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Abstract: In the context of climate change and rapid urbanization, flood disaster loss caused by
extreme rainstorm events is becoming more and more serious. An accurate assessment of flood
disaster loss has become a key issue. In this study, extreme rainstorm scenarios with 50- and 100-year
return periods based on the Chicago rain pattern were designed. The dynamic change process of
flood disaster loss was obtained by using a 1D–2D coupled model, Hazard Rating (HR) method,
machine learning, and ArcPy script. The results show that under extreme rainstorm events, the direct
economic loss and affected population account for about 3% of the total GDP and 16% of the total
population, respectively, and built-up land is the main disaster area. In addition, the initial time and
the peak time of flood disaster loss increases with an increasing flood hazard degree and decreases
with the increase in the return period. The total loss increases with the increase in the return period,
and the unit loss decreases with the increase in the return period. Compared with a static assessment,
a dynamic assessment can better reveal the development law of flood disaster loss, which has great
significance for flood risk management and the mitigation of flood disaster loss.

Keywords: extreme rainstorm; flood disaster loss; dynamic assessment; POIs; machine learning

1. Introduction

Urban flood disasters, a product of extreme rainfall and the vulnerability and resiliency
of the affected area, threaten the security of society and normal development of the economy
in cities [1–4]. According to the statistics about flood disaster loss, China has become one
of the most affected countries in the world [5]. In particular, the extreme rainstorm event
on July 20 in Zhengzhou, Henan province, caused serious flood disaster loss, which
also made the urban flood problem a wide concern to the whole society. Therefore, in
order to better deal with urban flooding, several critical questions need to be answered:
(1) Under the existing drainage capacity, socio-economic level and underlying surface
conditions, how will an extreme rainstorm affect the urban system? (2) What are the
distribution characteristics of flood hazard under extreme rainstorm scenarios? (3) What is
the development law of flood disasters under different flood hazard degrees? (4) Which
measures can we take to reduce the loss as much as possible?

Economic loss and the affected population are the two most important indicators to
evaluate the impact of flood disasters on an urban system. Many countries have established
their own flood loss estimation models, such as the Hazard United States Multi-Hazards
(HAZUS-MH) model developed by FEMA in the United States [6,7], the Flood Loss Estima-
tion Model (FLEMO) [8] and FloodCalc Urban model [9] in Germany, the CLIMADA model
in Switzerland [10], Stage–Disaster Curve (SDC) in Italy [11], etc. The assessment methods
of the affected population mainly include field research [12] or the disaster footprint, a
population database and GIS collaborative technology [13]. The extraction of a disaster
footprint includes remote sensing image extraction [14], numerical model simulation [15],
and machine learning simulation [16]. A population database includes a demographic
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database, and a mobile location service provides a dynamic location database [17,18]. Com-
pared to the wealth of methods and available information on flood disaster simulation,
fine-resolution data on the spatial distribution of economic and population components are
difficult to obtain. This lack of information frequently leads to great uncertainty of flood
disaster assessment models in time, space, and across disaster processes [19]. However, the
development of big data technology provides the possibility to solve these problems.

In order to obtain fine-resolution economic and population data, some studies have
attempted to use Points of Interest (POIs) data to achieve this goal. POIs are open data that
are widely used in digital maps such as Google Maps, Baidu Maps, and Amap (Gaode) (the
latter two are available only in China) [20]. They generally refer to all geographic objects
that can be abstracted as points, especially geographic entities that are closely related to
people’s lives, with four aspects of information: name, category, longitude, and latitude.
Some studies showed that the degree of POIs agglomeration is related to human production
activities, can reflect the current level of population and economic development, and use
POIs as an influencing factor to achieve gross domestic product (GDP) and population
spatialization [21–23]. The fine-resolution spatial information contained in the density
layers provided by POIs compensate for the insufficient resolution of existing sources of
GDP and population data. Further, the spatialization data of fine-resolution GDP and
population data based on POIs can provide supporting data for a flood loss assessment and
reduce the uncertainty caused by the coarse resolution of the disaster-bearing body data.

A flood hazard is used to identify the spatial location and intensity of flooding, in-
cluding the inundation range, inundation depth, flow velocity, and inundation duration,
etc. [24,25], and it is also very important for a flood disaster assessment. Hazard calculation
methods include the historical disaster method and model simulation method. The model
simulation method is the mainstream method for obtaining flood hazard information.
Common urban rainstorm models include SWMM, MIKE Urban, InfoWorks ICM, and
TEMEMAC-2D, etc. [26–29]. In this study, the TELEMAC–SWMM coupled model was
selected to simulate urban flooding under the following considerations: (1) After decades
of development and research, the EXTRAN module and the TELEMAC-2D module have
shown strong performance in the fields of one- and two-dimensional hydrodynamics. Their
applicability and simulation accuracy in many fields have been extensively verified and rec-
ognized [30–32]. (2) TELEMAC-2D offers the user a set of FORTRAN subroutines that can
be modified to meet the specific requirements of each model, including initial conditions or
complex boundary conditions, link-ups with other modeling systems, and the introduction
of new functions. (3) The coupled model has a clear physical mechanism, taking into
account the hydrological mechanism of surface runoff generation and the hydrodynamic
mechanism of pipe network confluence and surface inundation. (4) TELEMAC can output
the calculation results of each step, which is helpful for the dynamic assessment of flood
disaster loss.

Flood disaster loss assessment methods can be classified into two categories: static
methods and dynamic methods [33]. The static methods assess physical damage based
on the most severe disaster scenario (e.g., maximum inundation depth) that occurs in an
urban system and are mostly used to assess economic loss. The common method is the
flood damage curve, which is widely used to assess the impact of flood on buildings and
different industries [34,35]. A dynamic assessment emphasizes the impact of flood disaster
processes on urban systems. At present, most researches focus on the impact of flood
disasters on the population [36], transportation systems [37], and the research methods
are mainly based on multi-agent modeling. However, the static assessment of economic
loss cannot reflect the dynamic impact of a flood disaster on the economic system, and the
multi-agent modeling method is too generalized for the disaster-bearing body and cannot
reflect the actual number for the affected population. In particular, the current dynamic
assessment method of flood disaster loss lacks a method applicable to both population
and economy, and the simulation of flood disaster is mainly based on two-dimensional
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models, with less consideration for the drainage network, which affects the accuracy of the
assessment and leads to an excessive assessment value.

