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Abstract: Instance segmentation of fruit tree canopies from images acquired by unmanned aerial
vehicles (UAVs) is of significance for the precise management of orchards. Although deep learning
methods have been widely used in the fields of feature extraction and classification, there are still
phenomena of complex data and strong dependence on software performances. This paper proposes
a deep learning-based instance segmentation method of litchi trees, which has a simple structure and
lower requirements for data form. Considering that deep learning models require a large amount of
training data, a labor-friendly semi-auto method for image annotation is introduced. The introduction
of this method allows for a significant improvement in the efficiency of data pre-processing. Facing
the high requirement of a deep learning method for computing resources, a partition-based method
is presented for the segmentation of high-resolution digital orthophoto maps (DOMs). Citrus data is
added to the training set to alleviate the lack of diversity of the original litchi dataset. The average
precision (AP) is selected to evaluate the metric of the proposed model. The results show that with
the help of training with the litchi-citrus datasets, the best AP on the test set reaches 96.25%.

Keywords: instance segmentation; litchi tree; UAV; deep learning; partition-based method

1. Introduction

Remote sensing applications in the precision agriculture field have diversified to
include satellite, aerial, and hand-held or tractor-mounted sensors [1]. Remote sensing
using unmanned aerial vehicles (UAVs) has become an important new technology to assist
farmers with precision agriculture, providing easier crop nutrient management [2], better
diagnosis of crop diseases, and usage of pests and weeds with a lower cost compared with
satellite remote sensing [3].

Among the tasks of precise management of orchards, instance segmentation of fruit
trees’ canopies using UAV-acquired images, which is also known as identification or
information extraction of individual trees, is of critical importance since it provides the
basic information for plant breeding evaluation [4], differentiated analysis, and decision-
making, as well as information on plantation cover-area and location [5].

Deep learning represents a powerful tool for big data processing, especially image data.
By training with a large amount of data, deep learning-based models can achieve good
prediction results for complex phenomena. Recently, deep learning-based methods have
been increasingly used in agriculture and horticultural research [6]. A series of studies have
demonstrated that the convolutional neural network (CNN), which denotes one of the deep
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learning-based models, is effective in spatial pattern recognition, enabling the extraction of
vegetation properties from remote sensing imagery [7]. Csillik et al. [8] detected citrus and
other crop trees from UAV images using a simple CNN model, followed by a classification
refinement using super-pixels derived with a simple linear iterative clustering (SLIC)
algorithm [9]. Mubin et al. [10] utilized two different CNNs to detect young and mature oil
palm separately, and used geographic information systems (GIS) during the data processing
and resulting storage process.

Compared with simple image classification using complex post processes, such as
the functions in GIS software [11] or extra image processing algorithms [8], the object
detection process, which is an incremental step in the progression from coarse to fine image
inference, not only provides the classes of objects but also their locations [12], which means
the algorithm can extract both the classes and the location information of trees in a unified
way. Zamboni, et al. [13] evaluated 21 object detection algorithms, including anchor-based
and anchor-free methods, for single tree crown detection. Semantic segmentation, dif-
ferent from object detection, gives fine inference by predicting classes for each pixel of
the input image [12]. Morales et al. [14] proposed a semantic segmentation method of
the Mauritia flexuosa palm using an end-to-end trainable CNN based on the DeepLab
v3+ architecture [15]. Furthermore, instance segmentation, which represents a mixture of
object detection and semantic segmentation, gives different labels for separate instances
of objects belonging to the same class [12]. The introduction of the Mask-RCNN [16] has
started a new era of instance segmentation based on deep learning, and many new meth-
ods have been proposed, including the YOLACT [17], SOLO [18], and Blend Mask [19].
Among them, the YOLACT is considered the first real-time instance segmentation model.
Instance segmentation methods have been widely applied to the task of tree [20] or
fruit [21] extraction.

Data collected by unmanned aerial systems combined with photogrammetric process-
ing enable reaching different data types, such as digital orthophoto maps (DOMs), digital
surface models (DSMs), digital terrain models (DTMs), digital elevation models (DEMs),
and three-dimensional (3D) point clouds [22]. In previous studies, more than one type
of data product has been required for the extraction task. For instance, Dong et al. [23]
designed digital height models (DHMs) by subtracting the DTM from the DSM, which is
the key data product for avoiding confusion between the treetop and soil areas. Similarly,
Timilsina et al. [24] developed a canopy height model (CHM) by subtracting DEM from
the DSM using the tool in ENVI for the identification of tree coverage.

