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Abstract: Optical remote sensing technology has been widely used in forest resources inventory. 
Due to the influence of satellite orbits, sensor parameters, sensor errors, and atmospheric effects, 
there are great differences in vegetation spectral information captured by different satellite sensor 
images. Spectral fusion technology can couple the advantages of different multispectral sensor im-
ages to produce new multispectral data with high spatial and spectral resolution, it has great po-
tential for improving the spectral sensitivity of forest vegetation and alleviating the spectral satura-
tion. However, how to quickly and effectively select the multi-spectral fusion data suitable for forest 
above-ground biomass (AGB) estimation is a very critical issue. This study proposes a scheme (RF-
S) to comprehensively evaluate multispectral fused images and develop the appropriate model for 
forest AGB estimation, on the basis of random forest (RF) and the stacking ensemble algorithm. 
First, four classic fusion methods are used to fuse the preprocessed GaoFen-2 (GF-2) multispectral 
image with Sentinel-2 image to generate 12 fused Sentinel-like images. Secondly, we apply a com-
prehensive evaluation method to quickly select the optimal fused image for the follow-up research. 
Subsequently, two feature combination optimization methods are used to select feature variables 
from the three feature sets. Finally, the stacking ensemble algorithm based on model dynamic inte-
gration and hyperparameter automatic optimization, as well as some classic machine learners, are 
used to construct the forest AGB estimation model. The results show that the fused image NND_B3 
(based on nearest neighbor diffusion pan sharpening method and Band3_Red) selected by the eval-
uation method proposed in this study has the best performance in AGB estimation. Using the stack-
ing ensemble method and NND_B3 image, we get the highest estimation accuracy, with the ad-
justed R2 and relative root mean square error (RMSEr) of 0.6306 and 15.53%, respectively. The AGB 
estimation RMSEr of NND_B3 is 19.95% and 24.90% lower than those of GF-2 and Sentinel-2, re-
spectively. We also found that the multi-window texture factor has better performance in the area 
with low AGB, and it can suppress the overestimation significantly. The AGB spatial distribution 
estimated using the NND_B3 image matches the field observations well, indicating that the multi-
spectral fusion image combined with the Stacking algorithm can increase the accuracy and satura-
tion of the AGB estimates. 

Keywords: spectral saturation; integrated multi-source data; evaluation of fused images; ensemble 
regression algorithm; forest above-ground biomass  
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The forest ecosystem is very important to the Earth's ecosystem. Its biomass and car-
bon storage play a very important role in global climate change and material circulation, 
and it can directly or indirectly regulate and buffer the global climate change [1,2]. Forest 
biomass is the dry weight of organic matter produced by per unit area of forest during a 
specific period of its life time [3]. The aboveground biomass (AGB), accounting for 70% to 
90% of the total forest biomass, is one of the significant carbon pools in forest ecosystems 
[4,5]. As a basic quantitative characteristic of forest ecosystems, AGB can be used to assess 
the growth and health of forests. Therefore, fast and accurate acquisition of AGB infor-
mation is extremely important for forest management and understanding of ecosystems, 
carbon cycles and carbon dynamics [6,7]. 

Traditional forest parameters estimation methods are based on field measurements, 
which is time-consuming and costly, and scale-limited. Recently, remote sensing technol-
ogies have been widely used for estimating and mapping forest parameters [8–20], be-
cause of their low cost, high temporal resolutions, and large coverage. Optical remote 
sensing data, obtained by a passive remote sensing system, have been widely used in bi-
omass research [7,10–12]. Generally, vegetation indices derived from the red, near infrared 
(NIR) or red edge bands of optical images are highly correlated with forest AGB [18,20–
22]. However, in the areas with high forest canopy closure and accumulation, the cascade 
of canopy and the diversity of species distribution will cause saturation on the remote 
sensing image, so the biomass estimated by vegetation index is lower than the real value 
[20,23,24]. Hyperspectral data usually have higher spectral resolution than multispectral 
data. The almost continuous spectral information contained in hyperspectral data can ef-
fectively improve the ability to identify different objects. However, these large number of 
spectral bands also bring about information redundancy and difficulty in feature variable 
selection, and also increase the load of data processing [25,26]. Microwave usually has a 
certain penetration ability to forest canopy. As an active microwave sensor, synthetic ap-
erture radar (SAR) can observe the Earth all-day in all weathers, so it can obtain vegetation 
information at any time and any place [27,28]. Many studies employ SAR images (e.g., 
RadarSat-2, Sentinel-1, ALOS PALSAR) to map forest AGB [3,14,15]. However, the SAR 
signal is usually susceptible to the influence of terrain and complex canopy structure, 
which is difficult to eliminate [15]. SAR data also have the saturation problem, which re-
sults in poor estimation accuracy [14,29]. In addition, the acquisition of SAR data is rela-
tively expensive and difficult (except for a few free SAR data, such as Sentinel-1), and the 
data processing is also complicated [3,29,30]. Light detection and ranging (LiDAR) system 
emits a laser beam to irradiate the surface of an object and analyzes the return signal. The 
emitted laser pulse can penetrate the forest canopy and reach the ground surface, so as to 
obtain the three-dimensional structure of vegetation. LiDAR has been successfully ap-
plied to forest parameter inversion, especially the inversion of tree height, tree spatial 
structure, and biomass [31–34]. However, the LiDAR data are few and expensive, which 
impedes its applications for large-scale biomass estimation [35–38].  

In terms of data archive, availability, spatial coverage and resolution, and data pro-
cessing load, optical remote sensing images with high spatial and temporal resolution are 
optimal for large scale forest AGB dynamic monitoring [2,7,20,38]. Optical imagery fusion 
technology can fully integrate the advantages of different multispectral sensor images to 
produce new multispectral data with high spatial and spectral resolution, it has great po-
tential for improving the spectral sensitivity and alleviating the forest AGB estimation 
saturation problem [20,24]. Generally, high-resolution images contain rich spatial texture 
information, and medium-resolution remote sensing images have rich spectral infor-
mation and extensive temporal and spatial coverage. For forest classification or forest 
structure parameter estimation, most fusion schemes combine high-resolution panchro-
matic image with medium-resolution multi-spectral images, which can improve image 
clarity, increase spatial texture details, and help visual interpretation [20,39–45]. However, 
the pan-sharpening fusion method cannot add enough useful spectral information for the 
forest AGB estimation. In the study of forest growing stock volume (GSV) estimation, Li 
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et al. have shown that fusing high-resolution multi-spectral image (GF-2) with medium-
resolution multi-spectral image (Landsat 8) can improve the spatial resolution and in-
crease the image spectral information [24]. However, only the Gram Schmidt fusion algo-
rithm is used in their study, and there is no comparative analysis about other fusion meth-
ods or other optical images. Therefore, it is necessary to explore the utility of other classic 
fusion algorithms for fusing Sentinel-2 and GF-2 multispectral images for forest AGB es-
timation. Moreover, effective evaluation and accurate selection of multi-spectral fusion 
data suitable for forest AGB estimation is a key issue. 