The purpose of this paper is to propose a dynamic assessment method, based on
the 1D–2D coupled model, to simulate the development process of flood disasters more
realistically, and to evaluate the dynamic impact of flood disaster on the economy and
population under extreme rainstorm events. Furthermore, based on big data and machine
learning technology, this study solves the problem of poor accuracy in a flood loss assess-
ment caused by the difficulty in obtaining fine-resolution GDP and population data. This
study promotes the application of new technologies in the field of urban hydrology and
improves the level of the urban natural disaster loss assessment.

2. Materials and Methods
2.1. Study Area

Guangdong Province is the province with the largest permanent population and the
most developed economy in China. The Qianshan River Basin is located in the crossover
area of Zhongshan city and Zhuhai city in Guangdong Province with an urbanization rate
of over 85%, which is an area with dense urban construction. The total catchment area of
the basin is approximately 328 km2. In 2020, the permanent population of the basin was
1.0861 million people and the GDP was 16.28 billion USD.

Located in the water-rich region of South China, the basin exists in the subtropical
maritime monsoon climate, with abundant rainfall, concentrated rainfall in the flood
season, and, mostly, heavy rain of strong intensity and short duration. From 2000 to 2019,
the average annual precipitation in the basin was approximately 2216.61 mm (Figure 1b).
The rainfall season has a duration of approximately 103 days. The special geographical
location and topographical conditions subject the basin to frequent flood disasters caused
by typhoon surges, and outer river and local rainfall flooding. In recent years, with the
acceleration of urbanization, the surface impervious area has increased, and the loss caused
by flood disasters has also increased. According to statistics, in 2018, the direct economic
loss caused by flood disasters in Zhongshan City and Zhuhai City was 255.13 million USD
and 89.59 million USD, respectively, which were the cities with relatively large economic
loss in Guangdong Province. Therefore, it was of certain practical significance to choose
the Qianshan river basin as the study area.

Figure 1. Location of the study area and related display. (a) Location of Guangdong Province; (b) location of the study area
and average annual precipitation from 2000 to 2019.
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2.2. Data Sources

When constructing the urban flood model, five datasets, including pipe network,
land use, digital elevation model (DEM), hydrological soil groups, and rainfall, were
collected in this study. The pipeline network data were provided by Zhuhai Institute
of Urban Planning and Design (Figure 2a). The land use data were obtained though
remote sensing interpretation (Figure 2b) and derived from the Gaofen-1 satellite remote
sensing image of China Resources Satellite Application Center (http://www.cresda.com/,
accessed on 26 September 2021), with a spatial resolution of 16 m. The DEM data were
derived from the ASTER GDEM digital elevation data product of the geospatial data
cloud (http://slt.gd.gov.cn/, accessed on 26 September 2021), with a spatial resolution of
30 m (Figure 2c). The hydrological soil groups in the study area were divided into four
categories: A, B, C, and D. The hydrological soil groups’ data were derived from National
Cryosphere Desert Data Center (http://www.ncdc.ac.cn/, accessed on 26 September 2021),
with a spatial resolution of 1 km. The design rainstorms were calculated by using the
rainstorm intensity equation in Zhuhai issued by the Zhuhai Meteorological Bureau (http:
//weather.zhuhai.gov.cn/, accessed on 26 September 2021), in which the peak coefficient
was 0.4, and the rainfall duration was 120 min:

q =
822.407(1 + 0.776LnP)

(t + 5.000)0.390 (1)

where q is design rainstorm intensity, mm/min, P is return period, t is rainfall duration,
minute. In this study, extreme rainstorm scenarios were set to 50- and 100-year return
periods, and the corresponding rainfall was 209.83 mm and 230.97 mm, respectively.

Figure 2. Relevant data in this study, where (a) is the pipe network, (b) is the land use, (c) is the DEM, (d) is the slope map,
with a spatial resolution of 30 m. Pipe1 and Pipe2 in Figure (a) are, respectively, the selected pipes for model verification,
while Outlet1 and Outlet2 in Figure (b) are, respectively, the selected river channel outlet for model verification.

The curve numbers (CN) and manning coefficients were also key parameters for the
urban flood model construction. CN values were determined by the TR55 manual provided
by the Natural Resources Conservation Service of the USDA (https://www.nrcs.usda.gov/,
accessed on 26 September 2021) as shown in Table 1. The manning coefficients were
determined based on the land use types and relevant studies [38] as shown in Table 2.

Table 1. Curve numbers for different hydrologic soil groups.

CN Value Class A Soil Class B Soil Class C Soil Class D Soil

Waters 98 98 98 98
Woodland 30 55 70 77
Farmland 49 69 79 84

Built-up land 89 92 94 95
Unused land 81 88 91 93

http://www.cresda.com/
http://slt.gd.gov.cn/
http://www.ncdc.ac.cn/
http://weather.zhuhai.gov.cn/
http://weather.zhuhai.gov.cn/
https://www.nrcs.usda.gov/
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Table 2. Manning coefficients for different land use types.

