEs demonstrated best performance 
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Figure 3. Comparison of (a) the mean MBE, (b) mean Pearson (R) Correlation, and (c) mean RMSE for each sub-region for
the four SPEs.

Comparisons of the mean CC and RMSE using triple CA for each SPE are shown in
Figure 5a,b, respectively. GSMaP outperformed other SPEs over PNG and the Solomon
Islands, while CHIRPS outperformed over Timor. CHIRPS had greater or equal correlations
and lower RMSE than IMERG and CMORPH. IMERG did not perform as well as other SPEs
over PNG, Timor, the Solomon Islands, and Fiji, whereas its performance was comparable
over New Caledonia and Vanuatu.

A comparison of the SPEs with the highest correlation at each pixel for each sub-region
is provided in Figure 6; the second highest correlation is also presented.

GSMaP performs best over mountainous areas of PNG, Timor, and the Solomon
Islands, while CHIRPS shows consistent performance across the study region, except for
poor performance over PNG. Performance of CHIRPS appears best around some coastlines
and lower-lying areas of Timor and New Caledonia. CMORPH performs well over Fiji,
and IMERG is comparable with CHIRPS over New Caledonia.
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4. Discussion

Evidence that SPEs over PNG are the least accurate of the six regions reinforces the
known difficulties of estimating rainfall from satellites over areas with complex topography,
dense tropical rainforest, and low rain-gauge coverage [28]. Studies on evaluating SPEs in
Pacific Island Countries are very limited, with the only previous study over PNG performed
by Chua et al. (2020) [28] comparing CMORPH, GSMaP, and ERA5 with rain gauge data.
The results obtained in this study showed similar but consistently higher correlations and
smaller errors than those presented in Chua et al. [28], likely due to the use of anomaly
values rather than raw rainfall totals.

As expected, CHIRPS’s weaker quantile performance was due to the blending tech-
nique from multiple nearby gauges rather than the nearest neighbour [5].

Including rain gauge data within the comparison of MSWEP and ERA5 would be
a useful future study to benefit users in the Pacific Islands and for the wider field of
collocation analysis.

Using triple CA, stronger CCs in less mountainous areas were found, supporting
earlier studies that SPEs are more accurate at low elevations [40,41].
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CMORPH performed best over Fiji, likely due to a higher density of contributing rain
gauges [16]. This supports previous findings that the CMORPH-BLD is dependent on the
availability of CPC rain gauge data [27,28]. It appears that IMERG’s strong performance
over New Caledonia is also due to the presence of a dense GPCC rain gauge network, the
difference from the Fiji result being due to fewer contributing rain gauges in the GPCC
dataset than the CPC [42,43]. As this difference in the rain gauge data is most pronounced in
the case of Fiji, we can assume that IMERG would have higher correlations than CMORPH
over Fiji if the same rain gauge dataset was used for calibration.

Although GSMaP has been shown to have a significant positive bias, particularly over
PNG [44], it still demonstrates the strongest CCs. While the SPEs have similar correlations
over Vanuatu, Fiji, and New Caledonia, CHIRPS is shown to perform most similarly to
ERA and SM2RAIN–ASCAT by having the smallest errors.

The main limitations of using SM2RAIN–ASCAT are that it (i) underestimates peak
rainfall events due to soils becoming saturated and incurring surface runoff, (ii) incorrectly
records spurious low-intensity rainfall events due to high-frequency soil moisture fluctua-
tions associated with random measurement error, and (iii) is limited to only liquid-phase
precipitation over land [21]. The accuracy of SM2RAIN–ASCAT is being improved through
the use of constellations of longer-wave MW sensors [45,46] incorporating newer technolo-
gies from Sentinel-1 [46] and the Cyclone Global Navigation Satellite System (CYGNSS)
constellation [47].

The CC values from triple CA are considered a more important metric for determining
accuracy than RMSE [18,36], and the errors are used here to contextualise the results.

It was found that CHIRPS has relatively high CCs compared to the other SPEs for
all sub-regions. In sub-regions with low rain gauge density, GSMaP is recommended
for use due to its high correlations and low latency. GSMaP performs better over PNG,
and CHIRPS over Timor. For Vanuatu, the Solomon Islands, and Bougainville, CHIRPS
has slightly better quantile performance and lower errors, while GSMaP has stronger
correlations and smaller biases.