Previous studies on the identification of individual trees have been focused on several
species, including citrus [4,5,8,25–28], apple [23], palm [10,14,29], cranberry [21], and urban
trees [13,24]. However, although there are studies on the semantic segmentation of litchi
flowers [30] and branches [31], the studies on litchi canopy segmentation based on remote
sensing, as far as we know, have not been proposed.

In this paper, instance segmentation of the litchi canopy, which represents the identifi-
cation of individual litchi trees, is proposed. The segmentation task is performed using the
deep learning-based instance segmentation method YOLACT [17]. The YOLACT method
achieves good performance by recognizing the pixels of the tree canopy in the input image
and separating instances individually without external algorithm processing, that is, infer-
ence in a unified way. Unlike the above-mentioned studies, which use plural data products
as the input, in the proposed method, only the DOM is used as the input.

Annotating canopy areas in input images with boxes or polygons is a key step in the
data pre-processing for the training of deep learning models for tree identification [13,20,21].
Since the amount of data needed for the model training is large [32], it is ineffective to
annotate all data manually. As a large number of images in the custom dataset in this
paper are collected at the same place at different flight heights and dates, a labor-friendly
semi-auto annotation method based on the invariance of objects’ geographical location is
introduced, which can significantly reduce the time of data pre-processing.
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It is common and necessary to divide the original DOM, whose side length reaches
thousands or tens of thousands of pixels, into image subsets with a side length of only a few
hundred pixels, which are used as input data when training deep learning models for the
identification of individual tree, due to high demand for computing resources [13,14,20].
However, the corresponding reverse operation, that is, integrating the inference results
of image patches into an inference result of the whole DOM, has been seldom considered
in previous studies. In this paper, a partition-based method for high-resolution instance
segmentation of DOMs is presented, having two main differences compared with the
previously proposed methods. First, the DOM is split into patches, and the position of each
patch is saved separately in the data pre-processing task. Second, the inference results of
image patches are integrated into a unified result based on the position information stored
in the data pre-processing task, which is followed by non-maximum suppression (NMS).

Although the data are collected on different dates and flight heights, the original
litchi images still lack diversity. To solve this problem, a large amount of citrus data were
annotated and added to the training set. The comparative experiment results show that the
addition of citrus data can improve model performance in litchi tree identification.

In this paper, the average precision (AP) is chosen as an evaluation metric of the
proposed model. This metric has been commonly used to examine the performance of
models in detection tasks. A series of comparative experiments are performed using differ-
ent settings of the backbone network, model structure, spectral type, data augmentation
method, and training data source. According to the experimental results, when trained
with the litchi-citrus datasets, the AP on the test set reaches 96.25%, achieving the best
performance among all experiment groups.

The main contributions of this paper can be summarized as follows:

1. The YOLACT model is used to develop a method for litchi canopy instance segmenta-
tion from UAV imagery;

2. A labor-friendly semi-auto annotation method for data pre-processing is developed;
3. A partition-based method for high-resolution instance segmentation of DOMs, in-

cluding the division of input images and integration of inference results, is proposed.

The paper is organized as follows. Section 2 describes the study areas, data collection
and processing, the proposed method, and the validation method. Section 3 shows the
experimental results using the proposed method. Section 4 is devoted to a discussion, and
Section 5 presents the conclusions.

2. Materials and Methods
2.1. Study Areas

The study area of this work is located in Guangdong Province, China. The experiment
was conducted in three orchards containing litchi trees and citrus trees. The orchards were
denoted as Area A, B, and C. Area A was located in Conghua District, Guangzhou City
(23◦35′11.98′′ N–113◦36′48.49′′ E), and contained 141 litchi trees. Area B was located in
Tianhe District, Guangzhou City (23◦9′40.75′′ N–113◦21′10.75′′ E), and contained 246 litchi
trees. Area C was located in Boluo County, Huizhou City (23◦29′56.74′′ N–114◦28′4.11′′ E),
and contained 324 citrus trees. There were significant differences in lighting conditions
and canopy shapes between the three areas. The overview of the study areas is shown in
Figure 1.