Type of
Land Use Waters Woodland Farmland Built-Up

Land
Unused

Land

Manning
coefficient 0.027 0.15 0.035 0.016 0.025

The POIs data were derived from the Amap Open Platform (https://lbs.amap.com/,
accessed on 26 September 2021). There are 20 major categories of POIs on Amap (https://
lbs.amap.com/api/webservice/download/, accessed on 26 September 2021). The platform
provides an HTTP interface for the search service API and provides a variety of POIs
information query capabilities, including keyword, peripheral, polygon searches, and
ID query of screening mechanisms. Because the platform has a limit on the number of
acquisitions each time (<1000), to prevent missing data in the process of crawling, this
study adopted a recursive operation to systematically divide the project area until the
number of POIs of each sub-area was less than 1000. Then, the sub-areas were combined to
obtain POIs data for the entire project area. In this study, POIs data from 2015 and 2020
were used.

Obtaining fine-resolution GDP and population data required providing training
samples for the random forest model. In this study, population data for 2020 were
derived from the global high-resolution population denominators project of WorldPop
(www.worldpop.org/, accessed on 26 September 2021), with a spatial resolution of 100 m,
which has been proven to have very good accuracy [39]. GDP data for 2015 were derived
from Resource and Environment Science and Data Center, Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of Sciences (http://www.resdc.cn/,
accessed on 26 September 2021), with a spatial resolution of 1 km.

2.3. Methods

The overall framework of the study is shown in Figure 3, which was divided into five
steps: data preparation, flood simulation, flood hazard classification, socio-economic data
prediction, and dynamic assessment. In the first step, the design rainstorm, pipe network,
land use, CN value, Manning coefficient, and DEM data were collected to provide driving
data for the urban flood simulation. The POIs data were used to obtain fine-resolution
GDP and population data. The second step was to build a 1D–2D coupled hydrodynamic
model to simulate the spatial distribution of the inundation area, inundation depth, and
flow velocity. The third step was to use the HR method to obtain the spatial distribution of
flood hazard degree. The fourth step was to obtain fine-resolution spatialized data of GDP
and population based on the Random Forest (RF) and POIs kernel density data. The fifth
step was to realize the dynamic assessment of flood disaster loss based on the ArcPy batch
processing script (the tools that needed to be used were Python and ArcGIS).

Figure 3. Overall research framework.

https://lbs.amap.com/
https://lbs.amap.com/api/webservice/download/
https://lbs.amap.com/api/webservice/download/
www.worldpop.org/
http://www.resdc.cn/
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2.3.1. Principle and Method of Urban Flood Hydrodynamic Model

In this study, a 1D–2D coupled hydrodynamic model was used for urban flood
simulation [40]. The coupled mode of this model was loosely coupled. The state variable
was used to control the data running order of the EXTRAN and TELEMAC-2D modules.
The EXTRAN module is a calculation module developed by the SWMM model for constant
flow and unsteady flow, and TELEMAC-2D is a two-dimensional hydrodynamic calculation
module. The rainfall runoff calculation adopted the SCS-CN method and was also realized
by the TELEMAC module. With water exchange as the link, the water exchange between
the one-dimensional pipeline and the two-dimensional surface was realized through the
rain grating. The water exchange included the following four situations (Figure 4):

• h2D < h1D, the node water level was higher than the surface water level, the water
flowed from the drainage network to the surface;

• h1D < Z2D < h2D, the node water level was lower than the surface elevation, the water
flowed from the surface to the drainage network;

• Z2D < h1D < h2D, the node water level was higher than the surface elevation and
lower than the surface water level, the water flowed from the surface to the drainage
network;

• Z2D = h1D = h2D, the node water level, surface elevation, and surface water level were
all equal, and were in a critical state of water exchange. In this case, it was assumed
that no water exchange occurred.

Figure 4. Schematic diagram of water exchange between one-dimensional pipeline and two-dimensional surface.
(a) h2D < h1D; (b) h1D < Z2D < h2D; (c) Z2D < h1D < h2D; (d) Z2D = h1D = h2D.

Because, presently, there was no unified calculation method, the usual treatment
method of the weir and orifice flow equations was used to calculate the vertical water
exchange [40,41]:

The node overflow equation is:

Qn = c0 Amh

√
2g(h1D − h2D), h2D < h1D (2)

The node reflux equation is:

Qn =

{
cwh2D

√
2gh2D

c0 Amh
√

2g(h2D − h1D)
,

h2D ≤ Z2D < h2D
Z2D ≤ h1D < h2D

(3)

where Qn is exchange flow between one-dimensional drainage pipe network and two-
dimensional surface, c0 is orifice outflow coefficient, cw is weir flow coefficient, Amh is the
area of the exchange node between the two-dimensional surface and the one-dimensional
drainage network, which is the area of the rain grate, w is the width of the top of the weir,
that is, the perimeter of the rain grate, g is gravitational constant, h1D is the one-dimensional
pipe network node water level, h2D is the two-dimensional surface water level, Z2D is the
surface elevation.

The calculation time step size of the coupled model was 1 s, that of the TELEMAC
model output was 3 min, and that of the SWMM model output was 15 min.

2.3.2. Flood Hazard Classification Method

A mathematical expression using a method based on empirical data has been widely
used to determine flood hazard ratings by the Department for the Environment, Food and



Remote Sens. 2021, 13, 3924 7 of 21

Rural Affairs (DEFRA) and the Environment Agency (EA) [42]. This method defines flood
hazard rating as a function of flow velocity and water depth. The empirical equation is:

HR = d(v + 0.5) + DF (4)

where HR is the flood hazard rating (m2/s), d is the water depth (m), v is the flow velocity
(m/s), and DF is the debris factor (m2/s), which can have a value of 0, 0.5, or 1 [43].

Based on the flood hazard rating classification threshold [44], the flood hazard could
be divided into four degrees: low, moderate, significant, and extreme.

2.3.3. Spatialization Method of Fine-Resolution GDP and Population

Agriculture, forestry, animal husbandry, and fishery in the primary industry are closely
related to farmland, woodland, woodland, and waters in the natural land, respectively.
Therefore, in this study, the GDP of the primary industry (GDP1) was spatialized based on
different land use types. The calculation equation is as follows:

GDP1i = GDP1i,j/A1j (5)

where GDP1i is the GDP of the primary industry in the ith grid (CNY), GDP1i, j is the total
GDP of the jth industry of the primary industry in the ith grid (CNY), A1j is the total area
of land use type corresponding to jth industry in the primary industry (km2).