Feature selection is the key to improve the performance of the forest AGB estimation 
model [46–52]. However, there is little evidence to indicate that the features screened by 
a certain method have a good accuracy of AGB or GSV estimation for all regression mod-
els [24,52]. Li et al. [24] proposed a feature variable screening and combination optimiza-
tion procedure based on the distance correlation coefficient and k-nearest neighbor algo-
rithm (DC-FSCK). This algorithm considers the correlation, heterogeneity and combina-
tion optimization characteristics between feature variables, and can select the best feature 
combination for the forest GSV estimation research. The DC-FSCK method has achieved 
very satisfactory results when the k-nearest neighbor (KNN) algorithm is used [53]. How-
ever, when the random forest (RF) regression algorithm is used, the performance of DC-
FSCK is not ideal. Therefore, in order to improve the robustness of the feature variable 
combination method, we need to optimize the regression model of the algorithm based 
on the original DC-FSCK algorithm framework in order for it to adapt more application 
scenarios.  

The commonly used models for AGB estimation include parametric regression mod-
els and non-parametric machine learning regression models [11,20]. Parameter regression 
models, such as linear regression and perceptron, estimate AGB by constructing a regres-
sion formula on the basis of the relationship between the measured AGB and remote sens-
ing feature variables, topographic factors, and forest stand parameters. Non-parametric 
machine learning models, such as RF regression and support vector regression (SVR), can 
obtain different fitting functions by the training data, which can finally predict the target 
value [23,43–50]. Ensemble machine learning algorithms learn training samples by con-
structing and integrating multiple learners, which have higher accuracy than traditional 
non-parametric or parametric methods in the forest parameter estimation based on small 
sample data [24,43,51–54]. Generally, there are three ensemble methods: stacking, bagging 
(e.g., RF), and boosting (such as adaptive boosting, gradient boosting decision tree, ex-
treme gradient boosting, and categorical boosting) [52]. The stacking algorithm has good 
performance in forest GSV prediction and vegetation classification research [24,55–57], 
but there is no report on its application in forest AGB estimation. 

In short, remote sensing data sources, feature variable combinations, and the estima-
tion models influence estimating the forest AGB using remote sensing data [20,36,44]. 
Therefore, this study will solve these problems by applying the following steps. 

(1) GF-2 and Sentinel-2 multispectral images are fused by four classic fusion algo-
rithms to get the Sentinel-like images. Then, these fused images are assessed by a compre-
hensive evaluation method, which using the image information entropy, grayscale mean, 
standard deviation, average gradient, and image-based model cross-validation estimation 
error as the comprehensive evaluation index. Hence, the fused image suitable for AGB 
estimation is screened out. 

(2) Feature variables are extracted from the fused image and terrain feature deriva-
tion factors (e.g., elevation, slope, aspect), and two feature combination optimization 
methods are used to screen feature variables for AGB estimation. 

(3) The ensemble machine learning algorithm is utilized to build a forest AGB esti-
mation model based on the selected feature combination, and is compared the perfor-
mance with other machine learners. 
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We expect that the combination of fused images, new feature selection method and 
ensemble machine learning algorithm will yield a quickly and highly accurate AGB map 
of forests. 

2. Study Area and Data 
2.1. Study Area 

This study was conducted in a state-owned forest farm (Huangfengqiao) located in 
the southeast of Hunan province, China (Figure 1). It covers the middle of Luoxiao Moun-
tains and the southwest of Wugong Mountain. There are many low mountains with the 
elevation varying between 1270 m and 115 m (Figure 2a). It has a subtropical monsoon 
humid climate, with an average annual temperature of 17.8 °C, an annual precipitation of 
1410.8 mm, and an annual frost-free period of about 292 days. The dominant tree species 
is Chinese fir (Cunninghamia Lanceolata), and there are also Betulaceae, Camphor (Cin-
namomum camphora), etc. (Figure 2b) [29]. The forest farm has a forest GSV about 891,000 
cubic meters, and a forest coverage rate of 90.7% [29]. 

 
Figure 1. The location of the study area in South China and Hunan province. 
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Figure 2. (a) The digital elevation model (DEM) of the study area and the spatial distribution of 
Chinese fir plots; (b) The distribution of tree species in the study area. 

2.2. Data Preparation 
2.2.1. Field Plot Data Collection 

Chinese fir plantation is distributed in the north, east and south of the study area. A 
total of 50 plots of Chinese fir were measured by field investigation using a random strat-
ification sampling from 2016 to 2017. Due to the scarcity and inaccessibility of woodlands 
above 800 m, all the selected plots are below 800 m (Figure 2a). The plots are 20 m × 20 m 
or 30 m × 30 m large, depending on the topographic features and tree stand density (Figure 
A(1a)). The Zenith15A real-time kinematic (RTK) system was used to receive the signals 
from Hunan Satellite Navigation and Positioning Public Service Platform (HNCORS) and 
work together with the total station ZT20 to accurately measure the positions of the four 
corner points of the sample plot to determine the plot boundary (Figure A(1b,c)). In each 
plot, the information of all standing living trees with the diameter at breast height (DBH) 
no smaller than 5 cm were measured and recorded, including tree DBH, height, and topo-
graphic factors (e.g., slope, aspect). As shown in Table 1, the tree AGB value can be ob-
tained by DBH and tree height [58]. The values of the AGB measurements at all plots are 
shown in Table 2. 

Table 1. Single tree AGB equations of Chinese fir. 

Equation a b c Remarks AGB = a × D × H  (1) 1.988 0.591 D: DBH 
H: Tree Height 

Table 2. The AGB observed in the sample plots (t/ha). 

Age Group Number of 
Plots 

Value Range Mean Standard 
Deviation 

Coefficient of 
Variation (%) 

Immature  11 46–126 84.91 28.16 33.16 
Near Mature  17 60–128 89.59 18.96 21.16 

Mature  14 66–182 117.57 32.10 27.30 
Over mature  8 101–149 122.5 15.43 12.60 

Total 50 46–182 101.66 29.04 28.57 
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2.2.2. Satellite Image Collection and Pre-Processing 
We collected the L2A level product (atmospheric correction) of one Sentinel-2 image 

obtained on February 14, 2017 (https://scihub.copernicus.eu/, accessed on 17 March 2019), 
and six GF-2 images dated on 8 December, 2016 for this study 
(http://www.cresda.com/CN/, accessed on 10 May 2019). The GF-2 satellite is the first op-
tical remote sensing satellite with a spatial resolution of finer than 1 m independently de-
veloped by China. It is equipped with two high-resolution cameras of 1-m panchromatic 
and 4-m multispectral (blue, green, red, and near infrared) images. It has greatly improved 
the satellite’s comprehensive observation efficiency, which has reached the international 
advanced level [59]. The Sentinel-2 satellite carries a multispectral imager (MSI), which 
can cover 13 spectral bands with the ground resolution of 10 m, 20 m, and 60 m, including 
three vegetation red edge bands and three short wave infrared bands that may improve 
forest AGB estimation accuracy [59]. The DEM data with the spatial resolution of 30 m × 
30 m are obtained (http://www.gscloud.cn/, accessed on 15 June 2020) for terrain correc-
tion of optical satellite images. 