2.2. UAV Image Collection

Images of the three study areas were obtained using a DJI P4 Multispectral. An
example of the UAV image is shown in Figure 2. The UAV was equipped with six
1/2.9′′complementary metal-oxide semiconductors (CMOS), including one RGB sensor
for visible light imaging and five monochrome sensors for multispectral imaging: blue
(B): (450 ± 16) nm; green (G): (560 ± 16) nm; red (R): (650 ± 16) nm; red edge (RE):
(730 ± 16) nm; near-infrared (NIR): (840 ± 26) nm. The flight height and flight date of
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the three areas are shown in Table 1. Flight planning and mission control software was
managed by the DJI GO Pro software.
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Table 1. Flight height and flight date of three areas.

Area Flight Height (m) Flight Date

A 45–55 20 February 2021–26 March 2021
B 50 15 April 2021
C 25 11 December 2020–20 January 2021

2.3. Photogrammetric and Data Format Processing

The imagery was photogrammetrically processed to generate the RGB DOM us-
ing DJI Terra software. The corresponding normal different vegetation index (NDVI)
image was obtained based on the red and near-infrared bands using the formula of
(NIR − Red)/(NIR + Red). As the input form of the YOLACT network is three-band,
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in order to allow the single-band NDVI image to be input in the same format as the RGB
image, additional data processing was performed. The workflow of this process is shown
in Figure 3.
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2.4. Annotation

A labor-friendly annotation method based on the coordinate system conversion is
introduced since it is time-consuming to annotate the images of the canopy areas of the
same litchi tree collected on different days manually. The positioning information of the
same place based on different coordinate systems can be converted to each other through a
series of calculations [33]. Suppose a point’s positions in the WGS 84 geographic coordinate
system and image coordinate system are denoted as xgeo and ygeo and xpixel and ypixel .
The values needed for conversion between the image coordinate system and the WGS 84
geographic coordinate system, including longitude and latitude of the image’s upper left
corner denoted as lon and lat and horizontal and vertical spacings of raster pixels denoted
as xscale and yscale, were extracted from the DOM using the Pillow library in Python. The
coordinate system conversion is given by (1)–(4).

xgeo = lon + xscale ∗ xpixel (1)

ygeo = lat + yscale ∗ ypixel (2)

xpixel =
xgeo − lon

xscale
(3)

ypixel =
ygeo − lat

yscale
(4)

Theoretically, the actual geo-coordinates of the trees in the experimental area can be
considered fixed. The coordinates in an image of the annotations of the canopy in new
shots can be easily calculated if the actual geo-coordinates of trees and values of another
DOM needed for the conversion are known. In practice, the canopy areas of trees in DOMs
acquired on different days can be automatically annotated by the above-mentioned method
based on the manual DOM annotation. The principle of the annotation method is shown in
Figure 4.
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2.5. Crop Sampling and Datasets Construction

Random cropping for sampling was performed. The cropping size was set at 1100× 1100 pixels.
An object was chosen for sampling only if it was the whole inside the frame. An illustration
of the crop sampling process is shown in Figure 5.
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Figure 5. Illustration of crop sampling. (a) Objects are colored based on the relationship with the
cropping frame in the yellow color: pink means that the whole object is inside the frame; green
indicates that the object is partly inside the frame; blue means the object is outside the frame. (b) Only
the objects which are the whole inside the frame are chosen as objects in the sampling process.

In addition, a crop sampling image would not be accepted if all objects in the frame
had already appeared in the previous sampling image. The NDVI image sampling was
performed in parallel with the RGB image sampling. The sample numbers of the three
areas are given in Table 2, and the distribution of the original size of instances in samples
is shown in Figure 6. Since the largest instance had a side length of almost two times the
default input size of the YOLACT, each cropped image was down-sampled at a ratio of 0.5.

Table 2. Sample numbers of the three areas.

Area Sample Number

A 881
B 63
C 480
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After the crop sampling, four datasets were constructed for the experiments. The
components of the train set, valid set, and test set in each dataset are shown in Table 3.

Table 3. Components of the datasets.

Dataset Name Train Set Valid Set Test Set

D1 60% (A 1 + B) 20% (A + B) 20% (A + B)
D2 60% (A + B) + 75%C 20% (A + B) + 25%C 20% (A + B)
D3 75%A 25%A B
D4 75% (A + C) 25% (A + C) B

1 ‘A’, ‘B’, and ‘C’ mean the cropped image set from Areas A, B, and C respectively.