The random forest regression model and POIs data were used to predict GDP of
the secondary and tertiary industries (GDP23) in 2020. The GDP23 spatial distribution in
2015 was used to train the random forest regression model, in which the GDP23 spatial
distribution was obtained by subtracting the GDP1 from the total GDP in 2015. Seventy
percent of the sample data was taken as training sets and the remaining 30% as the test
sets. The calculation equations of fine-resolution GDP23 spatial distribution data in 2020
are as follows:

Best_param = GridSearchCV(RFR, param) (6)

Gridi_30 = RFR_Best_param(POI_densityi_30) (7)

Wi =
Gridi_30

n
∑

i=1
Gridi_30

(8)

Gridi_actual = Wi × Total_actual (9)

where RFR is Random Forest Regression model, param is the model parameters to be
optimized, GridSearchCV is the grid search algorithm, Best_param is the optimal model
parameters, POI_density_30 is the POIs kernel density with a resolution of 30 m in 2020,
RFR_ Best_param is the trained random forest regression model, Gridi_30 is the predicted
value of the ith grid data, n is the total number of grids in the study area, Total_actual is the
actual GDP23 in the study area, Gridi_actual is the actual value of the ith grid.

The calculation method of fine-resolution population data was consistent with that
of GDP23. It should be noted that because the population data with a resolution of 100 m
could be collected in 2020, the dataset was used to train the random forest model.

2.3.4. Dynamic Assessment Method

The dynamic assessment was realized by the Python program calling the ArcPy batch
processing script. The required data included inundation depth, flow velocity, land use,
depth–damage curve, and spatial distribution of the disaster-bearing body. A 3-min output
time step was set for the inundation depth and flow velocity data. The dynamic assessment
process was as follows: based on the inundation depth, flow velocity and land use, the flood
hazard rating spatial distribution at each time step was obtained according to Equation (4).
Then, the disaster situation of the disaster-bearing body under different flood hazard
degrees within each time step was counted. The statistical standard of population was
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the number, and the statistical standard of GDP was the direct economic loss. The direct
economic loss was obtained by multiplying the spatial distribution map of the loss rate
with the GDP spatial distribution data. The calculation equation is as follows:

W = ∑
i

∑
j

∑
k

Aijηjk (10)

where W is the direct economic loss; i, j, and k are no. of the flood unit, the land use types
and inundation depth, respectively; Aij is the GDP of the ith flood unit and jth land use
types; ηjk is the loss rate of the kth inundation depth and jth land use types. In this study,
the direct economic loss rate was the ratio of direct economic loss to GDP.

3. Results
3.1. Urban Flood Simulation Results
3.1.1. Model Rationality Verification

This study tested the simulation accuracy using the four aspects of waterlogging points
(WPs), flood-prone area, runoff coefficient, and flow process to validate the rationality of
simulation results to the greatest extent.

The Code for Design of Outdoor Wastewater Engineering (GB50014-2006) (2014 edition)
sets the criteria for WPs, namely, the water depth exceeding 0.15 m, the duration exceeding
1 h, and the range exceeding 50 m2. The WPs, a total of 81, were obtained from the
Guangdong Research Institute of Water Resources and Hydropower. The datasets are not
public; thus, no download link is available. Based on the collected data, 30 m buffer zones
were established around the WPs. Through the analysis of the inundation depth in the
buffer zones, the number of WPs in different inundation depth ranges was counted to
verify the accuracy of the simulation results (Table 3). The results showed that 59 WPs with
an accuracy of 72.80% and 61 WPs with an accuracy of 75.31% could be simulated under
the 50-year and 100-year return periods, respectively.

Table 3. Simulation results of waterlogging points for different depths.

Depth (cm) Number of WPs The Average Inundation Depth (cm)

50-Year 100-Year 50-Year 100-Year

<15 22 20 4 3
15–30 25 24 22 23
>30 34 37 67 70

The location of flood-prone areas was also obtained from the Guangdong Research
Institute of Water Resources and Hydropower. The inundation maps were plotted for two
return periods based on the simulation results of the 1D–2D coupled model, as shown in
Figure 5a,b. The results showed that the simulated inundation maps could reproduce the
flood-prone areas very well.

The runoff coefficients under different return periods were calculated to be 0.66
(50-year) and 0.68 (100-year). According to the Code for Design of Outdoor Wastewater
Engineering (GB50014-2006) (2014 edition), the reference value of the runoff coefficient in
concentrated urban construction areas should be 0.60~0.70. Therefore, the runoff coefficient
was reasonable.

The two river outlets (Figure 2b) located at the Hongwanchong and Qianshan River
and two typical pipes (Figure 2a) in the study area were selected. The simulation results of
the scalar flowrate time series (Figure 6) at the two basin outlets showed that the model
had a high stability, and the flow processes of the two outlets were consistent with other
similar studies [45,46]. The typical pipe discharge was also evaluated (Figure 7). The results
showed that the pipeline flow process and the rainfall process maintained a high degree
of consistency. The maximum pipeline flow coincided with the peak of rainfall. After the
rainfall ended, the flow rate decayed very quickly. These results were also consistent with
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the results of other studies [27,47]. Thus, the simulation results of this model conformed to
the basic principles of urban flooding and had a good stability and reliability.

Figure 5. Spatial distribution of inundation depth and velocity. (a,c) represent inundation depth and flow velocity for
50-year return period; (b,d) represent inundation depth and flow velocity for 100-year return period.

Figure 6. The river discharge process of basin outlet under different return periods. (a) 50-year return period; (b) 100-year
return period.

Figure 7. The typical pipe inflow process under different return periods. (a) 50-year return period; (b) 100-year return period.