3. Methods 
3.1. The RF-S Model 

In order to improve the accuracy and to alleviate saturation problem of forest AGB 
estimation, this research develops a novel integrated scheme on the basis of RF and stack-
ing integration algorithm (referred to as the RF-S model hereafter). As shown in Figure 3, 
the RF-S model includes four steps:  

(1) Gram Schmidt (GS), Nearest Neighbor Diffusion pan sharpening (NND), Wavelet 
Resolution Merge (WRM), and Brovey Transform (BT) are applied to fuse each spectral 
band (Bule, Green and Red) of GF-2 with the Sentinel-2 image;  

(2) Predictor variables (Table 3) of each image are selected by the RF method accord-
ing to the importance, and the random forest regression (RFR) algorithm is used to build 
the AGB estimation model and obtain the relative root mean square error (RMSEr), then 
a comprehensive evaluation index is employed to assess all fused images to quickly select 
the optimal image for further processing; 

(3) The proposed feature variables combinatorial optimization method that is based 
on KNN and RFR algorithm is used to choose the best feature variables from the optimal 
image;  

(4) The stacking algorithm is utilized to build the AGB estimation model and map 
the AGB distribution of the study area. 

In this study, we compare four image fusion algorithms, three feature variable sets, 
two feature selection methods, and four AGB estimation models, and get the best solution 
for AGB estimation of Chinese fir plantation.  
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Figure 3. Flow chart of the proposed RF-S model. Stage 1, Preliminary screening of the best dataset for AGB estimation; 
Stage 2, Feature variable combination optimization and AGB modeling. Feature sets F1, spectral bands + vegetation indi-
ces; Feature sets F2, spectral bands + vegetation indices + texture with single window size of 3 × 3; Feature sets F3, spectral 
bands + vegetation indices + multiple window sizes of 3 × 3, 5 × 5, ..., 9 × 9 texture. 
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Table 3. Vegetation indices used in this research. 

Vegetation Indices Equation Reference 
Normalized difference vegetation 

index 
𝑁𝐷𝑉𝐼 = 𝐵𝑎𝑛𝑑 − 𝐵𝑎𝑛𝑑𝐵𝑎𝑛𝑑 + 𝐵𝑎𝑛𝑑  [58] 

Similar normalized difference veg-
etation indices 

𝑁𝐷𝑉𝐼 _ = 𝐵𝑎𝑛𝑑 − 𝐵𝑎𝑛𝑑𝐵𝑎𝑛𝑑 + 𝐵𝑎𝑛𝑑  [24] 

Simple two-band ratios 𝑅𝑉𝐼 _ = 𝐵𝑎𝑛𝑑𝐵𝑎𝑛𝑑  [58] 

Enhanced vegetation index 𝐸𝑉𝐼 = 2.5 × (𝐵𝑎𝑛𝑑 − 𝐵𝑎𝑛𝑑 )𝐵𝑎𝑛𝑑 + 6 × 𝐵𝑎𝑛𝑑 − 7.5 × 𝐵𝑎𝑛𝑑 + 1 [60] 

Difference vegetation indices 𝐷𝑉𝐼 _ = 𝐵𝑎𝑛𝑑 − 𝐵𝑎𝑛𝑑  [23] 

Soil adjusted vegetation indices 𝑆𝐴𝑉𝐼 = (𝐵𝑎𝑛𝑑 − 𝐵𝑎𝑛𝑑 )(1 + 𝑘)𝐵𝑎𝑛𝑑 + 𝐵𝑎𝑛𝑑 + 𝑘  [24] 

Atmospherically resistant vegeta-
tion index 𝐴𝑅𝑉𝐼 = 𝐵𝑎𝑛𝑑 − (2 × 𝐵𝑎𝑛𝑑 − 𝐵𝑎𝑛𝑑 )𝐵𝑎𝑛𝑑 + (2 × 𝐵𝑎𝑛𝑑 − 𝐵𝑎𝑛𝑑 ) [61] 

Modified simple ratio 𝑀𝑆𝑅 = 𝐵𝑎𝑛𝑑 𝐵𝑎𝑛𝑑⁄ − 1𝐵𝑎𝑛𝑑 𝐵𝑎𝑛𝑑⁄ + 1 [58] 

Note: i, j = 1, ..., N, i ≠ j. N is the number of spectral bands, k = 0.1, 0.25, 0.35, 0.5. 

3.2. Multispectral Image Data Fusion 
In this study, in order to improve the resolution of the multi-spectral image, we used 

the GS method to fuse the GF2 panchromatic image with the multi-spectral (blue, green, 
red) images. Then, in order to couple the two sensors data and increase the image infor-
mation, the fused GF-2 multispectral images were fused with the Sentinel-2 images to 
generate Sentinel-like multispectral images with a spatial resolution of 1 m. Compared 
with the original GF-2 and Sentinel-2 images, the fused Sentinel-like images contain more 
details and more spectral information. In order to find a multi-spectral image fusion 
method suitable for forest AGB estimation, we compare four image fusion algorithms, GS, 
NND, WRM, and BT. In this study, each multispectral band (B1_blue, B2_green, and 
B3_red) of the GF-2 image was fused with the Sentinel-2 image, and the obtained images 
contain 10 bands including 4 vegetation red edges (Table 4). The fused images are denoted 
by the fusion method and band name. For example, using the GS method to fuse the 
B1_blue image of GF-2 with Sentinel-2, the obtained image is denoted as GS_B1. We as-
sume that the spectral information contained in each pixel in the image has a specific cor-
relation with the average AGB of trees per unit area, and this information will not be lost 
after the image is resampled. Therefore, after multispectral data fusion, this study needs 
to resample the fused high-resolution images to a resolution similar to the sample plot 
size. Then, the regression model is established by using the measured AGB of sample plots 
and pixel spectral information. 

Table 4. Feature variable sets used in this research. Texture factors of GLCM, including mean, variance, homogeneity, 
contrast, dissimilarity, entropy, second moment, and correlation. 

Feature Variable Sets Description 

F3 
F2 

F1 
Band Reflectivity 

Band1_Blue, Band2_Green, Band3_Red, Band4_Vegetation Red Edge1(VRE1), 
Band5_Vegetation Red Edge2(VRE2), Band6_Vegetation Red Edge3(VRE3), 

Band7_NIR, Band8_Vegetation Red Edge4(VRE4), Band9_SWIR1, 
Band10_SWIR2 

Vegetation Index 
NDVI, NDVIi_j, RVIi_j, DVIi_j, EVI, SAVIk,  

ARVI, MSR 
texture factors with the window size of 3 × 3 TWI, Elevation, Slope, Aspect, Blue, Green, Red, Red Edge1, Red Edge2, Red 

Edge3, NIR, Red Edge4, SWIR1, SWIR2 texture factors with the window size of (5 × 5, 7 × 7, 9 × 9) 
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3.3. Selecting the Optimal Fused Image for Forest AGB Estimation  
3.3.1. The Fused Image Feature Extraction  

In this study, the spectral features of different remote sensing images are extracted, 
and the vegetation indices are calculated (Table 3). The method of “extracting multiple 
values to points” in the ArcGIS 10.2.2 software is used to interpolate and extract the fea-
ture variables of the spectrum and vegetation index of each forest plot. Finally, the ex-
tracted variables are combined with the measured AGB data to generate a sample dataset. 