2.6. YOLACT Network

The YOLACT [17] is a simple, fully-convolutional model for real-time instance seg-
mentation. The ResNet [34] with feature pyramid network (FPN) [35] was used as a default
feature backbone, while the base image size was set at 550 × 550 pixels. Each layer of the
FPN included three anchors with aspect ratios of 1, 0.5, and 2.

The YOLACT divides the segmentation task into two parallel subtasks: generation of
the prototype mask set and prediction of per-instance mask coefficients. Instance masks
can be produced by linearly combining prototypes with the mask coefficients.

In this paper, several modifications in the YOLACT model are introduced to reduce
computational complexity while achieving high-precision instance segmentation.

The output of the proto-net has a size of 138 × 138 pixels, which is smaller than the
final output size of the whole model of 550 × 550 pixels. In the original implementation,
the up-sampling by interpolation is performed to enlarge the per-instance mask. This
approach provides a good match between the masks and the margin of detected objects.
However, in the canopy segmentation task from remote sensing images, the shape of the
tree canopy is generally round, without obvious protruding corners. The interpolation
for mask production only brings up the subtle difference for the contours, which is not
worthy from the aspect of computation cost. In this paper, polygon contours of the masks
are obtained directly from the output of the proto-net using OpenCV functions, and values
of the coordinates of the points of contours are simply multiplied by the zoom ratio
for the enlargement. This approach reduces computation while still achieving proper
segmentation of canopies. The difference between the two workflows is shown in Figure 7.
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Figure 7. Illustration of contour extraction. (a) The example of the litchi canopy image. (b,c) The
visualization of the contours extracted by the original implementation and the method proposed in
this paper. (d) Workflows of contour extraction. The red line represents the original implementation,
while the green represents the method proposed in this paper.

As introduced above, three anchors with aspect ratios are used for each layer of the
FPN. Unlike various ratios of width and height of objects in the public datasets, such as
MS COCO [36], in this work, the circumscribed rectangles of the litchi tree canopies are
of approximately square shape in most cases, so multi-ratio anchors can be replaced by
a single anchor for the instance segmentation of litchi canopy. In this study, experiments
were performed using two types of anchor ratio settings, the original ratio setting and the
single ratio setting with the value one.

In the default configuration of the YOLACT, the number of prototypes k is set to
32. Considering the reduced variety in the litchi canopy shape, in this study, a smaller k
with the value of four or eight is used. In the comparison experiments, different k values
were used.

2.7. Instance Segmentation of High-Resolution Image by Partition

The training and inference of high-resolution images have not been considered in
most studies on instance segmentation. In addition, it is not advisable to down-sample
large images roughly to match their sizes with the input size of the model [37] since such
an approach can cause a great loss of details, which are important for the detection and
segmentation processes. Furthermore, object shape can be distorted during down-sampling
if the formats of the input images and model input are different in width and height. Both
these situations can significantly degrade the precision of inference.

Similar to the YOLT method proposed in [38], a partition-based method for high-
resolution instance segmentation DOMs is presented in this work. The DOM is divided
into patches, and the position of each patch is saved during data pre-processing. The
inference results of image patches are integrated into a unified result based on the position
information stored during data pre-processing, which is followed by the NMS; w and h
denote the width and height of a DOM; ni denotes the lower bound of the number of
samplings via sliding a window with the size of e in each direction i ∈ {w, h};

ni =

 ceil
(

i
e

)
,
∣∣∣mod(i, e) 6= 0,

i
e + 1,

∣∣∣mod(i, e) = 0,
(5)
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where si is the window sliding distance, and oi is the overlap length, and they are respec-
tively calculated by:

si =
i− e

ni − 1
, (6)

oi = e− si. (7)

In practice, e is set to be equal to the input size of YOLACT, and ni is multiplied by
the gain ratio g to enlarge oi, which can be expressed as:

n̂i = f loor(ni × g). (8)

Once the partition is completed, n̂w × n̂h image patches obtained from the original
DOM are subjected to instance segmentation sequentially. This approach can infer the high-
resolution DOMs while avoiding the shortcoming of rough down-sampling, as mentioned
above. The partition and integration workflow is shown in Figure 8.
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In this paper, the partitioned-based method was applied only for inference, while the
image patches for training were generated by random cropping. Unlike the sliding window
position randomly generated when sampling mentioned in Section 2.5, when partitioning
is mentioned in this section, the sliding window position for cropping each image patch is
determined based on the size of the original image, the sliding window’s size e, and the
gain ratio g, without any randomness.