3.1.2. Flood Simulation Results

Figure 8 shows the variation of the flood volume and inundation area over time for
different return periods. In this study, the statistical standard of inundation area was
the area with inundation depth greater than 0.1 m. The maximum flood volumes were
51,534,080 and 60,597,020 m3 and the maximum inundation areas were 50.95 and 56.87 km2

for the 50- and 100-year return periods, respectively. The change of the flood volume and
inundation area showed that, before the rain stopped, the rate of increase was fast to slow;
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after the rain stopped, the overall trend began to slowly decrease. This change process was
consistent with the design rainstorm intensity change process.

Figure 8. The statistical results over time for different return periods. (a) Amount of the total flood volume;
(b) inundation area.

The spatial distribution of the inundation depth and flow velocity at the time when
the flood volume and inundation area was maximum were plotted based on the simulation
results of the urban flood model for two return periods, as shown in Figure 5. The flood-
prone areas were mainly urban lands and farmlands. Meanwhile, in the northern part of
the basin, the inundation depth and flow velocity were higher, attributed to the topography
and the land use type. The surrounding topography not only resulted in a higher flow
velocity, but also caused the water to gather, and the lack of an effective drainage channel
resulted in more serious waterlogging. The inundation depth and flow velocity were also
higher in the river, which reflected that the river channel had a good regulating effect
during flood disasters and could effectively discharge flood volume.

3.2. Flood Hazard Classification Results

The spatial distribution of flood hazard degrees at the time when the flood volume and
inundation area were maximum was plotted, as shown in Figure 9. The results showed that
the flood hazard degree in most of the study region was low-degree. The moderate-degree
flood hazard was mainly distributed in built-up land, the significant-degree flood hazard
was mainly observed in the northwest of the basin, and the extreme-degree flood hazard
was mainly observed along the northern and eastern river channels of the basin.

Figure 9. Spatial distribution of flood hazard zonation based on HR values. (a) 50-year return period;
(b) 100-year return period.



Remote Sens. 2021, 13, 3924 11 of 21

The area of different flood hazard degrees in different land use types for 50- and
100-year return periods was counted (Table 4). The results showed that the area of flood
hazard was the largest in built-up land. With the increase in the return period, the area
of the low-degree flood hazard area decreased, while the area of the high-degree flood
hazard area increased. For the same return period, the area of the extreme-degree flood
hazard area increased by the largest proportion. With the return period increased, for the
moderate- and significant-degree hazard, the proportion of increased area in farmland was
the largest. For the extreme-degree hazard, the proportion of increased area in woodland
was the largest. The proportion of increase in the area of significant- and extreme-degree
hazard areas was greater than the proportion of increase in moderate-degree areas.

Table 4. Area statistics of different flood hazard areas in different land use types for 50- and 100-year
return period unit: km2.

Land Use Types Return Period
Flood Hazard Degrees

Low Moderate Significant Extreme

Woodland
50-year 95.39 2.50 0.50 0.02
100-year 94.04 3.45 0.86 0.06

Farmland
50-year 65.86 1.55 0.35 0.05
100-year 64.94 2.22 0.57 0.09

Built-up land 50-year 119.92 25.04 3.83 0.23
100-year 113.64 28.86 6.13 0.38

3.3. Flood Disaster Loss Dynamic Assessment
3.3.1. Spatialization of Fine-Resolution GDP and Population Data Based on POIs
Kernel Density

Fine-resolution socio-economic data are essential for a flood disaster loss assessment.
In this study, 14 categories of POIs closely related to people’s lives were selected to obtain
the characteristics of social and economic activities. The number of POIs in 2020 for
14 categories was 100,345. The correlation coefficients between POIs kernel density and
GDP and population were calculated (Figure 10a). The results showed that the average
correlation coefficients were 0.57 and 0.58, respectively, which belonged to a medium
correlation. Based on the random forest regression model, the importance factor of different
POIs kernel densities in predicting the spatial distribution of GDP and population was
calculated (Figure 10b). The results showed that companies and transportation facilities
were the most important in the prediction of the GDP and population, respectively.

Figure 10. Correlation and importance of different categories of POIs kernel densities with GDP and
population. (a) Correlation coefficient; (b) importance factor.
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In this study, the coefficient of determination (R2) was used for an accuracy evaluation.
Table 5 shows the best hyperparameters and the test accuracy of the model. The results
showed the accuracy of the training sets to be above 90%, indicating a good fit of the model.
For test sets, the accuracy of the GDP and population were 0.6549 and 0.8368, respectively,
which could meet the needs of the study.

Table 5. Hyperparameters and prediction accuracy of random forest model.

Algorithm Hyperparameters
R-Square

Hyperparameters
R-Square

GDP Population

Train Set Test Set Train Set TEST SET

Random
Forest

bootstrap: ‘True’
max_depth: 30

max_features: ‘log2′

min_samples_leaf: 1
min_samples_split: 2

n_estimators: 260

0.9244 0.6549

bootstrap: ‘True’
max_depth: 80

max_features: ‘auto’
min_samples_leaf: 1
min_samples_split: 2

n_estimators: 340

0.9742 0.8368

Based on the 14 categories of POIs kernel densities, the trained random forest regres-
sion model was applied to the prediction of 30 m fine-resolution GDP and population
spatial data from 2020 (Figure 11). The GDP was 105.09 billion CNY and the total popula-
tion was 1.09 million in 2020. The results showed that the spatial distribution of GDP and
population were similar. The southwest, central, and southeast regions of the basin were
three core regions. The spatial distribution of the population exhibited the characteristic of
a “ripple”, which was related to the independent input variable POIs kernel density.

Figure 11. Spatial distribution of GDP and population in 2020 predicted by the random forest regression model. (a) GDP;
(b) population.