3.3.2. The Feature Selection and the AGB Estimation RMSEr Calculation for Each Fused 
Image  

Using the sample data set and RF regression algorithm, we establish the AGB esti-
mation model that contains k decision trees. We use the out-of-bag (OOB) data to calculate 
the OOB data error of each decision tree in the RF regression model (Equation (1)), de-
noted as ErrOOB1i. Then, we traverse all the feature variables, and randomly add noise to 
the feature variable Vi, and calculate the OOB data error again, denoted as ErrOOB2i. In 
this way, k decision trees can get k ErrOOB1 and ErrOOB2. As shown in Equation (2), the 
importance of the feature variable Vi can be described as 𝐼𝑀_𝑅𝐹𝑒𝑟𝑟  by calculating the 
magnitude of the error change before and after adding noise [34]. This is called the RF 
mean decrease accuracy method and denoted as RF_MDA. The advantage of the 
RF_MDA method is that it can quickly and accurately measure the importance of feature 
variables. Obviously, for unimportant variables, disrupting the original order of variables 
will not have much impact on the accuracy of model estimation, but for important varia-
bles, this will significantly reduce the accuracy of model estimation. 

𝑅𝑀𝑆𝐸 = ∑ (𝑦 − 𝑦 )𝑛 − 1  (1)

where n, is the number of samples, 𝑦  and 𝑦 , are the observed and estimated AGB, re-
spectively. 𝐼𝑀_𝑅𝐹𝑒𝑟𝑟 = ∑ 𝐸𝑟𝑟𝑂𝑂𝐵2 − 𝐸𝑟𝑟𝑂𝑂𝐵1 𝑘⁄  , i = 1,…,p. (2)

where p, is the number of feature variables. 

In order to quickly select the most suitable feature variables for forest AGB estima-
tion, all feature variables of each image are ranked by the importance index of the RF 
method. The most important features are selected in turn to form various feature variable 
combinations. For each feature combination, we built a model by the RFR algorithm to 
predict the AGB. The RMSEr between the predicted and observed AGB is calculated by 
the leave one out cross validation (LOOCV). Each iteration of LOOCV method leaves only 
one sample as the test set and other samples as the training set. If there are k samples, the 
method needs to train K times and test K times, so as to maximize the use of all samples. 𝑅𝑀𝑆𝐸𝑟 = 𝑅𝑀𝑆𝐸𝑦  (3)

where 𝑦, is the mean of observed AGB values of all sample plots. 

3.3.3. Image Evaluation and Selection 
The selection of remote sensing images is very important for the estimation of forest 

AGB. This research used the image information entropy, grayscale mean (Mean), standard 
deviation (SD), average gradient (AG), and image-based model cross-validation RMSEr 
as the comprehensive evaluation index to select the optimal images for forest AGB esti-
mation.  
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The information amount increase is an important factor in evaluating the fusion ef-
fect, which can be calculated by information entropy as follows:  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − 𝑃(𝑥 ) log 2, 𝑃(𝑥 )  (4)

We also analyze whether the fused image has more spatial details and texture infor-
mation than the original image. Generally, image brightness can be quantified by indica-
tor of grayscale mean, the greater the mean value, the better the image brightness. The 
standard deviation can be used to evaluate the gray dispersion of the image. The greater 
the standard deviation value, the greater the image contrast. The average gradient of the 
image can reflect the definition of the image to a certain extent. The larger the average 
gradient of the image, the more spatial details will be reflected [42]. 𝑀𝑒𝑎𝑛 = 1𝑀 × 𝑁 𝐼(𝑖, 𝑗) (5)

𝑆𝐷 = 𝟏𝑀 × 𝑁 (𝐼(𝑖, 𝑗) − 𝐼)̅  (6)

𝐴𝐺 = 1(𝑀 − 1)(𝑁 − 1) 𝐹(𝑖, 𝑙) − 𝐹(𝑖 + 1, 𝑙) + 𝐹(𝑖, 𝑙) − 𝐹(𝑖, 𝑙 + 1)2  (7)

3.4. Forest AGB Estimation Modeling Based on the Selected Optimal Fused Images  
Texture feature variables are very helpful for remote sensing data modeling [20,24], 

so we extract texture features from the selected fused images and terrain factors derived 
from DEM data, including elevation, slope, aspect, and topographic wetness index (TWI) 
[62]. Relevant studies show that macro topographical factors (e.g., TWI) are related to re-
gional forest AGB [63]. TWI is a physical index of the impact of regional topography on 
runoff flow direction and accumulation, which is helpful to identify rainfall runoff pat-
terns, potential areas of increased soil water content, and ponding areas. Generally, when 
other conditions of forest (e.g., environmental and climatic) are the same, the larger TWI 
is more conducive to the growth of trees.  𝑇𝑊𝐼 = ln 𝛼tan 𝛽  (8)

where 𝛼, is catchment area per unit contour length, 𝛽 is the steepest outward slope of 
each pixel.  

These features combine with the vegetation indices and the measured forest plot 
AGB value to form a training sample data set. Then, we select the optimal combination of 
feature variables for AGB estimation. 

3.4.1. Feature Variable Extraction  
In this study, the gray level co-occurrence matrix (GLCM) is used to measure texture 

of the optical images and terrain data [20]. By calculating the mean, variance, homogene-
ity, contrast, dissimilarity, entropy, second moment, correlation, we obtain the direction, 
field and change range of image gray, which reflect the correlation between texture gray 
levels well. We extract the textural images using the GLCM with step size [1,1] and win-
dow size (3 × 3, 5 × 5, 7 × 7, 9 × 9). In order to analyze the contributions of vegetation 
indices, single-window texture factor and multi-window texture factor to the forest pa-
rameter estimations, we design three sets of feature variables, F1, F2, and F3 (Table 4).  

3.4.2. Feature Variable Combinations 
The DC-FSCK method was proposed by Li et al. to choose the optimal feature varia-

ble combination for GSV estimation [24], but the feature variables selected by one method 
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may not bring good accuracy of AGB estimation in all regression models [24,52]. In addi-
tion, RFR algorithm has excellent performance in many applications of forest mapping 
[34]. Li et al. [58] compared the performance of six feature variable selection methods in 
forest GSV estimation, and found that the feature variable combination optimization 
method based on RFR model performs best. In order to improve the robustness of the 
feature variable selection methods, we replace the KNN in DC-FSCK method with the 
RFR algorithms (Figure A2). Therefore, in the second stage of the RF-S model, for each 
data scenario, we apply the KNN-based method and the RFR-based method to screen fea-
ture variables for forest AGB estimation. 