2.8. Training Details

The original YOLACT model was trained with the COCO dataset using the stochastic
gradient descent (SGD) algorithm for 800,000 iterations starting at an initial learning
rate of 10−3, which was decreased by a factor of 10 after 280,000, 600,000, 700,000, and
750,000 iterations; the weight decay was 5× 10−4, and the momentum was set to 0.9.

The learning rate decay strategy was applied to the training process with two mod-
ifications. First, iteration nodes for learning rate changes were multiplied with a ratio.
Suppose the number of samples in the training and MS COCO datasets were denoted as
Ncustom and Ncoco, respectively; then, the ratio was set at Ncustom

Ncoco
. Second, the training would
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stop when the half of maximum iterations was reached since after that, the accuracy could
not be further improved.

The ResNet [34] is a default backbone of the YOLACT. The same backbone settings
were applied to the experiments in Section 3. Models in the original implementation [17]
were trained on the MS COCO dataset, while the models in this paper were trained on the
custom dataset described in Section 2.5.

All models were trained with a batch size of eight on a single NVIDIA Titan X using
ImageNet [39] pre-trained weights, the same as in the original implementation.

2.9. Model Validation

The InterSection over Union (IoU) used in the validation was defined as a quotient
of the overlapping area and the union area between the prediction and ground-truth. In
addition, the Box IoU and Mask IoU denote the IoU of objects’ circumscribed rectangle
area and the IoU of objects’ own area, respectively. The predictions were classified into
three groups: (1) True Positive (TP), which represented the predictions with the IoU larger
than the threshold; (2) False Positive (FP): which represented the predictions with the IoU
below the threshold; (3) False Negative (FN): which indicated that the ground-truth area
was not detected by any prediction.

Further, the precision and recall were respectively calculated by:

Precision =
TP

TP + FP
, (9)

Recall =
TP

TP + FN
. (10)

The average precision (AP), which corresponded to the area under the Precision-Recall
curve, was used to validate the performances of the models. The Box AP and Mask AP
were calculated based on the Box IoU and Mask IoU, respectively. In this paper, the IoU
threshold was set to 0.5, and the AP based on the threshold was denoted as AP50.

3. Results

Several ablation experiments were conducted to compare the performances of the
models under different configurations. Each model configuration was trained 5 times and
the model’s weights of each training time were saved. In the following, the mean AP50
and best AP50 of all configurations are given for the 5 training times.

3.1. Backbone Network

Comparisons of the model performance based on two kinds of ResNet are shown in
Table 4, where the best AP values of the first two models denote the results reported in [17].

Table 4. Model performances under different backbone network models.

Backbone Network
Model Dataset Mean Mask

AP50
Best Mask

AP50
Mean Box

AP50
Best Box

AP50

ResNet-50 MS COCO - 46.60 - 50.80
ResNet-101 MS COCO - 48.50 - 53.00
ResNet-50 D1 91.96 92.30 92.69 93.36

ResNet-101 D1 94.80 95.44 95.08 95.57

The results in Table 4 indicate that a deeper backbone network might be useless for the
canopy segmentation task since such a binary classification task is less difficult compared
with the original task of the YOLACT. The results have shown that the ResNet50 is enough
as a backbone network model for the segmentation task considered in this study.
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3.2. Anchor

Experiments were performed to compare the models’ performances under the two
anchor settings. The “Lite” model had the same configuration as the third model in
Section 3.1 except for the anchor number. Results showed that models with a single square
anchor still had better performance compared to the default model. More details are shown
in Table 5.

Table 5. Model performances under different anchor settings.

Anchor Setting Anchor Ratio Mean Mask
AP50

Best Mask
AP50

Mean Box
AP50

Best Box
AP50

Default [0.5, 1, 2.0] 91.96 92.30 92.69 93.36
Lite [1] 90.82 91.64 92.14 93.39

As mentioned in Section 2.6, the circumscribed rectangles of the litchi tree canopies
had a square shape in most cases. Experiments have proven that using a single square
anchor cannot impact the model performance. This modification in the model’s structure
is feasible based on the inherent biological properties of trees.

3.3. Mask Prototype

This section presents the performance comparison of the number of prototypes under
different settings. Three model configurations used in the comparison experiment were
identical with the exception of the prototypes. Results indicated that the model with four
prototypes had better performance than the default model on average. The comparison
results are shown in Table 6.