3.3.2. Dynamic Assessment of the Effect of Flood Disaster on GDP

Referring to relevant literature [48,49], the direct economic loss rate of flood disaster
of the different land use types was obtained (Figure 12a). Based on the predicted GDP
spatial distribution data of 2020 with a spatial resolution of 30 m, the dynamic change
process of direct economic loss was calculated. In addition, based on the flood hazard
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classification, the direct economic loss in areas of different flood hazard degrees was
calculated (Figure 12b).

The change trend of direct economic loss showed that, before the rainfall stopped, the
change trend of direct economic loss was consistent with the change trend of the design
rainstorm intensity; that is, before the peak rainfall intensity, the increasing speed of direct
economic loss was accelerating, and after the peak rain intensity, the increasing speed of
direct economic loss was slowing down. After the rainfall stopped, the direct economic
loss immediately began to decrease, which was consistent with the changing trend of flood
volume and inundation area.

Figure 12. Flood loss ratio for different land use types and dynamic changes of direct economic loss under four flood hazard
degrees for different return periods. (a) Flood loss rate; (b) direct economic loss.

The maximum direct economic losses were 2.77 and 3.18 billion CNY for the 50-
and 100-year rainstorm return periods, respectively, with ratio increases of 14.84% of the
100-year return over the 50-year return. The direct economic loss under different hazard
degrees at the same time was also evaluated. For the 50-year return period, the direct
economic loss from the low-, moderate-, significant-, and extreme-degree hazard areas were
1.00, 1.33, 0.39, and 0.37 billion CNY, respectively. For the 100-year return period, the direct
economic loss was 0.99, 1.51, 0.60, and 0.62 billion CNY, respectively, with ratio increases
of −0.51%, 13.45%, 53.55%, and 69.37% of the 100-year return over the 50-year return.
Therefore, the direct economic loss was mainly distributed in the low- and moderate-
degree hazard areas. However, with the increase in the return period, the increase in the
direct economic loss in both the significant- and extreme-degree hazard areas was much
higher than that in the low- and moderate-degree hazard areas, and the increase in the
significant-degree hazard area was the largest.

The maximum direct economic loss under different flood hazard degrees was eval-
uated. The results showed that, for the 50-year return period, the peak loss from the
low-, moderate-, significant-, and extreme-degree hazard areas was 1.10, 1.51, 0.67, and
0.09 billion CNY, respectively, and for the 100-year return period, the peak loss was 1.07,
1.33, 0.45, and 0.07 billion CNY, respectively, with ratio increases of 3.31%, 13.41%, 47.74%,
and 23.71% of 100-year return over 50-year return data. The largest increase was also in the
significant hazard degree.

3.3.3. Dynamic Assessment of the Effect of Flood Disaster on Population

Based on the predicted population spatial distribution data for 2020 with a spatial
resolution of 30 m, the dynamic change process of the number of flood-affected popula-
tion was counted (Figure 13). In addition, based on the flood hazard classification, the
number of the flood-affected population in areas of different flood hazard degrees was
evaluated. Relevant literature [44] described the meaning of different flood hazard degrees,
in which the impact on people’s activities started from the moderate hazard degree. There-
fore, in this study, the population in the low hazard degree was defined as the potential
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flood-affected population, and the population in other hazard degrees was defined as the
flood-affected population.

The trend of the dynamic change of the potential flood-affected population varied from
“unchanged” to “decreasing rapidly” to “increasing slowly”, and that of the flood-affected
population varied from “unchanged” to “increasing rapidly” to “decreasing slowly”. The
maximum flood-affected population occurred in the 120th min, which was immediately
after the rainfall stopped. At that moment, the number of flood-affected people was 160,303
and 189,824 in the 50- and 100-year rainstorm return periods, respectively, with a rate
increase of 18.42%. The flood-affected population under different hazard degrees at that
time was evaluated. For the 50-year return period, the affected number of people from the
moderate-, significant-, and extreme-degree hazard areas were 136,231, 22,859, and 1212,
respectively. For the 100-year return period, the affected number was 152,211, 35,533, and
2080, respectively, with ratio increases of 10.50%, 35.67%, and 41.74% of the 100-year over
50-year return periods. Therefore, the flood-affected population was mainly distributed
in the moderate-degree hazard areas. However, with the increase in the return period,
the increase in the proportion of the flood-affected population in both the significant- and
extreme-degree hazard areas was higher than that in the moderate-degree hazard areas,
and the increase in the proportion of the extreme-degree hazard areas was the largest.

Figure 13. Dynamic changes of potential flood-affected population and flood-affected population. (a) potential flood-affected
population and (b) flood-affected population.

The peak flood-affected population under different flood hazard degrees was also
evaluated. The results showed that for the 50-year return period, the peak flood-affected the
population from the moderate-, significant-, and extreme-degree hazard areas was 136,231,
23,075, and 2197, respectively. For the 100-year return period, the peak flood-affected
population was 152,211, 36,242, and 2785, respectively, with ratio increases of 11.73%,
57.06%, and 26.74% of the 100-year over 50-year return periods. The largest increase was in
the significant hazard degree.

4. Discussion
4.1. The Development Rules of Flood Disaster Loss under Different Flood Hazards

The initial occurrence time of flood disaster loss for different flood hazard degree
areas was calculated (Table 6). The results showed that the initial time of flood disaster
loss increased with the increase in flood hazard degree and decreased with the increase in
flood return period. This was because the higher the flood hazard degree, the greater the
inundation depth and flow velocity, which requires a greater rainfall and rainfall intensity.
Therefore, the occurrence time for flood disaster was relatively lag. The greater the return
period, the greater the rainfall and rainfall intensity, which would also lead to the early
occurrence of a high-degree flood hazard.
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Table 6. The initial moment of flood disaster loss under different flood hazard zones.