3.4.3. Stacking Ensemble Algorithm 
The estimation result of a single model has the disadvantages of one-sidedness and 

contingency. Therefore, the ensemble machine learning model that integrates the results 
of multiple models for prediction has better performance than a single model. Generally, 
there are three types of ensemble machine learning regression algorithms, including bag-
ging, boosting, and stacking [59]. Stacking generalization algorithm was first proposed by 
Wolpert in 1992, and he believes that it is similar to cross validation, which is integrated 
through "winner takes all" [57]. Bagging and boosting algorithms usually took the deci-
sion regression tree as the basic model [56,57]. So they are the integration of similar mod-
els, while stacking algorithms are relatively more flexible, which can be the ensemble of 
similar models or heterogeneous models. This research plans to adopt the integration al-
gorithm of the stacking machine learning model that combines the prediction results of 
the basic model to realize accurate AGB estimation. The base model, meta-model, and 
hyperparameter optimization are the keys for the stacking integration algorithm. In this 
study, the base models are SVR, RFR, and KNN, the meta-model is least absolute shrink-
age and selection operator (LASSO). Therefore, this study comprehensively considers the 
coupling and complementarity between these models, and realizes the integration opti-
mization of the regression model through the iterative selection of models and the auto-
matic adjustment of hyperparameters (Figure 3 Stage2).  

3.5. Model Evaluation and Application 
In this study, four methods including KNN, SVR, RF, and the stacking algorithm are 

employed to conduct AGB modeling and estimation using NND_B3, GF-2, and Sentinel-
2 image data. These results are assessed by the LOOCV method using the indexes of co-
efficient of determination (R2), adjusted R2, Pearson correlation coefficient (r), RMSE, 
RMSEr, and mean absolute error (MAE). 𝑅 = 1 − ∑ (𝑦 − 𝑦 )∑ (𝑦 − 𝑦)  (9)

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅 = 1 − (1 − 𝑅 )(𝑛 − 1)𝑛 − 𝑝 − 1  (10)

𝑟 = ∑ (𝑦 − 𝑦 )(𝑦 − 𝑦)∑ (𝑦 − 𝑦 ) ∑ (𝑦 − 𝑦)  (11)

𝑀𝐴𝐸 = 1𝑛 |𝑦 − 𝑦 | (12)

where n and p, are the number of samples and feature variables, respectively. 𝑦 , is the 
mean of estimated AGB values of all sample plots. 
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Finally, the data scenario and estimation model with larger adjusted R2 and smaller 
MAE and RMSEr are selected to map the Chinese fir plantation AGB in the study area. 

4. Results and Discussion  
4.1. Twelve Sentinel-Like Images Generated by Four Fusion Methods 

In this study, four classic pixel-level fusion algorithms (GS, NND, WRM, and BT) are 
used to fuse three GF-2 multispectral images with Sentinel-2 images. Compared with the 
original Sentinel-2 image (Figure A3), all Sentinel-like RGB true color images (Figure 4) 
have enhanced clarity. Specifically, the GS and NND fusion images (Figure 4(a1–a3,b1–
b3)) have more obvious texture details, better clarity. The overall tone of the WRM fusion 
images (Figure 4(c1–c3)) is natural, close to Sentinel-2 image, indicating high spectral re-
tention. However, these images have no obvious texture details and have a lot of noise 
and outliers. The BT fusion images (Figure 4(d1–d3)) have more obvious texture details, 
but lower tone and larger spectral distortion than the original Sentinel-2 image. 

As shown in Figure 5, Band 8 (Vegetation Red Edge 4) of all the Sentinel-like images 
except Figure 5j–l) has the largest spectral value. The spectral value ranges of Band1–3 are 
narrow, but others are wide, which is highly consistent with the Sentinel-2 image (Figure 
5m). Unlike the original GF-2 image whose spectral value peaks in Band2 (Green), Senti-
nel-2 and all Sentinel-like images have a higher spectral pixel values in the blue band than 
in the red band, which may be due to the low resolution of Sentinel-2, small crown width, 
needle-shaped leaves, and large gaps in the Chinese fir woodland. The spectral dispersion 
of the GS and NND fusion images in the visible light and vegetation red edge bands is 
better than that of the original Sentinel-2, especially that in Figure 5b,c and f. The spectral 
distribution of WRM fusion image Figure 5g–i is basically the same as that of Sentinel-2 
image. For the BT fusion image Figure 5j–l, the spectral distribution ranges of visible light 
and vegetation red band are very close. As Figure 6 shows, almost all Sentinel-like spectral 
curves are similar to Sentinel-2, except for the BT fusion images. BT is a simple fusion 
method that decomposes multi-spectral image pixels into colors and brightness, and then 
multiplies them with high-resolution images. It can only fuse 3 multi-spectral images at a 
time. This may be the reason of the distortion in the fusion image Figure 5j–l. Yang et al. 
[64] compared the GS, NND and WRM fusion methods, and found that the change trend 
of the spectral curve of the images fused by three methods are basically the same as that 
of the original images, but the WRM fusion image retains much more spectral information 
than other images. This result is consistent with our research. 
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Figure 4. Sentinel-like images obtained by fusing Sentinel-2 image with the GF-2 images (B1_blue, 
B2_green and B3_red) using the GS, NND, WRM, and BT methods. (a1–a3) GS_B1, GS_B2, GS_B3; 
(b1–b3) NND_B1, NND_B2, NND_B3; (c1–c3) WRM_B1, WRM_B2, WRM_B3; (d1–d3) BT_B1, 
BT_B2, BT_B3. 



Remote Sens. 2021, 13, 3910 14 of 30 
 

 

 
Figure 5. Reflectance distribution range of some representative spectral bands of fused sentinel-like, Sentinel-2, and GF-2 
images. (a–c) GS_B1-GS_B3; (d–f) NND_B1-NND_B3; (g–i) WRM_B1-WRM_B3; (j–l) BT_B1-BT_B3; (m) Sentinel-2; (n) GF-
2. 
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Figure 6. The spectral curves of Sentinel-like and Sentinel-2. 

4.2. Selecting Best Fused Image for Forest AGB Estimation 
The RF feature selection method is used to quickly screen feature variables from the 

14 datasets, including GF-2, Sentinel-2, and the 12 fused Sentinel-like images. By doing 
this, the feature redundancy and model computation load can be effectively reduced. For 
each data scenario, that is, 14 groups of feature variables are selected from the above 14 
datasets, we use RFR algorithm to establish AGB estimation model. The minimum esti-
mation RMSEr is obtained for image evaluation (Figure A4). 

Among the 12 fused Sentinel-like images, NND_B3 (0.2896), GS_B2 (0.3007), and 
GS_B3 (0.3085) have the lowest RMSEr. We compare 14 RMSEr values by the one-sample 
T test method, and the results show that NND_B3, GS_B2, and GS_B3 images are signifi-
cantly different from other images at the 0.05 level, with the p values of 0.000, 0.000, and 
0.021, respectively. The estimation error of these three images is significantly lower than 
that of other images. The GS method was used to fuse GF-2 multispectral and Landsat 8 
images in the GSV estimation study of Chinese pine and larch in North China [24]. The 
results show that the fusion images obtained based on the B2 and B3 bands of GF-2 images 
have higher GSV estimation accuracy than other images. In that study, the stepwise re-
gression analysis is used for feature selection, which is different from the RFR-based 
method, but the results of image data source selection are basically the same, which fur-
ther confirms the feasibility of the improved method. 