Table 6. Performances of models under different prototype settings.

Number of Prototypes Mean Mask
AP50

Best Mask
AP50

Mean Box
AP50

Best Box
AP50

32 (Default) 91.96 92.30 92.69 93.36
8 91.63 92.50 92.78 93.52
4 92.54 94.88 93.68 95.69

3.4. Data Type

As mentioned in Section 2.6, the RGB and NDVI images were sampled parallelly.
The model trained on the NDVI dataset had the same configuration as the default model.
Model performance comparison results are shown in Table 7. Results showed that the
NDVI data did not provide an improvement in model performance compared with the
RGB data.

Table 7. Performances of the models for different data types.

Data Type Mean Mask AP50 Best Mask AP50 Mean Box AP50 Best Box AP50

RGB(Default) 91.96 92.30 92.69 93.36
NDVI 90.42 91.23 91.29 92.32

However, it would be inappropriate to draw a conclusion that the NDVI data have
less advantage in canopy recognition compared with the RGB data. It should be noted that
the YOLACT model has been primary designed for visible spectral tasks, not multispectral
tasks, but it could achieve good performance in canopy recognition using a suitable
backbone neural network when the NDVI data are used.

3.5. Rotated Data Augmentation

The default data augmentation methods of the YOLACT follow the setting of the
SSD [40]. Rotation methods, such as flipping and rotation, are not applied in the default
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settings. Experimental results shown in Table 8 show that rotation methods cannot improve
model performance.

Table 8. Performances of the models for different augmentation methods.

Data Augmentation Method Mean Mask
AP50

Best Mask
AP50

Mean Box
AP50

Best Box
AP50

Default 91.96 92.30 92.69 93.36
Default + Rotated Method 90.31 91.35 91.59 92.38

3.6. Datasets

Comparisons of model performance based on different datasets are shown in Table 9,
where the components of each dataset are shown in Table 3.

Table 9. Performances of the models trained with different datasets.

Dataset Train Set and Val
Set Source

Mean Mask
AP50

Best Mask
AP50

Mean Box
AP50

Best Box
AP50

D1 Litchi 91.96 92.30 92.69 93.36
D2 Litchi + Citrus 93.45 95.49 94.57 96.25
D3 Litchi 33.69 52.65 45.19 64.64
D4 Litchi + Citrus 34.33 38.66 40.64 45.52

According to the comparisons of results between D1 and D2, the model achieves better
performance when trained with the data consisting of the canopy images of different types
of trees. This is because, in that case, the model is guided to learn common features of
canopies of both litchi and citrus instead of only one specific type of tree, which makes the
model more robust.

3.7. Best Model Configuration

Based on the above presented results of the ablation experiments, this section presents
the result of a theoretical high-performance model configuration. A comparison of the
actual test results is shown in Table 10.

Table 10. Performances of the models with different high-performance configurations.

Model Configuration Mean Mask
AP50

Best Mask
AP50

Mean Box
AP50

Best Box
AP50

Default 91.96 92.3 92.69 93.36
Light Prototypes 92.54 94.88 93.68 95.69

Various Data Source 93.45 95.49 94.57 96.25
Various Data Source + Light Prototypes 93.65 95.14 94.43 96.0

According to the experimental results, a simple combination of several settings that
improve the recognition performance may not be the best choice. Specifically, the third
model in Table 10 outperformed the fourth one in almost all metrics except the mean
Mask AP50, indicating that the methods of model simplification, such as reducing the total
number of prototypes, cannot ensure that the models perform better when training on
various data sources. Thus, over-simplifying of the model configuration could reduce the
model’s ability to extract more complex features.

In addition, the third model in Table 10 was considered as the best model on average
in this paper since it performed best on three metrics, and was only slightly inferior to the
fourth model on the metric of mean Mask AP50.



Remote Sens. 2021, 13, 3919 13 of 17

3.8. Visualization

Instance segmentation of Area B’s DOM is performed by partition as mentioned in
Section 2.7. The gain ratio of the partition was set at 2 and the confidence threshold was set
at 0.15. The visual results of the models are presented in Figures 9 and 10.
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Row a in Figure 10 indicates that both models can segment the canopies well when
the trees are not dense. When inferring the position shown in Row c, the default model
tends to generate overlapping masks, but the best model does not.
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4. Discussion
4.1. Training and Testing Data Sources

Many previous studies [8,13,21] have constructed a dataset from a single source and
then divided it into training, test, and validation sets, ensuring that all sets had relatively
similar or the same distributions, which provides more advantages for validation.