Disaster-Bearing
Bodies

Return
Period

The Initial Time of Flood Disaster Loss (thmin)
Trend

Low Moderate Significant Extreme

GDP
50-year 3 18 30 45 ↑
100-year 3 15 24 39 ↑

Trend — ↓ ↓ ↓

Population
50-year — 18 30 45 ↑
100-year — 18 27 42 ↑

Trend — ↓ ↓ ↓
— represents no data, ↑ represents an increasing trend, ↓ represents a decreasing trend.

The statistical results of the peak occurrence time of flood disaster loss under different
flood hazard degree areas (Table 7) showed that the development law was consistent with
the initial occurrence time of flood disaster loss; that is, it increased with the increase in the
flood hazard degree and decreased with the increase in the flood return period. Meanwhile,
the maximum direct economic loss occurred, obviously, later than the maximum moment of
the affected population in the significant-degree flood hazard area. However, the maximum
direct economic loss occurred obviously earlier than the maximum moment of the affected
population in the extreme-degree flood hazard area.

Table 7. The peak occurrence time of flood disaster loss under different flood hazard degrees.

Disaster-Bearing
Bodies

Return
Period

The Peak Time of Flood Disaster Loss (thmin)
Trend

Low Moderate Significant Extreme

GDP
50-year 63 123 264 330 ↑
100-year 57 120 192 246 ↑

Trend ↓ ↓ ↓ ↓

Population
50-year — 120 129 345 ↑
100-year — 120 126 324 ↑

Trend — — ↓ ↓
— represents no data or no trend, ↑ represents an increasing trend, ↓ represents a decreasing trend.

The flood disaster loss under different flood hazard degrees at peak time was calcu-
lated, including the total loss and unit loss (Table 8). In terms of the total loss, the number
of the flood-affected population was the largest in the moderate-degree hazard areas, and
the direct economic loss was the largest in the low-degree hazard areas. This was because
the lower the flood hazard degree, the larger the area affected, and the total flood disaster
loss was larger. In terms of the loss per unit area, the maximum loss per unit area of the
GDP and population was in the extreme- and significant-degree hazard areas, respectively.
Overall, in moderate-, significant- and extreme-degree hazard areas, the total loss increased
with the increase in the return period, and the unit loss decreased with the increase in the
return period. Although the extreme-degree hazard areas would have a more serious effect
on the disaster-bearing body, the total loss was not the highest because of the small area
of the extreme-degree hazard areas. Meanwhile, limited by the spatial distribution of the
disaster-bearing body, the loss per unit area of the extreme-degree hazard areas was not
necessarily the largest. This enabled us to understand that the flood disaster loss was not
necessarily large in the region with a higher degree flood hazard, which was related to the
size of the hazard areas and the spatial distribution of the disaster-bearing body.

4.2. Suggestions on Measures to Reduce Flood Disaster Loss

In order to reduce urban flood disaster loss and maintain the urban structure and
function, these must be achieved by taking engineering and non-engineering measures to
resist, absorb, and adapt to flood risks [50].
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Table 8. The total disaster loss and disaster loss per unit area under different flood hazard degrees.

Disaster-
Bearing
Bodies

Return
Period

Statistical
Objects

Flood Loss under Different Flood Hazard Degrees

Low Moderate Significant Extreme

GDP
50-year Total 106,667.12 133,422.35 45,500.95 7301.00

Unit area 347.79 4583.16 8544.30 12,577.09

100-year Total 110,196.26 151,310.90 67,224.17 9032.20
Unit area 356.42 4382.20 7962.21 12,451.33

Population
50-year Total — 136,231 23,075 2197

Unit area — 4683 4694 3791

100-year Total — 152,211 36,242 2785
Unit area — 4408 4503 3692

The unit area is square kilometers, the unit of GDP is 104 CNY, and the unit of population is person. — represents no data

Engineering measures: These mainly rely on the construction of high-standard urban
drainage systems and flood control systems, the construction content mainly includes
widening river courses, adding municipal drainage pipes, drainage pump stations, levees,
sluice, reservoirs, increasing the diameter of drainage pipes, etc. In addition, sponge cities
can be built to improve the urban control ability of storm runoff [51].

Non-engineering measures: These mainly include a strengthening risk management,
improving forecasting and early warning capabilities, improving flood control standards
and related regulations, raising public awareness, building smart water services [52] and
smart cities [53], and purchasing urban flood insurance [54], etc.

4.3. Uncertainty in Research
4.3.1. The Uncertainty of Flood Simulation

In this study, the DEM of 30 m resolution was adopted. This DEM resolution seemed
pretty coarse for urban modeling. It was undeniable that this would affect the accuracy
of the urban flood simulation. The purpose of this research was to propose a dynamic
assessment method to grasp the development characteristics of flood disaster losses during
the occurrence of floods, and to guide the formulation of disaster prevention and mitigation
measures. Therefore, there were higher requirements for the timeliness of the model. At
present, most of the research on urban flood disaster assessment is a static assessment,
and the demand for timeliness of the model is low, so fine-resolution DEM data can be
used to obtain a higher assessment accuracy. However, in this study, in order to make the
assessment objects more complete, the basin scale was selected. The basin included not
only urban areas, but also farmland, woodland, and grassland. If fine-resolution DEM
data were used, the computational grid would increase geometrically, which would have
a greater impact on the timeliness of the model. Therefore, this research had to improve
the timeliness of calculation by using lower resolution DEM data. Meanwhile, due to the
lack of spatialized economic and population data that matched the fine-resolution DEM
data, the impact on the evaluation results was within an acceptable range. Future studies
should try to adopt GPU acceleration technology and use different resolution networks for
different areas. For example, high-resolution DEMs are used in urban areas. Because of the
small spatial differences in woodland, grassland, and farmland, low-resolution networks
can be used.