Table 5 shows the normalized statistics of five evaluation indicators of the fused im-
ages. Image NND_B3 has the values of entropy, standard deviation and average gradient 
significantly different from other images at the 0.05 level, indicating that the image has 
more information, better texture details and spatial information. Furthermore, its RMSEr 
estimated based on the RF regression algorithm is the lowest, indicating that the image 
has good forest AGB estimation accuracy. The RMSEr of GS_B2 and GS_B3 are also low, 
but are greater than that of NND_B3. Although WRM_B1 has good results in mean, stand-
ard deviation, and entropy, it has the largest RMSEr. Comprehensively considering the 
information volume, quality and estimation error, we select NND_B3 for the forest AGB 
modeling and estimation. GS_B2 and GS_B3 images will also be processed to compare 
with NND_B3 images in Section 4.5. 
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Table 5. Statistics of normalization for fusion image evaluation index. The RMSEr is calculated by the method in Section 
3.3.2. The normalization formula is X’ = (X − min)/(max − min), where X’ is the normalized data, X is the original data, and 
max and min are the maximum and minimum values of the original dataset, respectively. The data marked with the 
symbol * indicates significant difference from other data at the 0.05 level, indicating that these marked images are superior 
to other unmarked images in corresponding evaluation indexes. 

Data Scenarios Gray Mean 
Standard  
Deviation 

Average Gradi-
ent Entropy RMSEr 

Fused image 

B1 

GS 0.9399 * 0.6824 0.7165 0.4259 0.5954 
NND 0.7375 0.6039 0.7216 1.0000 * 0.6069 
WRM 0.9978 * 0.8157 * 0.8144 0.7778 * 0.8285 

BT 0.0389 0.0314 0.0000 0.5185 1.0000 

B2 

GS 0.8799 0.8431 * 0.8866 * 0.1667 0.2139* 
NND 0.6941 0.7333 0.7526 0.2778 0.4489 
WRM 1.0000 * 0.8039 * 0.7990 0.2222 0.7938 

BT 0.0367 0.0000 0.1082 0.1852 0.7033 

B3 

GS 0.7987 1.0000 * 1.0000 * 0.8704 * 0.3642 * 
NND 0.7030 0.9725 * 0.9381 * 0.8184 * 0.0000 * 
WRM 0.9822 * 0.8431 * 0.8711 * 0.0000 0.6127 

BT 0.0000 0.0000 0.1546 0.6111 0.8112 
Unfused 
 image 

GF-2 0.8120 0.6549 0.7320 0.5370 0.4162 
Sentinel-2 0.9933 * 0.4275 0.6753 0.7593 * 0.3757 * 

4.3. Selection of Optimal Feature Combination from the Fused Image 
The KNN-based and RFR-based feature combination optimization methods are used 

to select the optimal feature variable combination from the three feature datasets (F1, F2, 
and F3). Six feature combinations of image NND_B3 are shown in Table 6. For feature set 
F1, the KNN-based and the RFR-based methods select four and three feature variables, 
respectively. Three of the seven feature variables are related to SWIR2, indicating that the 
short-wave infrared band is sensitive to forest vegetation. In F2 and F3, most of the fea-
tures selected by the two methods are texture feature variables, indicating that the texture 
feature has a very close relationship with the forest AGB.  

Table 6. Spectral variables selected from the NND_B3 image by different methods. W, Texture win-
dow size; VRE, vegetation red edge; M, mean; V, variance; H, homogeneity; Con, contrast; D, dis-
similarity; E, entropy; S, second moment; Cor, correlation. For example, Green_W9_Con is ex-
pressed as a texture feature with the texture window size 9 × 9, GLCM-contrast, that is derived from 
the NND_B3 Green band image. 

Feature 
variable sets 

Methods Selected Variables  

F1 
KNN-base DVI1_10, DVI1_3, MSR, ARVI 
RFR-base NDVI6_10, DVI2_10, DVI5_8 

F2 
KNN-base DVI1_10, DVI1_3, SWIR2_W3_S 

RFR-base 
RVI1_6, Blue_W3_V, Blue_W3_Con, Green_W3_Con, 

 Red_W3_D, TWI_W3_S, VRE3_W3_H 

F3 
KNN-base 

Green_W9_Con, Blue_W3_Con, Blue_W7_V, 
Blue_W3_Cor,  Red_W3_D, Elevation_W5_Cor, 

Green_W5_E, RVI1_4, VRE1_W5_E 

RFR-base NDVI6_7, Blue_W3_V, Blue_W3_Con, Red_W3_D, 
VRE2_W3_H, Blue_W5_D, VRE1_W5_S 
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4.4. The AGB Estimation Result Analysis 
The AGB estimation results of the 4 regression algorithms using the optimal feature 

combination are shown in Table A1. The KNN-based and RFR-based methods are used in 
all data scenarios, but only the better results are shown in Table A1. For comparison, three 
data sources, GF-2, Sentinel-2, and NND_B3, are used to estimate the forest AGB.  

The stacking algorithm has good performance in all data scenarios. Take NND_B3 as 
an example. In the F2 feature set, the RMSEr of the stacking algorithm is 22.09%, which is 
lower than SVR (24.96%), KNN (24.55%), and RF (22.21%). In the F3 feature set, the RMSEr 
of stacking (15.53%) is lower than SVR (19.88%), KNN (17.11%), and RF (19.78%) at the 
statistical level of 0.05. Similarly, in the GF-2 and Sentinel-2 data scenarios, the RMSEr of 
the stacking algorithm is lower than the other three algorithms, and R2, adjusted R2, and 
MAE also have relatively better results. This result is consistent with the performance of 
the stacking algorithm in the reference [24]. The stacking algorithm used in this study 
comprehensively considers the coupling and complementarity between models, and op-
timizes the regression model through the iterative selection of models and the automatic 
adjustment of hyperparameters, so it can significantly improve the accuracy and stability 
of AGB estimation of Chinese fir plantations.  

Luo et al. [52] studied AGB estimation of the forests in Northeast China based on the 
Ninth National Forest Continuous Inventory data and Landsat OLI images. They used the 
recursive feature elimination for feature selection and the categorical boosting as the re-
gression algorithm, and achieved the highest accuracy for coniferous forest, with the 
RMSE of 26.54 Mg/ha. Coniferous forests in northern China are mainly pine plantations, 
which are biologically similar to the Chinese fir plantations in southern China. The pine 
plantations in north China usually have smaller per unit AGB values than Chinese fir 
plantations in south China [24]. In addition, the topography of the planted forests in north-
ern China is flatter. Therefore, theoretically, the accuracy of AGB estimation of the planted 
coniferous forests in northern China is usually higher than that in southern China. How-
ever, the lowest RMSE and RMSEr value (26.54 Mg/ha, 25.62%) achieved by Luo et al. [52] 
is larger than our results (15.79 t/ha, 15.53%). On the one hand, their method ignores the 
ensemble of regression models and the combined effect of feature variables, though they 
used a large number of field survey plots. On the other hand, they only used Landsat 
images. Zhang et al. evaluated eight machine learning regression algorithms for estimat-
ing forest AGB using satellite remote sensing data and multiple auxiliary data [54]. They 
concluded that the categorical boosting (CatBoost) algorithm has the best accuracy among 
these eight algorithms, with the R2 (0.72), RMSE (45.63 Mg/ha), and RMSEr (25%). How-
ever, the CatBoost achieved poor performances in estimating the AGB of evergreen 
needleleaf forests, as the RMSEr is larger than 60%. The poor accuracy could be resulted 
from the underestimation of evergreen needleleaf forest samples due to the saturation 
problems. 