As GSMaP uses a similar satellite constellation to IMERG, it is expected that it will
be able to provide a more accurate spatiotemporal distribution of tropical cyclone rainfall
than CHIRPS [48]. Given the latency for GSMaP is shorter than for CHIRPS (3 days versus
1 month), it is preferred for rapid tropical cyclone impact assessment.

Over New Caledonia, it is recommended to use IMERG due to its dense GPCC gauge
network and quantile analysis performance. CHIRPS proves to be a close second, however
IMERG is recommended due to its more homogenous distribution of bias and stronger CC
from triple CA.

Similarly within Fiji, it can be confidently recommended that CMORPH be used for
applications due to its strong CCs. The negative bias around coasts could lead to greater
rates of false alarms for drought, so it is advised that if CMORPH historical datasets are
used for statistical precipitation forecasting, the inclusion of in situ verification of drought
conditions is recommended. In the case of probabilistic drought forecasting, these biases
will not impact the seasonal forecasts themselves, but we caution the coupling of CMORPH
and forecasts for drought monitoring to similarly include in situ measurements where
possible. If other countries had similar amounts of rain gauge data in the CPC dataset as
Fiji, then CMORPH could also become the recommended SPE. If similar gauge data was
included in the GPCC dataset, then IMERG could become the recommended dataset for
use over Fiji due to its strong performance over New Caledonia.

Analysis indicates that SPE accuracy varies over a range of variables and geographic
features. Careful consideration of strengths and limitations of SPEs is required before
implementing them in operational services. It is recommended that Pacific Island Country
National Meteorological Services seeking to operationalise a certain SPE dataset perform
correlation analyses on the SPE datasets available to them.



Remote Sens. 2021, 13, 3929 12 of 16

5. Conclusions

This research found that a key factor for SPE accuracy in the study region was topog-
raphy, with more mountainous sub-regions (PNG, Timor, the Solomon Islands) consistently
having weaker correlations than those characterised by less mountainous terrain (Fiji,
Vanuatu, and New Caledonia).

A comparison to MSWEP was performed and results were in line with those obtained
in a previous analysis by Chua et al. (2020) [28], which showed GSMaP to be more accurate
than CMORPH over PNG. The triple CA found that GSMaP performed best in particularly
mountainous areas and CHIRPS had the most consistent performance across all six sub-
regions in the study region.

These different levels of analysis demonstrated that the choice of dataset can reveal
quite different accuracy results. The blended datasets of IMERG and CMORPH performed
well for the Fiji and New Caledonia sub-regions where high density rain gauge observations
were representative of the small domains. GSMaP appears to perform best in sub-regions
of low rain gauge density.

Recommendations for SPE for use during tropical cyclone seasons and drought periods
were inferred, however, there remains a variety of other avenues of research that could
provide more specific insights for applying SPEs to natural hazard risk reduction. CHIRPS
was recommended for drought applications due to its consideration of historical climate
data, whereas GSMaP was favoured for tropical cyclone seasons with strong performance
over regions with low density or no rain gauges, and lower latency.

Case studies using daily raw data in a multiplicative error model could provide
more relevant performance of tropical cyclone rainfall accuracy, and new techniques of
soil moisture measurement and SPE merging can provide improved ability for SPEs to
contribute to disaster risk reduction efforts.

This research reaffirms the importance of rain gauges for increasing SPE accuracy,
and strongly recommends maintaining, and even expanding where possible, a network of
surface-based meteorological observation stations. The methodology established in this
study for the South West Pacific Region can be replicated for other precipitation data sparse
regions, and would be a crucial step in the process of operationalising SPE applications.
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Appendix A Tabulated Results of Metrics

Table A1. Results of SPE comparison to MSWEP. Red indicates highest value, blue indicated lowest.