Moreover, this study did not further classify urban areas, such as industrial areas,
commercial areas, and residential areas (low residential, medium–low residential, high–low
residential), etc. The CN value and Manning coefficient were not determined according to
different categories, which would also increase the uncertainty of the simulation results.
This was mainly due to the low availability of the above data and the lack of corresponding
disaster loss curves in this study area. Future studies should strengthen the collection
of data, such as the vector outlines and attributes of different buildings, and the disaster
loss curves of different building types, and combine the location information of different
services provided by POI to refine the urban area. Additionally, they should consider the
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difference in disaster loss of different building types to improve the accuracy of the urban
flood disaster loss assessment.

4.3.2. The Uncertainty of Flood Disaster Loss Assessment

In terms of the flood disaster loss assessment, this study assessed the flood disaster
loss under two design rainstorms, and the accumulated rainfall amount was 209.83 mm and
230.97 mm for the 50- and 100-year return periods, respectively, and the rainfall duration
was 2 h, both of which belonged to the extreme rainstorm. The disaster loss brought by
such a design rainstorm scenario was undoubtedly huge. According to the existing data,
for the rainstorm of more than 200mm, its rainfall duration was usually greater than 24 h,
so the simulation results lacked comparison data. However, an extreme rainstorm event
recently occurred in Zhengzhou, Henan Province, with the one-hour rainfall reaching
201.9 mm, which was similar to the extreme rainstorm scenario set in this study. Take the
“7.20” extreme rainstorm event in Henan province as an example, according to preliminary
statistics, the Zhengzhou extreme rainstorm led to direct economic loss of 65.5 billion
CNY, accounting for 5.46% of the total GDP, and emergency relocation of 395,989 people,
accounting for 3.83% of the total population. In this study, for the 50- and 100-year return
periods, the direct economic loss accounted for 2.63% and 3.02% of the total GDP, and the
affected population accounted for 14.76% and 17.49% of the total population, respectively.
The results showed that the proportion of direct economic loss in GDP in the study area
was slightly less than the 7.20 rainstorm event in Zhengzhou, and the statistical value of
the affected population was greater than the 7.20 rainstorm event in Zhengzhou. The less
direct economic loss may have been due to the large area of farmland and forestry in the
study area, which led to a lower economic level in this area than in Zhengzhou. The large
differences in the affected population may have been due to different statistical standards.
In this study, all people in the flood area were considered as the affected population.
However, different from property distribution, people would adopt different risk aversion
strategies, so the actual statistical results would be smaller than the simulation results.

4.3.3. The Uncertainty of Machine Learning

When using the random forest model to predict the spatial distribution of GDP
and population, the correlation coefficients between POIs kernel density and GDP and
population were the same, but the predicted results were quite different, in which the R2 of
GDP and population was 0.6549 and 0.8368, respectively. From the perspective of the R2

value, the results of this study were consistent with those of related studies [21,23,55–57].
The main reason for the difference was that R2 was chosen as the evaluation index. Some
studies have shown that the value of R2 was strongly affected by the number of samples [58].
The number of training sets used for the GDP and population in this study was quite
different. The spatial resolution of the GDP was 1 km, while the spatial resolution of the
population was 100 m.

4.4. Future Studies

Four areas for future research consist of the following:

• The prediction accuracy of the GDP spatial distribution data was 65%. Future studies
should try some methods to solve this problem, such as adding training samples,
increasing the type of input variables, or comparing the accuracy of different machine
learning methods;

• Machine learning algorithms have been widely used, but they are rarely used in the
field of urban hydrology. This study attempted to use machine learning algorithms to
obtain fine-resolution socio-economic data, which provided data for a flood disaster
loss assessment. Future studies should explore the application of machine learning
algorithms in the field of urban hydrology such as obtaining flood inundation maps
based on machine learning to improve the timeliness of flood simulations;
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• The results of this study showed that the return period had an effect on the initial time
and peak occurrence time of the flood disaster. However, only two rainstorm situations
were set in this study, resulting in limitations in the conclusions. Future studies
will construct a variety of rainstorm situations by setting different peak coefficients,
rainfall durations, and return periods to investigate the dynamic assessment of flood
disaster loss under various rainstorm designs, and to identify the influence of rainfall
characteristics on the development process of flood disaster loss;

• Different from property distribution, people should adopt different risk avoidance
strategies, which would lead to a great uncertainty when using a static assessment
method to calculate the number of the affected population. Therefore, future research
should combine the multi-agent model to study the impact of different risk avoidance
strategies on the number of the affected population and improve the accuracy of the
assessment model.

5. Conclusions

Based on a numerical simulation, big data, machine learning, and ArcPy batch process-
ing scripts, this research evaluated the dynamic impact of flood disasters on the economy
and population under extreme rain conditions. The main conclusions were as follows:

• Under extreme rainstorm conditions, flood disaster had a serious impact on economy
and population. For the 50- and 100-year return periods, the maximum direct economic
loss was 2.77 billion CNY and 3.18 billion CNY, respectively, accounting for 2.63% and
3.02% of the total GDP, respectively. The affected population was 160,303 and 189,924,
respectively, accounting for 14.76% and 17.49% of the total population, respectively;

• The higher degree flood hazard areas were mainly distributed on built-up land. More-
over, with the increase in the return period, the higher degree flood hazard areas had
a greater proportion of increase;

• In terms of the occurrence time of flood disaster loss, the initial time and the peak time
of flood disaster loss increased with an increasing flood hazard degree and decreased
with the increase in the return period. In terms of the flood disaster loss, in moderate-,
significant-, and extreme-degree hazard areas, the total loss increased with the increase
in the return period, and the unit loss decreased with the increase in the return period;

• Under the design rainstorm scenario of the Chicago rain pattern, the process of flood
loss development had a stage of rapid increase.

In the future, we could adopt different disaster prevention and mitigation measures
according to the development rules of flood disaster loss in different flood hazard areas, such
as improving the urban flood control and drainage standards, building sponge cities, pro-
viding public awareness, increasing the extreme rainstorm warning and buying urban flood
insurance, etc., so as to better deal with the climate risk brought by extreme rainstorm events.
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