4.5. The AGB Estimation Ability of Different Image Data Source 
The NND_B3 obtained by fusing the red band of GF-2 with Sentinel-2 by the NND 

method has the advantages of both GF-2 and Sentinel-2. GF-2 and Sentinel-2 have similar 
AGB estimation performance in F1 feature sets. However, for feature sets F2 and F3, the 
RMSEr of NND_B3, GF-2 and Sentinel-2 are different (Table A1). For the F2 feature set, 
the optimal RMSEr of Sentinel-2 is 0.0288 larger and R2 is 0.1704 smaller than that of 
NND_B3. For the F3 feature set, the optimal RMSEr of NND_B3 is lower than Sentinel-2 
by 0.0515, and R2 is larger by 0.2343. Using NND_B3, the estimation accuracy is greatly 
improved. As the scatter plot of Figure A5 shows, NND_B3 has more concentrated distri-
bution, clearer fitting trend, and higher correlation coefficient r than other data. We also 
compared the estimation accuracy of using GS_B2 (RMSEr, 0.1804) and GS_B3 (RMSEr, 
0.1893) and found their accuracy is lower than using NND_B3(RMSEr, 0.1553) (Figure 7).  
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Figure 7. The estimation results of three images by the stacking algorithm. 

4.6. The Best Feature Selection Method for Different Data Scenarios and Different Estimation 
Models 

Different feature selection methods are applicable to different estimation models. In 
this study, KNN-based and RFR-based were used to select the optimal combination of 
feature variables for F1, F2, and F3 feature sets. The estimation results of 36 models indi-
cate that (Table A1), for the F2 feature set of Sentinel-2 and NND_B3, the RFR-based fea-
ture variable selection method is better than the KNN-based in all models. In addition, as 
Table A1 and Figure A4 show, RFR-based has a lower RMSEr value in the F1 feature set 
of GF-2, Sentinel-2, and NND_B3 images than the RF importance index method. This 
means that the RFR-based method has better performance than traditional RF-base 
method in the feature selection of forest AGB estimation. For most data scenarios, when 
the RF regression algorithm is used, the RFR-based performs better than the KNN-based. 
The KNN-based is better than the RFR-based for the SVR, KNN, and stacking models of 
the F1 and F3 feature variable set. This result indicates that the RFR-based method can be 
combined with the KNN-based method in different model application scenarios. 

4.7. AGB Estimation Performance of Different Feature Sets 
The vegetation index and texture feature variables of optical remote sensing images 

can be used for forest classification and structural parameter prediction [38]. The forest 
AGB estimation performance of different feature sets varies significantly (Table A1). F3 
performs the best, F2 is the second, and F1 is the worst. Taking the NND_B3 image as an 
example, when the RF and stacking estimation models are used, the RMSEr of F3 is 0.0243 
and 0.0656 less than that of F2, respectively, and the MAE is 1.78 t/ha and 5.0 t/ha less, 
respectively. Similarly, compared with the RESEr of F1, the RMSEr of F2 is 0.0222 and 
0.0269 less, respectively, and the MAE is 1.83 t/ha and 3.78 t/ha smaller, respectively. Com-
parison shows that the estimated AGB results of F3 are more correlated with the measured 
AGB values (Figure A5). The average value of r is 0.6868, and the maximum value can 
reach 0.8427. F1 performs poorly, with the mean value of r being 0.4143 and the minimum 
value being 0.1614. 

Figure A6 shows the variation range and trend of AGB estimation deviation of dif-
ferent feature sets of NND_B3 image. The overall estimation deviation of F3 is relatively 
low. Larger RMSErs are mainly of the samples whose measured AGB exceeds 140 t/ha, 
and there are only 11 samples with the absolute deviation exceeding 20 t/ha. F2 and F1 
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have 19 and 24 samples with the absolute deviation exceeding 20 t/ha, respectively, and 5 
samples of F1 have the absolute deviation larger than 40 t/ha. 

4.8. Prediction and Map of the AGB of Chinese fir Plantation in the Study Area 
Figure 8(a1–c3) are the AGB spatial distribution map of Chinese fir plantation esti-

mated by the Stacking algorithm using the GF-2, Sentinel-2 and NND_B3, respectively. 
Figure 8(a1,b1,c1) are the estimation results of the F1 feature set of GF-2, Sentinel-2 and 
NND_B3, respectively, whose AGB values are between 90 t/ha and 110 t/ha, generally 
low. This indicates that the estimated AGB value is less saturated and overestimated for 
low values. The results of the F2 feature set (Figure 8(a2,b2,c2)) have less overestimation, 
and the estimated values range between 69 t/ha to 158 t/ha. The results of the F3 feature 
set are the best, with AGB ranging between 45 t/ha and 176 t/ha. The green area of Figure 
8(c3) is larger than Figure 8(a3,b3), indicating more AGB estimates are between 135t/ha 
and 176t/ha. In short, NND_B3 has better estimation results than GF-2 and Sentinel-2, and 
it improves the saturation significantly. The F3 feature set with multi-window texture fac-
tors is better than F1 and F2 in the lower AGB area. It has better performance, and su-
presses the overestimation, indicating that the multi-window texture factor can suppress 
the overestimation in the low-value area of AGB.  

Figure 8(d1–d3) show the AGB result distribution map estimated by SVR, KNN, and 
RF model using the F3 feature set of NND_B3 image. The obtained AGB values range 
between 44 t/ha and 168 t/ha, 49 t/ha and 176 t/ha, and 59 t/ha and 161 t/ha, respectively. 
The SVR model has higher accuracy in the low-value area, but lower accuracy in the high-
value (green) area than the KNN and RF models. In the southern area, Figure 8(c3,d2) and 
d3 all have higher AGB estimates, but Figure 8(d1) has low AGB, which also indicates that 
the SVR model has the underestimation problem in the area with higher AGB values. Fi-
nally, compared with the estimation results of Figure 8(c3,d1–d3), Figure 8(c3) has more 
high value areas and wider AGB value range, indicating that the stacking model has 
stronger generalization ability and higher accuracy than SVR, KNN, and RF. Zhao et al. 
[65] studied the AGB estimation data saturation problem using Landsat TM (Thematic 
Mapper) images for different vegetation types and obtained the forest biomass saturation 
values of 159 Mg/ha for pine (Pinus Massoniana) plantations forests in Eastern China. Gao 
et al. [19] compared several models for AGB estimation in subtropical forests, and found 
that the RF algorithm is not suitable for AGB prediction when the AGB values are too 
small (<40 Mg/ha) or too large (>160 Mg/ha). This is consistent with the AGB estimation 
result based on the RFR model in this study. 
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Figure 8. (a1–c3) the AGB distribution maps of Chinese fir plantations in the study area estimated 
by the 3 feature sets of GF2, Sentinel-2 and NND_B3 images based on stacking models; (d1–d3) the 
AGB distribution map estimated by the SVR, KNN, and RF models using the F3 feature variable set 
of the NND_B3 image. 
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4.9. Limitations and Future Works 
This study has proved the superiority of multi-spectral fusion image combined with 

stacking integrated modeling method in estimating the AGB of Chinese fir plantation, but 
there are some limitations in the application. First of all, optical remote sensing images are 
usually polluted by clouds. This affects the imaging quality of remote sensing images to a 
certain extent, and even significantly reduces the availability of image data. Therefore, the 
difference in imaging time for GF-2 and Sentinel-2 brings certain uncertainty to image 
fusion processing. Secondly, as shown in Table 2, more than half of the Chinese fir plan-
tation sample plots are not really mature, meaning that tree growth that occurred between 
2016 and 2017 has not bet accounted for. Third, the stacking integration algorithm usually 
has a great computation load [24,55], which should be reduced. The categorical boosting 
regression algorithm and extreme gradient boosting regression algorithm works well in 
classification and regression prediction [48,52,53], so combining them with the stacking 
ensemble algorithm may improve the forest AGB estimation. 