Timor PNG Fiji Vanuatu Solomon
Islands

New
Caledonia Average

MBE

Mean

CMORPH −0.363 −1.704 −0.245 −1.392 −3.052 −0.709 −1.244

GSMaP −0.552 −1.151 −1.166 −1.417 −0.271 −0.487 −0.841

CHIRPS 0.097 −0.974 −1.019 −1.748 −1.962 −0.590 −1.033

SM2RAIN-ASCAT 0.516 1.052 −1.027 −0.879 0.502 −0.207 −0.007

IMERG 0.089 −0.374 −0.220 −1.864 −0.500 0.257 −0.435

Median

CMORPH −0.421 −1.675 −0.338 −1.365 −2.685 −0.905 −1.232

GSMaP −0.638 −1.094 −1.029 −1.244 −0.414 −0.425 −0.807

CHIRPS 0.050 −0.911 −1.391 −2.318 −1.275 −0.616 −1.077

SM2RAIN-ASCAT 0.675 0.620 −0.965 −0.663 0.353 −0.354 −0.056

IMERG 0.126 −0.468 −0.159 −1.670 −0.523 0.336 −0.393

Quint

Lower

CMORPH 93.881 87.028 93.954 94.369 94.909 93.984 93.021

GSMaP 95.788 87.772 90.060 94.070 95.356 90.241 92.215

CHIRPS 91.176 85.556 90.904 93.064 94.164 90.525 90.898

SM2RAIN-ASCAT 91.607 81.947 88.453 89.651 92.786 90.157 89.100

IMERG 93.773 88.136 92.484 94.369 95.588 92.948 92.883

Upper

CMORPH 91.672 84.389 93.301 92.246 95.542 93.265 91.736

GSMaP 93.191 86.024 90.877 92.277 95.658 91.293 91.554

CHIRPS 90.616 82.262 90.822 91.114 94.767 92.497 90.346

SM2RAIN-ASCAT 90.842 81.377 88.371 89.210 92.998 90.725 88.921

IMERG 91.715 86.160 91.068 93.237 95.969 93.934 92.014

MAE

Mean

CMORPH 1.067 1.928 1.363 1.651 1.640 1.141 1.465

GSMaP 0.989 1.822 1.780 1.892 2.185 1.392 1.677

CHIRPS 1.048 1.871 1.592 1.826 1.773 1.168 1.547

SM2RAIN-ASCAT 0.949 2.194 2.125 2.378 2.379 1.439 1.911

IMERG 0.860 1.611 1.547 1.574 1.531 1.106 1.372

Median

CMORPH 1.028 1.828 1.277 1.605 1.618 1.144 1.416

GSMaP 0.969 1.795 1.812 1.842 2.173 1.433 1.671

CHIRPS 0.983 1.790 1.554 1.825 1.752 1.175 1.513

SM2RAIN-ASCAT 0.920 2.120 2.084 2.361 2.346 1.491 1.887

IMERG 0.807 1.508 1.511 1.598 1.531 1.079 1.339

Pearson

Mean

CMORPH 0.735 0.703 0.886 0.791 0.750 0.859 0.787

GSMaP 0.802 0.740 0.851 0.774 0.767 0.821 0.792

CHIRPS 0.732 0.607 0.841 0.740 0.691 0.852 0.744

SM2RAIN-ASCAT 0.723 0.509 0.668 0.531 0.427 0.732 0.598

IMERG 0.788 0.720 0.865 0.787 0.788 0.865 0.802

Median

CMORPH 0.737 0.709 0.894 0.787 0.754 0.858 0.790

GSMaP 0.803 0.745 0.850 0.780 0.772 0.815 0.794

CHIRPS 0.742 0.611 0.831 0.740 0.705 0.849 0.747

SM2RAIN-ASCAT 0.738 0.510 0.671 0.534 0.427 0.773 0.609

IMERG 0.799 0.721 0.871 0.773 0.810 0.880 0.809
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Table A1. Cont.

Timor PNG Fiji Vanuatu Solomon
Islands

New
Caledonia Average

RMSE

Mean

CMORPH 1.658 2.589 2.032 2.482 2.198 1.642 2.100

GSMaP 1.525 2.434 2.475 2.856 2.876 1.892 2.343

CHIRPS 1.569 2.511 2.332 2.726 2.376 1.632 2.191

SM2RAIN-ASCAT 1.371 2.866 3.136 3.367 3.033 1.991 2.627

IMERG 1.294 2.134 2.148 2.494 2.034 1.564 1.945

Median

CMORPH 1.600 2.452 1.903 2.509 2.150 1.660 2.046

GSMaP 1.502 2.411 2.503 2.756 2.847 1.951 2.328

CHIRPS 1.491 2.443 2.311 2.658 2.356 1.689 2.158

SM2RAIN-ASCAT 1.318 2.692 3.102 3.326 2.983 2.107 2.588

IMERG 1.225 2.006 2.133 2.533 2.057 1.547 1.917
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