In this paper, as mentioned in Section 2.5, four datasets with different forms of data
division were constructed. Among them, D1 and D2 were constructed in the forms of
datasets from previous studies mentioned above, while D3 and D4 were built based on
a rule: no sample for training or validation was added from Area B. As mentioned in
Section 2.1, lighting conditions and canopy shapes are significantly different between
the three areas. Using such a data structure introduces challenges to model training
and validation.

The experiments in Section 3.6 show a huge gap in the model’s precision between
datasets built by different kinds of rules. On the one hand, the low precision of the models
trained with D3 or D4 indicates that the proposed method is difficult to learn common
features between the training data and testing data if both of them have diverse distribution.
On the other hand, although the best model in this paper has a good performance on the
D2 dataset, it is still unguaranteed whether the model can perform equally well on data at
unknown times or places.

In conclusion, effective transfer learning for deep learning models is still challenging.
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4.2. Crop Sampling Details

In early research on crop sampling, an object was chosen for sampling if the IoU
between the object and the frame was greater than a specific threshold of 0.5. As a result,
plenty of objects that were partly inside the cropping frame were chosen. Therefore, during
training, models could not learn what a complete canopy was. Thus, this sampling rule
decreases the model’s ability to understand the canopy integrity, degenerating from the
instance segmentation to the semantic segmentation. To address this problem, a new
sampling rule is introduced in this work, as presented in Section 2.5.

4.3. Partition-Method Drawbacks

As mentioned in Section 2.7, a solution to the instance segmentation problem for
high-resolution images is proposed, and that is the partition-method. Compared with
roughly down-sampling, using the partition method preserves more image details, thus
improving the recognition precision, however, this damages the integrity of images of
large tree canopies. To overcome this drawback, a gain ratio is introduced to enlarge the
overlapping area, thus ensuring that each canopy image can be fully sampled in at least
one block. This method provides better results at the cost of extra computation cost.

4.4. Application and Future Work Directions

The proposed method in this paper can be applied to the extraction and position-
ing of tree canopies, which is the prerequisite for the precise management of the litchi
orchard. After obtaining the boundary and location information of the canopy, on this basis,
agricultural analysis and decision-making can be carried out for each tree differentially.

For instance, in flowering periods, according to the color characteristics of the seg-
mented canopy image, the flower growth of each tree can be individually evaluated. In
fruiting periods, a more precisive yield prediction for individual trees can be performed
instead of a coarse prediction for tree clusters. In addition, when combined with the GIS,
the proposed method facilitates the establishment of trees’ location databases.

It should be noted that for a specific orchard, if the canopy boundaries of trees do not
change much, the canopy information generated by the proposed method can be reused
without re-identification.

There are two directions for improvement in the future works. First, when the NDVI
or the original multispectral data are used for canopy recognition, the original backbone
network in the YOLACT model can be replaced by a backbone network specific for mul-
tispectral tasks. Such improvement requires a modification of the backbone structure.
Second, although as mentioned in Section 2.7, rough down-sampling could cause a great
loss of details needed for the canopy segmentation, and the partition-method is proposed
to address the problem, the appropriate degree of down-sampling can greatly reduce
computation required for model inference. Thus, it remains to be explored how to strike
a balance between maintaining the accuracy of recognition and increasing the degree
of down-sampling.

5. Conclusions

In this paper, a deep learning-based instance segmentation method is proposed for
images of litchi trees using the UAV DOM in a simple way. A labor-friendly semi-auto
annotation method of images based on the coordinate system conversion is introduced,
which significantly improves the efficiency of data pre-processing. When inferring high-
resolution DOMs, which differ from the segmentation methods in previous studies that
can only infer image patches, the partition-based method proposed in this paper can
automatically integrate the inference results of patches into a united segmentation result.
Citrus data are added to the training set to address the lack of diversity of the original litchi
dataset. With the help of training on the litchi-citrus dataset, the model achieved the best
Mask AP50 of 95.49% and the best Box AP50 of 96.25% on the test set, respectively. The
results show that the model’s performance can be significantly improved if training data
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consisting of images of two types of fruit trees are used. After obtaining the boundary and
location information of the canopy by the proposed method, the agricultural analysis and
decision-making can be carried out for each tree differentially, which is of significance for
the precise management of orchards.
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