5. Conclusions 
In this study, the RF-S method was proposed for estimating the AGB of Chinese fir 

plantations in south China. The results demonstrate the superiority of fusing GF-2 multi-
spectral and Sentinel-2 data, as well as the potential of the improved feature combination 
optimization method at regional scales. The stacking generalization method based on the 
fused image (NND_B3) has higher estimation accuracy and saturation than other images 
and regression models. The achieved adjusted R2 and RMSEr are 0.6306 and 15.53%, re-
spectively. This study uses both vegetation index and texture feature factors of multiple 
window sizes as the input feature variables for the training model, which can provide 
higher accuracy and data saturation for Chinese fir plantation AGB mapping. However, 
the proposed RF-S strategy has huge computation load, due to forest plot data collection, 
multi-spectral image fusion processing, feature variable combination optimization, and 
integration of multiple models. Thus, methods for improving the computation efficiency 
should be developed before this strategy is widely applied. This research provides some 
insights for forest AGB estimation research based on remote sensing images and sample 
plots data modeling. 
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Appendix A 
Supplementary notes: Because BT fusion method can only fuse 3 bands at a time, in 

this study, based on BT fusion method, we only get 9 fused bands. The regression model-
ing algorithms used in this study, including RF, KNN, SVR, and stacking, are imple-
mented by calling the machine learning toolkit based on Python 3.7 programming lan-
guage. In addition, the image GLCM calculation was performed based on the “Co-occur-
rence Measures” function of Envi 5.3 software, and image sharpening fusion was per-
formed using Envi 5.3 and Erdas 9.2 software. 

 
Figure A1. (a) schematics of the 20 m × 20 m and 30 m × 30 m sample plots; (b) a photo of a ground 
measured Chinese fir plot; (c) the equipment used for sample plot locating and tree height meas-
urement. 
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. 

Figure A2. The RFR-based method for optimizing the feature variable combination. (a) Selection of 
the best fused image; (b) Feature variable selection based on combinatorial optimization method; 
(c) Basic flow of random forest regression algorithm. 
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Figure A3. Original GF-2 and Sentinel-2 images. (a) RGB true color image of GF-2; (b) RGB true 
color image of Sentinel-2. 

 
Figure A4. The optimal feature combination selected by the RF importance index and estimation RMSEr. (a) GS_B1, 
NND_B1, WRM_B1, BT_B1; (b) GS_B2, NND_B2, WRM_B2, BT_B2; (c) GS_B3, NND_B3, WRM_B3, BT_B3; (d) GF-2, Sen-
tinel-2. 
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Figure A5. The scatter graphs between the observed and estimated AGB values of the Chinese fir plots using three image 
datasets and four estimation models: (a–d), (e–h) and (i–l) are the AGB estimated by the GF-2, Sentinel-2, and NND_B3 
image using the SVR, KNN, RF, and stacking algorithm, respectively. Blue, orange, and gray represent F1, F2, and F3 
feature variable sets, respectively. 
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Figure A6. The estimation bias of the Stacking algorithm based on the NND_B3 image :(a–c) are F3, F2, and F1 feature 
variable sets, respectively. The red dotted line is the deviation change trend line. 
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Table A1. The summary of assessment indicators for AGB estimation results of Chinese fir plantations based on nine image feature data scenarios and four estimation 
algorithms. The estimation results are the better ones of the feature screened by the KNN-based and RFR-based algorithms. The data scene with light green shade in the 
table indicates that the estimation result of feature variables selected by the RFR-based algorithm is better than the KNN-based method. However, the KNN-based algorithm 
is better in other data scenarios.  

                                                                                               

Feature 
Variable 

Sets 

Assessment 

Indicators  

GF-2 Sentinel-2 NND_B3 

SVR KNN RF Stacking SVR KNN RF Stacking SVR KNN RF Stacking 

F1 

R2 0.0240 0.1176 0.1201 0.1242 0.1373 0.1112 0.1279 0.1923 0.1564 0.2148 0.2535 0.2326 

Adjusted R2 −0.0628 0.0392 0.0419 0.0464 0.0606 0.0322 0.0504 0.1205 0.0814 0.1450 0.2048 0.1643 

RMSE(t/ha) 28.40 27.01 26.97 26.91 26.67 27.07 26.81 25.80 26.41 25.48 24.84 25.19 

RMSEr(%) 27.94 26.57 26.53 26.47 26.24 26.64 26.39 25.39 25.98 25.06 24.43 24.78 

MAE(t/ha) 22.50 21.52 21.40 21.26 21.71 22.08 22.70 21.48 23.16 22.14 20.15 21.33 

F2 

R2 0.2324 0.2623 0.2573 0.3235 0.2014 0.2160 0.2025 0.2193 0.2214 0.2467 0.3832 0.3897 

Adjusted R2 0.1997 0.2309 0.1335 0.2947 0.0683 0.0853 0.0231 0.0892 0.0916 0.1211 0.2804 0.2880 

RMSE(t/ha) 25.19 24.69 24.78 23.65 25.66 25.42 25.64 25.37 25.37 24.95 22.58 22.46 

RMSEr(%) 24.78 24.29 24.37 23.26 25.25 25.02 25.23 24.97 24.96 24.55 22.21 22.09 

MAE(t/ha) 19.69 19.17 20.17 19.39 19.43 19.25 20.70 19.04 19.33 20.57 17.56 17.55 

F3 

R2 0.3879 0.4470 0.4810 0.5296 0.2161 0.4266 0.2670 0.4643 0.5057 0.6340 0.5107 0.6985 

Adjusted R2 0.2859 0.3548 0.3945 0.4511 0.0631 0.3148 0.1020 0.3598 0.3944 0.5518 0.4292 0.6306 

RMSE(t/ha) 22.49 21.38 20.71 19.72 25.42 21.74 24.58 21.01 20.21 17.39 20.11 15.79 

RMSEr(%) 22.13 21.03 20.37 19.40 25.02 21.40 24.19 20.68 19.88 17.11 19.78 15.53 

MAE(t/ha) 16.96 16.24 15.42 15.17 19.30 17.15 19.47 15.97 16.13 13.72 15.78 12.55 
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